5 research outputs found

    Incorporated model of deep features fusion

    Get PDF
    Abdelaziz, A., & Mahmoud, A. N. (2022). Skin Cancer Detection Using Deep Learning and Artificial Intelligence: Incorporated model of deep features fusion. Fusion: Practice and Applications, 8(2), 8-15. https://doi.org/10.54216/FPA.080201 © 2022, American Scientific Publishing Group (ASPG). All rights reserved.Among the most frequent forms of cancer, skin cancer accounts for hundreds of thousands of fatalities annually throughout the globe. It shows up as excessive cell proliferation on the skin. The likelihood of a successful recovery is greatly enhanced by an early diagnosis. More than that, it might reduce the need for or the frequency of chemical, radiological, or surgical treatments. As a result, savings on healthcare expenses will be possible. Dermoscopy, which examines the size, form, and color features of skin lesions, is the first step in the process of detecting skin cancer and is followed by sample and lab testing to confirm any suspicious lesions. Deep learning AI has allowed for significant progress in image-based diagnostics in recent years. Deep neural networks known as convolutional neural networks (CNNs or ConvNets) are essentially an extended form of multi-layer perceptrons. In visual imaging challenges, CNNs have shown the best accuracy. The purpose of this research is to create a CNN model for the early identification of skin cancer. The backend of the CNN classification model will be built using Keras and Tensorflow in Python. Different network topologies, such as Convolutional layers, Dropout layers, Pooling layers, and Dense layers, are explored and tried out throughout the model's development and validation phases. Transfer Learning methods will also be included in the model to facilitate early convergence. The dataset gathered from the ISIC challenge archives will be used to both tests and train the model.publishersversionpublishe

    Using Multi-level Convolutional Neural Network for Classification of Lung Nodules on CT images

    Full text link
    © 2018 IEEE. Lung cancer is one of the four major cancers in the world. Accurate diagnosing of lung cancer in the early stage plays an important role to increase the survival rate. Computed Tomography (CT)is an effective method to help the doctor to detect the lung cancer. In this paper, we developed a multi-level convolutional neural network (ML-CNN)to investigate the problem of lung nodule malignancy classification. ML-CNN consists of three CNNs for extracting multi-scale features in lung nodule CT images. Furthermore, we flatten the output of the last pooling layer into a one-dimensional vector for every level and then concatenate them. This strategy can help to improve the performance of our model. The ML-CNN is applied to ternary classification of lung nodules (benign, indeterminate and malignant lung nodules). The experimental results show that our ML-CNN achieves 84.81\% accuracy without any additional hand-craft preprocessing algorithm. It is also indicated that our model achieves the best result in ternary classification

    LCDctCNN: Lung Cancer Diagnosis of CT scan Images Using CNN Based Model

    Full text link
    The most deadly and life-threatening disease in the world is lung cancer. Though early diagnosis and accurate treatment are necessary for lowering the lung cancer mortality rate. A computerized tomography (CT) scan-based image is one of the most effective imaging techniques for lung cancer detection using deep learning models. In this article, we proposed a deep learning model-based Convolutional Neural Network (CNN) framework for the early detection of lung cancer using CT scan images. We also have analyzed other models for instance Inception V3, Xception, and ResNet-50 models to compare with our proposed model. We compared our models with each other considering the metrics of accuracy, Area Under Curve (AUC), recall, and loss. After evaluating the model's performance, we observed that CNN outperformed other models and has been shown to be promising compared to traditional methods. It achieved an accuracy of 92%, AUC of 98.21%, recall of 91.72%, and loss of 0.328.Comment: 8, accepted by 10th International Conference on Signal Processing and Integrated Networks (SPIN 2023

    A Survey of Hyper-parameter Optimization Methods in Convolutional Neural Networks

    Get PDF
    Konvolüsyonel Sinir Ağları (KSA), katmanlarının en az bir tanesinde matris çarpımı yerine konvolüsyon işleminin kullanıldığı çok katmanlı yapay sinir ağlarının bir türüdür. Özellikle bilgisayarlı görü çalışmalarında çok başarılı sonuçlar elde edilse de KSA hala birçok zorluk içermektedir. Daha başarılı sonuçlar elde etmek için geliştirilen mimarilerin giderek daha derinleşmesi ve kullanılan görüntülerin giderek daha yüksek kalitede olmasıyla daha fazla hesaplama maliyetleri ortaya çıkmaktadır. Hem bu hesaplama maliyetlerinin düşürülmesi, hem de başarılı sonuçlar elde edilebilmesi, güçlü donanımların kullanılmasına ve kurulan ağın hiper-parametrelerin optimize edilmesine bağlıdır. Bu çalışmada, Genetik Algoritma, Parçacık Sürü Optimizasyonu, Diferansiyel Evrim ve Bayes Optimizasyonu gibi yöntemler ile KSA optimizasyonu gerçekleştirilen çalışmalar incelendi. Bu çalışmalarda optimize edilen hiper-parametreler, tanımlanan değer aralıkları ve elde edilen sonuçlar incelendi. Buna göre, KSA’ nın performansında en etkili hiper-parametrelerin filtre sayısı, filtre boyutu, katman sayısı, seyreltme oranı, öğrenme oranı ve yığın boyutu olduğu görülmüştür. Aynı veri kümelerinin kullanıldığı çalışmalar, elde edilen doğruluk değerleri açısından karşılaştırıldığında çoğu veri kümesi için en iyi doğruluk oranlarının popülasyon tabanlı yöntemlerden Genetik Algoritma ve Parçacık Sürü Optimizasyonu kullanılan çalışmalarda elde edildiği görülmüştür. Bu üst-sezgiseller ile elde edilen modellerin performanslarının “state of the art” modellerle yarışabilir durumda hatta bazen daha iyi oldukları görülmüştür. Yine üst-sezgisel kullanılan bazı çalışmalarda üretilen modellerin aşırı büyümesi engellenmiş; basit ve kolay eğitilebilir modeller üretilmiştir. Hesaplama maliyeti açısından çok avantajlı bu basit modeller ile literatürdeki karmaşık modellere çok yakın sonuçlar elde edilebilmiştir.Convolutional neural networks (CNN) are special types of multi-layer artificial neural networks in which convolution method is used instead of matrix multiplication in at least one of its layers. Although satisfactory results have been achieved by CNN especially in computer vision studies, they still have some difficulties. As the proposed network architectures become deeper with the aim of much better accuracy and the resolution of the input images increases, this results in a need for more computational power. Reducing the computational cost while at the same time still having high accuracy rates depend on the use of powerful equipments and the selection of hyper-parameter values in CNN. In this study, we examined methods like Genetic Algorithms, Particle Swarm Optimization, Differential Evolution and Bayes Optimization that has been used extensively to optimize CNN hyper-parameters, and also listed the hyper-parameters selected to be optimized in those studies, ranges of those parameter values and the results obtained by each of those studies. These studies reveal that the number of layers, number and size of the kernels at each layer, learning rate and the batch size parameters are among the hyper-parameters that affect the performance of the CNNs the most. When the studies that use the same datasets are compared in terms of accuracy, Genetic Algorithms and Particle Swarm Optimization which are both population-based methods achieve the best results for the majority of the datasets. It is also shown that the performance of the models found in these studies are competitive or sometimes better than those of the “state of the art” models. In addition, the CNNs produced in these studies are prevented from being overgrown by imposing limits on the hiper-parameter values. Thus simpler and easier to train models have been obtained. These computationally advantageous simpler models were able to achieve competitive results compared to complicated models

    Mikrokanonikal Optimizasyon Algoritması ile Konvolüsyonel Sinir Ağlarında Hiper Parametrelerin Optimize Edilmesi

    Get PDF
    Bilgisayarlı görü çalışmaları, günümüzde en çok ilgi duyulan ve üzerinde çalışma yapılan yapay zeka alanlarından biridir. Bilgisayarların insanlar gibi görüntüleri algılamasını, sınıflandırabilmesini ve yorumlayabilmesini sağlamak amacıyla geliştirilen özel derin öğrenme mimarileri bulunmaktadır. Bunlardan en çok kullanılan ve bu çalışmada da bahsedilecek olan mimari konvolüsyonel sinir ağları mimarisidir. Konvolüsyonel sinir ağları, bilgisayarlı görü çalışmalarında popüler olarak kullanılan ve başarılı sonuçlar elde edilebilen özelleşmiş bir derin öğrenme yöntemidir. Derin öğrenme yöntemleri karşılaşılan problemlerin zorluğu nedeniyle yüksek hesaplama maliyetlerine neden olabilmektedir. Hesaplama maliyetinin düşürülmesi güçlü donanımların kullanılmasına, oluşturulan konvolüsyonel sinir ağı topolojilerindeki toplam parametre sayısının azaltılmasına ve konvolüsyonel sinir ağlarındaki hiper-parametreler için seçilen değerlere bağlıdır. Bu yüzden konvolüsyonel sinir ağlarında hiper-parametre optimizasyonu çalışmaları, ağın başarısını arttırmaya çalışırken, hesaplama maliyetini de düşük tutmaya çalışmaktadırlar. Bu tez çalışmasında ilk olarak daha önce konvolüsyonel sinir ağlarının optimize edilmesi için gerçekleştirilen optimizasyon çalışmaları incelendi. İncelenen çalışmalarda, konvolüsyonel sinir ağlarında hiper-parametrelerin optimizasyonu için sıklıkla üst-sezgisel algoritmaların ve istatistik tabanlı model bazlı algoritmaların kullanıldığı gözlemlendi. Özellikle Genetik Algoritma, Parçacık Sürü Optimizasyonu, Diferansiyel Evrim, Rastgele Arama ve Bayes Optimizasyonu gibi yöntemlerin, incelenen çalışmalarda sıklıkla kullanıldığı gözlemlendi. Bu çalışmalar başarı açısından incelendiklerinde genetik algoritma ve parçacık sürü optimizasyonu yöntemlerinin genel olarak hiper-parametre optimizasyonu gerçekleştirmeyen çalışmalara göre başarılı ve rekabetçi sonuçlar verdiği görüldü. Yapılan tez çalışmasında kullanılacak veri setleri, seçilecek optimizasyon yöntemi, hiper-parametreler ve değer aralıklarının belirlenmesi için incelenen çalışmalarda kullanılan veri setleri, hiper-parametreler ve bu hiper-parametreler için seçilen değer aralıkları göz önünde bulunduruldu. Yapılan çalışmalarda, farklı çalışmaları karşılaştırmak için elimizde parametre sayısı ve hesaplama zamanı bilgileri bulunmadığından sadece doğruluk oranı bilgisi performans karşılaştırması için kullanıldı. Daha önce yapılan bu çalışmalardan farklı olarak bu tez çalışmasında “Mikrokanonikal Optimizasyon” olarak adlandırılan bir yöntem kullanıldı. Seçilen optimizasyon yöntemi kullanılarak farklı boyutlarda konvolüsyonel sinir ağları oluşturuldu ve oluşturulan konvolüsyonel sinir ağlarının hiper-parametreleri optimize edilmeye çalışıldı. Seçilen optimizasyon algoritmasının çalışması sırasında üretilen konvolüsyonel sinir ağları, bilgisayarlı görü çalışmalarında sıklıkla kullanılan MNIST, FashionMNIST, EMNIST (Balanced, Digits, Letters) ve xii CIFAR10 veri setleri üzerinde test edildi. Elde edilen sonuçlar, hiç hiper-parametre optimizasyonu gerçekleştirmeyen ve state-of-the-art olarak adlandırılan çalışmalar ile doğruluk oranı ve parametre sayısı gibi değerler üzerinden karşılaştırıldı. Ek olarak, önerilen sezgisel yöntemin performansı, Bayesçi model tabanlı bir optimizasyon yöntemi olan Tree Parzen Estimator yöntemiyle karşılaştırılmıştır. Elde edilen sonuçlara bakıldığında, Konvolüsyonel sinir ağları için belirlenmesi gereken birçok hiper-parametre olmasına rağmen seyreltme oranı, filtre sayısı, öğrenme oranı ve yığın boyutu gibi hiper-parametrelerin oluşturulan modellerin başarısında önemli bir katkısı olduğu çıkarımına ulaşıldı.Computer vision is probably the most widely studied sub-area of artifical intelligence which has been drawing considerable interest of many researchers for years. There are special deep learning architectures developed to enable computers to perceive, classify and interpret images as humans. Convolutional neural networks are the most popular deep learning methods that can be used successfully in computer vision studies. Deep learning methods may result in high computational costs due to the difficulty of the problems encountered. This computational cost can only be reduce by careful selection of hyperparameters of the convolutional neural networks and the computational time can also be reduce by the use of powerful equipment. Therefore, in the studies that try to optimize hyperparameters in convolutional neural networks, the researchers try to increase the success rate of the network while at the same time try to keep the computational cost as low as possible. In this thesis, firstly a detailed literature review on the studies that perform hyperparameter optimization has been given. It has been observed that heuristic algorithms and statistics model based algorithms are among the most widely used methods for hyper-parameter optimization in convolutional neural networks. In particular, Genetic Algorithms, Particle Swarm Optimization, Differential Evolution, Random Search and Bayes Optimization methods are the most frequently used approaches. When we compare these methods in terms of their success rates, we see that the studies in which genetic algorithms and particle swarm optimization methods are used were able to achieve greater results than the studies that did not perform hyper-parameter optimization in general. In order to determine the optimization method to be used in the study along with the hyper-parameters and their value ranges, we benefited the studies in the literature. Moreover, the datasets used in this study are selected among the most widely used datasets in the literature. Most of the studies in the literature do not provide sufficient information about the number of parameters of the network and the computational time, therefore we took in the account accuracy as the performance measure. In this study, Microcanonical Optimization which is previously known in different areas was but not used in this concepts has been applied fort he hyperparameter optimization of convolutional neural networks. By this method, different network architectures has been created and the hyper-parameters of the network is optimized. The convolutional neural networks generated during the optimization process are trained on the MNIST, FashionMNIST, EMNIST (Balanced, Digits, Letters) and CIFAR10 datasets, which are the most frequently used datasets in computer vision studies. The accuracy results are compared to the state-of-the-art architectures in which no hyper-parameter optimization has been performed. In addition, the performance of proposed heuristic method has been compared to Tree Parzen Estimator method which is a Bayesian model based optimization method. The results suggest that among the many hyperparameters dropout rate, feature map count, learning rate and batch size are among the most important parameters that directly affect the success of the networks
    corecore