459 research outputs found

    Qualitative Studies of Nonlinear Hybrid Systems

    Get PDF
    A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance. The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems. Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior. Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems. Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay. Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions. Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function

    Selection theorem for systems with inheritance

    Full text link
    The problem of finite-dimensional asymptotics of infinite-dimensional dynamic systems is studied. A non-linear kinetic system with conservation of supports for distributions has generically finite-dimensional asymptotics. Such systems are apparent in many areas of biology, physics (the theory of parametric wave interaction), chemistry and economics. This conservation of support has a biological interpretation: inheritance. The finite-dimensional asymptotics demonstrates effects of "natural" selection. Estimations of the asymptotic dimension are presented. After some initial time, solution of a kinetic equation with conservation of support becomes a finite set of narrow peaks that become increasingly narrow over time and move increasingly slowly. It is possible that these peaks do not tend to fixed positions, and the path covered tends to infinity as t goes to infinity. The drift equations for peak motion are obtained. Various types of distribution stability are studied: internal stability (stability with respect to perturbations that do not extend the support), external stability or uninvadability (stability with respect to strongly small perturbations that extend the support), and stable realizability (stability with respect to small shifts and extensions of the density peaks). Models of self-synchronization of cell division are studied, as an example of selection in systems with additional symmetry. Appropriate construction of the notion of typicalness in infinite-dimensional space is discussed, and the notion of "completely thin" sets is introduced. Key words: Dynamics; Attractor; Evolution; Entropy; Natural selectionComment: 46 pages, the final journal versio

    Qualitative Properties of Hybrid Singular Systems

    Get PDF
    A singular system model is mathematically formulated as a set of coupled differential and algebraic equations. Singular systems, also referred to as descriptor or differential algebraic systems, have extensive applications in power, economic, and biological systems. The main purpose of this thesis is to address the problems of stability and stabilization for singular hybrid systems with or without time delay. First, some su cient conditions on the exponential stability property of both continuous and discrete impulsive switched singular systems with time delay (ISSSD) are proposed. We address this problem for the continuous system in three cases: all subsystems are stable, the system consists of both stable and unstable subsystems, and all subsystems are unstable. For the discrete system, we focus on when all subsystems are stable, and the system consists of both stable and unstable subsystems. The stability results for both the continuous and the discrete system are investigated by first using the multiple Lyapunov functions along with the average-dwell time (ADT) switching signal to organize the jumps among the system modes and then resorting the Halanay Lemma. Second, an optimal feedback control only for continuous ISSSD is designed to guarantee the exponential stability of the closed-loop system. Moreover, a Luenberger-type observer is designed to estimate the system states such that the corresponding closed-loop error system is exponentially stable. Similarly, we have used the multiple Lyapunov functions approach with the ADT switching signal and the Halanay Lemma. Third, the problem of designing a sliding mode control (SMC) for singular systems subject to impulsive effects is addressed in continuous and discrete contexts. The main objective is to design an SMC law such that the closed-loop system achieves stability. Designing a sliding surface, analyzing a reaching condition and designing an SMC law are investigated throughly. In addition, the discrete SMC law is slightly modi ed to eliminate chattering. Last, mean square admissibility for singular switched systems with stochastic noise in continuous and discrete cases is investigated. Sufficient conditions that guarantee mean square admissibility are developed by using linear matrix inequalities (LMIs)

    Control over communication networks : modeling, analysis, and synthesis

    Get PDF
    The focus of this work is on dynamical systems that are controlled over a communication network, also denoted as Networked Control Systems (NCSs). Such systems consist of a continuous-time plant and a discrete-time controller that are connected via a communication network, such as e.g. controller area network (CAN), wireless networks, or internet. Advantages of the use of such a network are a reduction of installation and maintenance costs and a flexible architecture. The reduction of the costs is achieved by using one (shared) processor to control multiple plants, instead of using dedicated processors for each plant. Adding or removing plants or controllers to the network is easy, which explains the benefit in terms of a flexible architecture of the control system. Moreover, the use of wireless networks obviously allows to separate the controller and plant physically. Typical applications of NCSs are mobile sensor networks, remote surgery, automated highway systems, and the cooperative control of unmanned aerial vehicles. Disadvantages of the use of such networks are the occurrence of time-varying delays, time-varying sampling intervals, and packet dropouts, i.e. loss of data. Moreover, time-varying sampling intervals and delays may also result from other sources than the communication network. Namely, in many high-tech embedded systems, the processor is used for both the control computation and other software tasks, such as interrupt and error handling. This leads to variation in the computation time or variation in the moment of asking for new sensor data, resulting in variable sampling intervals. The amount of variation depends on the chosen software implementation, the chosen architecture, and the processor load. A control design that can deal with the variation in the time-delays, sampling intervals, and the occurrence of packet dropout is important for the multidisciplinary design of high-tech systems. Namely, such robustness properties of the control design represent a relaxation on the demands from control engineering on the software and communication network design. In this thesis, a discrete-time model for linear NCSs is derived that considers time-varying delays, time-varying sampling intervals, and packet dropouts. Based on this model, examples of the destabilizing effect of variations in the delay and variations in the sampling intervals are given to show the necessity of stability conditions that consider the effects of time-varying delays, time-varying sampling intervals, and packet dropouts. To derive such stability conditions, upper and lower bounds of time-varying delays and sampling intervals are assumed, as well as a maximum number for the subsequent packet dropouts. Based on these assumptions, sufficient conditions in terms of linear matrix inequalities (LMIs) are derived that guarantee global asymptotic stability of the NCS. Two different control strategies, i.e. state feedback control and state-feedback control including past control input information are considered. For both control approaches, conditions in terms of LMIs are given for the controller synthesis problem and a comparison of the applicability of both control approaches is made. Besides the stability analysis and controller synthesis conditions, the intersample behavior is investigated to ensure stability of the continuous-time system between the sampling instants. An extension to the stability analysis conditions is given that can be used to solve the approximate tracking problem for NCSs with time-varying delays and sampling intervals and packet dropouts. Only approximate tracking can be achieved because the time-varying delays, sampling intervals, packet dropouts, and the use of a zero-order hold between the controller and actuator cause an inexact feedforward, which induces a perturbation on the tracking error dynamics. Sufficient conditions for the input-tostate stability of the tracking error dynamics are provided and an upper bound for the tracking error is given as a function of the plant properties, the control design, and the bounds on the delays, the sampling interval and the number of subsequent packet dropouts. To validate the obtained stability and controller synthesis conditions experiments are performed on a typical motion control example. First, measurements are performed to validate the stability region, i.e. all stabilizing controllers, for constant time-delays. Second, the destabilizing effect of time-variation of the delays is shown in experiments. Third, the obtained stabilizing controllers for time-varying delays, with constant sampling intervals are validated. A comparison between the stability regions for constant delays and time-varying delays shows that the stability conditions developed in this thesis are not overly conservative. The delay combinations that result in instability in the measurements confirm this observation

    Mathematical and Numerical Aspects of Dynamical System Analysis

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Qualitative Theory of Switched Integro-differential Equations with Applications

    Get PDF
    Switched systems, which are a type of hybrid system, evolve according to a mixture of continuous/discrete dynamics and experience abrupt changes based on a switching rule. Many real-world phenomena found in branches of applied math, computer science, and engineering are naturally modelled by hybrid systems. The main focus of the present thesis is on hybrid impulsive systems with distributed delays (HISD). That is, studying the qualitative behaviour of switched integro-differential systems with impulses. Important applications of impulsive systems can be found in stabilizing control (e.g. using impulsive control in combination with switching control) and epidemiology (e.g. pulse vaccination control strategies), both of which are studied in this work. In order to ensure the models are well-posed, some fundamental theory is developed for systems with bounded or unbounded time-delays. Results on existence, uniqueness, and continuation of solutions are established. As solutions of HISD are generally not known explicitly, a stability analysis is performed by extending the current theoretical approaches in the switched systems literature (e.g. Halanay-like inequalities and Razumikhin-type conditions). Since a major field of research in hybrid systems theory involves applying hybrid control to problems, contributions are made by extending current results on stabilization by state-dependent switching and impulsive control for unstable systems of integro-differential equations. The analytic results found are applied to epidemic models with time-varying parameters (e.g. due to changes in host behaviour). In particular, we propose a switched model of Chikungunya disease and study its long-term behaviour in order to develop threshold conditions guaranteeing disease eradication. As a sequel to this, we look at the stability of a more general vector-borne disease model under various vaccination schemes. Epidemic models with general nonlinear incidence rates and age-dependent population mixing are also investigated. Throughout the thesis, computational methods are used to illustrate the theoretical results found

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems
    corecore