3,601 research outputs found

    Signed total double Roman dominatıon numbers in digraphs

    Get PDF
    Let D = (V, A) be a finite simple digraph. A signed total double Roman dominating function (STDRD-function) on the digraph D is a function f : V (D) → {−1, 1, 2, 3} satisfying the following conditions: (i) P x∈N−(v) f(x) ≥ 1 for each v ∈ V (D), where N−(v) consist of all in-neighbors of v, and (ii) if f(v) = −1, then the vertex v must have at least two in-neighbors assigned 2 under f or one in-neighbor assigned 3 under f, while if f(v) = 1, then the vertex v must have at least one in-neighbor assigned 2 or 3 under f. The weight of a STDRD-function f is the value P x∈V (D) f(x). The signed total double Roman domination number (STDRD-number) γtsdR(D) of a digraph D is the minimum weight of a STDRD-function on D. In this paper we study the STDRD-number of digraphs, and we present lower and upper bounds for γtsdR(D) in terms of the order, maximum degree and chromatic number of a digraph. In addition, we determine the STDRD-number of some classes of digraphs.Publisher's Versio

    The Signed Domination Number of Cartesian Products of Directed Cycles

    Get PDF
    Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function is called a signed dominating function (SDF) iffor each vertex v. The weight w(f ) of f is defined by. The signed domination number of a digraph D is gs(D) = min{w(f ) : f is an SDF of D}. Let Cmn denotes the Cartesian product of directed cycles of length m and n. In this paper, we determine the exact value of signed domination number of some classes of Cartesian product of directed cycles. In particular, we prove that: (a) gs(C3n) = n if n 0(mod 3), otherwise gs(C3n) = n + 2. (b) gs(C4n) = 2n. (c) gs(C5n) = 2n if n 0(mod 10), gs(C5n) = 2n + 1 if n 3, 5, 7(mod 10), gs(C5n) = 2n + 2 if n 2, 4, 6, 8(mod 10), gs(C5n) = 2n + 3 if n 1,9(mod 10). (d) gs(C6n) = 2n if n 0(mod 3), otherwise gs(C6n) = 2n + 4. (e) gs(C7n) = 3n

    Recent results and open problems on CIS Graphs

    Get PDF

    The Power of Small Coalitions under Two-Tier Majority on Regular Graphs

    Full text link
    In this paper, we study the following problem. Consider a setting where a proposal is offered to the vertices of a given network GG, and the vertices must conduct a vote and decide whether to accept the proposal or reject it. Each vertex vv has its own valuation of the proposal; we say that vv is ``happy'' if its valuation is positive (i.e., it expects to gain from adopting the proposal) and ``sad'' if its valuation is negative. However, vertices do not base their vote merely on their own valuation. Rather, a vertex vv is a \emph{proponent} of the proposal if the majority of its neighbors are happy with it and an \emph{opponent} in the opposite case. At the end of the vote, the network collectively accepts the proposal whenever the majority of its vertices are proponents. We study this problem for regular graphs with loops. Specifically, we consider the class Gndh\mathcal{G}_{n|d|h} of dd-regular graphs of odd order nn with all nn loops and hh happy vertices. We are interested in establishing necessary and sufficient conditions for the class Gndh\mathcal{G}_{n|d|h} to contain a labeled graph accepting the proposal, as well as conditions to contain a graph rejecting the proposal. We also discuss connections to the existing literature, including that on majority domination, and investigate the properties of the obtained conditions.Comment: 28 pages, 8 figures, accepted for publication in Discrete Applied Mathematic
    corecore