266 research outputs found

    Extended LaSalle's invariance principle for full-range cellular neural networks

    Get PDF
    In several relevant applications to the solution of signal processing tasks in real time, a cellular neural network (CNN) is required to be convergent, that is, each solution should tend toward some equilibrium point. The paper develops a Lyapunov method, which is based on a generalized version of LaSalle's invariance principle, for studying convergence and stability of the differential inclusions modeling the dynamics of the full-range (FR) model of CNNs. The applicability of the method is demonstrated by obtaining a rigorous proof of convergence for symmetric FR-CNNs. The proof, which is a direct consequence of the fact that a symmetric FR-CNN admits a strict Lyapunov function, is much more simple than the corresponding proof of convergence for symmetric standard CNNs

    Nonlinear dynamics of full-range CNNs with time-varying delays and variable coefficients

    Get PDF
    In the article, the dynamical behaviours of the full-range cellular neural networks (FRCNNs) with variable coefficients and time-varying delays are considered. Firstly, the improved model of the FRCNNs is proposed, and the existence and uniqueness of the solution are studied by means of differential inclusions and set-valued analysis. Secondly, by using the Hardy inequality, the matrix analysis, and the Lyapunov functional method, we get some criteria for achieving the globally exponential stability (GES). Finally, some examples are provided to verify the correctness of the theoretical results

    Convergence of Discrete-Time Cellular Neural Networks with Application to Image Processing

    Get PDF
    The paper considers a class of discrete-time cellular neural networks (DT-CNNs) obtained by applying Euler's discretization scheme to standard CNNs. Let T be the DT-CNN interconnection matrix which is defined by the feedback cloning template. The paper shows that a DT-CNN is convergent, i.e. each solution tends to an equilibrium point, when T is symmetric and, in the case where T + En is not positive-semidefinite, the step size of Euler's discretization scheme does not exceed a given bound (En is the n × n unit matrix). It is shown that two relevant properties hold as a consequence of the local and space-invariant interconnecting structure of a DT-CNN, namely: (1) the bound on the step size can be easily estimated via the elements of the DT-CNN feedback cloning template only; (2) the bound is independent of the DT-CNN dimension. These two properties make DT-CNNs very effective in view of computer simulations and for the practical applications to high-dimensional processing tasks. The obtained results are proved via Lyapunov approach and LaSalle's Invariance Principle in combination with some fundamental inequalities enjoyed by the projection operator on a convex set. The results are compared with previous ones in the literature on the convergence of DT-CNNs and also with those obtained for different neural network models as the Brain-State-in-a-Box model. Finally, the results on convergence are illustrated via the application to some relevant 2D and 1D DT-CNNs for image processing tasks

    Modelling spatiotemporal turbulent dynamics with the convolutional autoencoder echo state network

    Full text link
    The spatiotemporal dynamics of turbulent flows is chaotic and difficult to predict. This makes the design of accurate and stable reduced-order models challenging. The overarching objective of this paper is to propose a nonlinear decomposition of the turbulent state for a reduced-order representation of the dynamics. We divide the turbulent flow into a spatial problem and a temporal problem. First, we compute the latent space, which is the manifold onto which the turbulent dynamics live (i.e., it is a numerical approximation of the turbulent attractor). The latent space is found by a series of nonlinear filtering operations, which are performed by a convolutional autoencoder (CAE). The CAE provides the decomposition in space. Second, we predict the time evolution of the turbulent state in the latent space, which is performed by an echo state network (ESN). The ESN provides the decomposition in time. Third, by assembling the CAE and the ESN, we obtain an autonomous dynamical system: the convolutional autoncoder echo state network (CAE-ESN). This is the reduced-order model of the turbulent flow. We test the CAE-ESN on a two-dimensional flow. We show that, after training, the CAE-ESN (i) finds a latent-space representation of the turbulent flow that has less than 1% of the degrees of freedom than the physical space; (ii) time-accurately and statistically predicts the flow in both quasiperiodic and turbulent regimes; (iii) is robust for different flow regimes (Reynolds numbers); and (iv) takes less than 1% of computational time to predict the turbulent flow than solving the governing equations. This work opens up new possibilities for nonlinear decompositions and reduced-order modelling of turbulent flows from data

    Functional data learning using convolutional neural networks

    Full text link
    In this paper, we show how convolutional neural networks (CNN) can be used in regression and classification learning problems of noisy and non-noisy functional data. The main idea is to transform the functional data into a 28 by 28 image. We use a specific but typical architecture of a convolutional neural network to perform all the regression exercises of parameter estimation and functional form classification. First, we use some functional case studies of functional data with and without random noise to showcase the strength of the new method. In particular, we use it to estimate exponential growth and decay rates, the bandwidths of sine and cosine functions, and the magnitudes and widths of curve peaks. We also use it to classify the monotonicity and curvatures of functional data, algebraic versus exponential growth, and the number of peaks of functional data. Second, we apply the same convolutional neural networks to Lyapunov exponent estimation in noisy and non-noisy chaotic data, in estimating rates of disease transmission from epidemic curves, and in detecting the similarity of drug dissolution profiles. Finally, we apply the method to real-life data to detect Parkinson's disease patients in a classification problem. The method, although simple, shows high accuracy and is promising for future use in engineering and medical applications.Comment: 38 pages, 23 figure
    • …
    corecore