4,645 research outputs found

    Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental findings and applications

    Full text link
    Inferring information from a set of acquired data is the main objective of any signal processing (SP) method. In particular, the common problem of estimating the value of a vector of parameters from a set of noisy measurements is at the core of a plethora of scientific and technological advances in the last decades; for example, wireless communications, radar and sonar, biomedicine, image processing, and seismology, just to name a few. Developing an estimation algorithm often begins by assuming a statistical model for the measured data, i.e. a probability density function (pdf) which if correct, fully characterizes the behaviour of the collected data/measurements. Experience with real data, however, often exposes the limitations of any assumed data model since modelling errors at some level are always present. Consequently, the true data model and the model assumed to derive the estimation algorithm could differ. When this happens, the model is said to be mismatched or misspecified. Therefore, understanding the possible performance loss or regret that an estimation algorithm could experience under model misspecification is of crucial importance for any SP practitioner. Further, understanding the limits on the performance of any estimator subject to model misspecification is of practical interest. Motivated by the widespread and practical need to assess the performance of a mismatched estimator, the goal of this paper is to help to bring attention to the main theoretical findings on estimation theory, and in particular on lower bounds under model misspecification, that have been published in the statistical and econometrical literature in the last fifty years. Secondly, some applications are discussed to illustrate the broad range of areas and problems to which this framework extends, and consequently the numerous opportunities available for SP researchers.Comment: To appear in the IEEE Signal Processing Magazin

    Bounds on Portfolio Quality

    Full text link
    The signal-noise ratio of a portfolio of p assets, its expected return divided by its risk, is couched as an estimation problem on the sphere. When the portfolio is built using noisy data, the expected value of the signal-noise ratio is bounded from above via a Cramer-Rao bound, for the case of Gaussian returns. The bound holds for `biased' estimators, thus there appears to be no bias-variance tradeoff for the problem of maximizing the signal-noise ratio. An approximate distribution of the signal-noise ratio for the Markowitz portfolio is given, and shown to be fairly accurate via Monte Carlo simulations, for Gaussian returns as well as more exotic returns distributions. These findings imply that if the maximal population signal-noise ratio grows slower than the universe size to the 1/4 power, there may be no diversification benefit, rather expected signal-noise ratio can decrease with additional assets. As a practical matter, this may explain why the Markowitz portfolio is typically applied to small asset universes. Finally, the theorem is expanded to cover more general models of returns and trading schemes, including the conditional expectation case where mean returns are linear in some observable features, subspace constraints (i.e., dimensionality reduction), and hedging constraints

    Frequentist coverage of adaptive nonparametric Bayesian credible sets

    Get PDF
    We investigate the frequentist coverage of Bayesian credible sets in a nonparametric setting. We consider a scale of priors of varying regularity and choose the regularity by an empirical Bayes method. Next we consider a central set of prescribed posterior probability in the posterior distribution of the chosen regularity. We show that such an adaptive Bayes credible set gives correct uncertainty quantification of "polished tail" parameters, in the sense of high probability of coverage of such parameters. On the negative side, we show by theory and example that adaptation of the prior necessarily leads to gross and haphazard uncertainty quantification for some true parameters that are still within the hyperrectangle regularity scale.Comment: Published at http://dx.doi.org/10.1214/14-AOS1270 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Distributed multi-agent Gaussian regression via finite-dimensional approximations

    Full text link
    We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M×MM \times M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the \ac{KL} expansion of the chosen kernel, where typically EME \ll M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data
    corecore