243 research outputs found

    An Introductory Survey of Computational Space Complexity

    Get PDF
    Using the Understanding by Design pedagogical methodology, this thesis aims to combine, clarify, and contextualize introductory ideas about computational space complexity and package them in an instructional unit. The unit is composed primarily of a Unit Template, series of Lessons, and Performance Assessments. It is intended to present content acknowledged as valuable by ACM that is often missing from undergraduate computer science curricula at peer educational institutions to Trinity University. The unit covers ideas such as the space hierarchy, computational time / space tradeoffs, and completeness, and is designed to promote understanding and inquiry of and beyond its subject matter

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,,aKFna_1,\ldots,a_K \in {\mathbb F}^n, \bullet the Prover sends the Verifier the values C(a1),,C(aK)FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kd)\tilde{O}(K \cdot d) length, and \bullet the Verifier tosses poly(log(dKF/ε))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than ε\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    Equivalence Classes and Conditional Hardness in Massively Parallel Computations

    Get PDF
    The Massively Parallel Computation (MPC) model serves as a common abstraction of many modern large-scale data processing frameworks, and has been receiving increasingly more attention over the past few years, especially in the context of classical graph problems. So far, the only way to argue lower bounds for this model is to condition on conjectures about the hardness of some specific problems, such as graph connectivity on promise graphs that are either one cycle or two cycles, usually called the one cycle vs. two cycles problem. This is unlike the traditional arguments based on conjectures about complexity classes (e.g., P ? NP), which are often more robust in the sense that refuting them would lead to groundbreaking algorithms for a whole bunch of problems. In this paper we present connections between problems and classes of problems that allow the latter type of arguments. These connections concern the class of problems solvable in a sublogarithmic amount of rounds in the MPC model, denoted by MPC(o(log N)), and some standard classes concerning space complexity, namely L and NL, and suggest conjectures that are robust in the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model. We also obtain new conditional lower bounds, and prove new reductions and equivalences between problems in the MPC model

    The 2CNF Boolean Formula Satisfiability Problem and the Linear Space Hypothesis

    Full text link
    We aim at investigating the solvability/insolvability of nondeterministic logarithmic-space (NL) decision, search, and optimization problems parameterized by size parameters using simultaneously polynomial time and sub-linear space on multi-tape deterministic Turing machines. We are particularly focused on a special NL-complete problem, 2SAT---the 2CNF Boolean formula satisfiability problem---parameterized by the number of Boolean variables. It is shown that 2SAT with nn variables and mm clauses can be solved simultaneously polynomial time and (n/2clogn)polylog(m+n)(n/2^{c\sqrt{\log{n}}})\, polylog(m+n) space for an absolute constant c>0c>0. This fact inspires us to propose a new, practical working hypothesis, called the linear space hypothesis (LSH), which states that 2SAT3_3---a restricted variant of 2SAT in which each variable of a given 2CNF formula appears at most 3 times in the form of literals---cannot be solved simultaneously in polynomial time using strictly "sub-linear" (i.e., m(x)εpolylog(x)m(x)^{\varepsilon}\, polylog(|x|) for a certain constant ε(0,1)\varepsilon\in(0,1)) space on all instances xx. An immediate consequence of this working hypothesis is LNL\mathrm{L}\neq\mathrm{NL}. Moreover, we use our hypothesis as a plausible basis to lead to the insolvability of various NL search problems as well as the nonapproximability of NL optimization problems. For our investigation, since standard logarithmic-space reductions may no longer preserve polynomial-time sub-linear-space complexity, we need to introduce a new, practical notion of "short reduction." It turns out that, parameterized with the number of variables, 2SAT3\overline{\mathrm{2SAT}_3} is complete for a syntactically restricted version of NL, called Syntactic NLω_{\omega}, under such short reductions. This fact supports the legitimacy of our working hypothesis.Comment: (A4, 10pt, 25 pages) This current article extends and corrects its preliminary report in the Proc. of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), August 21-25, 2017, Aalborg, Denmark, Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 2017, vol. 83, pp. 62:1-62:14, 201

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    A Quantum Time-Space Lower Bound for the Counting Hierarchy

    Full text link
    We obtain the first nontrivial time-space lower bound for quantum algorithms solving problems related to satisfiability. Our bound applies to MajSAT and MajMajSAT, which are complete problems for the first and second levels of the counting hierarchy, respectively. We prove that for every real d and every positive real epsilon there exists a real c>1 such that either: MajMajSAT does not have a quantum algorithm with bounded two-sided error that runs in time n^c, or MajSAT does not have a quantum algorithm with bounded two-sided error that runs in time n^d and space n^{1-\epsilon}. In particular, MajMajSAT cannot be solved by a quantum algorithm with bounded two-sided error running in time n^{1+o(1)} and space n^{1-\epsilon} for any epsilon>0. The key technical novelty is a time- and space-efficient simulation of quantum computations with intermediate measurements by probabilistic machines with unbounded error. We also develop a model that is particularly suitable for the study of general quantum computations with simultaneous time and space bounds. However, our arguments hold for any reasonable uniform model of quantum computation.Comment: 25 page
    corecore