666 research outputs found

    A Defect-tolerant Cluster in a Mesh SRAM-based FPGA

    No full text
    International audienceIn this paper, we propose the implementation of multiple defect-tolerant techniques on an SRAM-based FPGA. These techniques include redundancy at both the logic block and intra-cluster interconnect. In the logic block, redundancy is implemented at the multiplexer level. Its efficiency is analyzed by injecting a single defect at the output of a multiplexer, considering all possible locations and input combinations. While at the interconnect level, fine grain redundancy is introduced which not only bypasses defects but also increases routability. Taking advantage of the sparse intra-cluster interconnect structures, routability is further improved by efficient distribution of feedback paths allowing more flexibility in the connections among logic blocks. Emulation results show a significant improvement of about 15% and 34% in the robustness of logic block and intra-cluster interconnect respectively. Furthermore, the impact of these hardening schemes on the testability of the FPGA cluster for manufacturing defects is also investigated in terms of maximum achievable fault coverage and the respective cost

    Watermarking FPGA Bitfile for Intellectual Property Protection

    Get PDF
    Intellectual property protection (IPP) of hardware designs is the most important requirement for many Field Programmable Gate Array (FPGA) intellectual property (IP) vendors. Digital watermarking has become an innovative technology for IPP in recent years. Existing watermarking techniques have successfully embedded watermark into IP cores. However, many of these techniques share two specific weaknesses: 1) They have extra overhead, and are likely to degrade performance of design; 2) vulnerability to removing attacks. We propose a novel watermarking technique to watermark FPGA bitfile for addressing these weaknesses. Experimental results and analysis show that the proposed technique incurs zero overhead and it is robust against removing attacks

    LOT: Logic Optimization with Testability - new transformations for logic synthesis

    Get PDF
    A new approach to optimize multilevel logic circuits is introduced. Given a multilevel circuit, the synthesis method optimizes its area while simultaneously enhancing its random pattern testability. The method is based on structural transformations at the gate level. New transformations involving EX-OR gates as well as Reed–Muller expansions have been introduced in the synthesis of multilevel circuits. This method is augmented with transformations that specifically enhance random-pattern testability while reducing the area. Testability enhancement is an integral part of our synthesis methodology. Experimental results show that the proposed methodology not only can achieve lower area than other similar tools, but that it achieves better testability compared to available testability enhancement tools such as tstfx. Specifically for ISCAS-85 benchmark circuits, it was observed that EX-OR gate-based transformations successfully contributed toward generating smaller circuits compared to other state-of-the-art logic optimization tools

    Formation of Low Threshold Voltage Microlasers

    Get PDF
    Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    A Sequential Circuit-Based IP Watermarking Algorithm for Multiple Scan Chains in Design-for-Test

    Get PDF
    In Very Large Scale Integrated Circuits (VLSI) design, the existing Design-for-Test(DFT) based watermarking techniques usually insert watermark through reordering scan cells, which causes large resource overhead, low security and coverage rate of watermark detection. A novel scheme was proposed to watermark multiple scan chains in DFT for solving the problems. The proposed scheme adopts DFT scan test model of VLSI design, and uses a Linear Feedback Shift Register (LFSR) for pseudo random test vector generation. All of the test vectors are shifted in scan input for the construction of multiple scan chains with minimum correlation. Specific registers in multiple scan chains will be changed by the watermark circuit for watermarking the design. The watermark can be effectively detected without interference with normal function of the circuit, even after the chip is packaged. The experimental results on several ISCAS benchmarks show that the proposed scheme has lower resource overhead, probability of coincidence and higher coverage rate of watermark detection by comparing with the existing methods

    A writable programmable logic array

    Get PDF
    This thesis contains the analysis, design, and implementation of a writable programmable logic array integrated circuit. The WPLA is able to be reprogrammed any number of times as needed. A content addressable scheme is proposed to conduct READ, WRITE, and SEARCH operations in the WPLA. The WPLA is programmed by writing binary data into storage cells associated with each node in the AND/OR planes of the array; the binary data then form the personalities of the PLA. The layout of the WPLA will be implemented using Mentor Graphic\u27s CHIPGRAPH layout editor with 2 µm NMOS technology and MOSIS design rules. The event-driven logic level simulator QUICKSIM, and a MOS circuit level simulator MSIMON, are used to verify the functional and timing behavior of the WPLA

    Evaluation of advanced techniques for structural FPGA self-test

    Get PDF
    This thesis presents a comprehensive test generation framework for FPGA logic elements and interconnects. It is based on and extends the current state-of-the-art. The purpose of FPGA testing in this work is to achieve reliable reconfiguration for a FPGA-based runtime reconfigurable system. A pre-configuration test is performed on a portion of the FPGA before it is reconfigured as part of the system to ensure that the FPGA fabric is fault-free. The implementation platform is the Xilinx Virtex-5 FPGA family. Existing literature in FPGA testing is evaluated and reviewed thoroughly. The various approaches are compared against one another qualitatively and the approach most suitable to the target platform is chosen. The array testing method is employed in testing the FPGA logic for its low hardware overhead and optimal test time. All tests are additionally pipelined to reduce test application time and use a high test clock frequency. A hybrid fault model including both structural and functional faults is assumed. An algorithm for the optimization of the number of required FPGA test configurations is developed and implemented in Java using a pseudo-random set-covering heuristic. Optimal solutions are obtained for Virtex-5 logic slices. The algorithm effort is parameterizable with the number of loop iterations each of which take approximately one second for a Virtex-5 sliceL circuit. A flexible test architecture for interconnects is developed. Arbitrary wire types can be tested in the same test configuration with no hardware overhead. Furthermore, a routing algorithm is integrated with the test template generation to select the wires under test and route them appropriately. Nine test configurations are required to achieve full test coverage for the FPGA logic. For interconnect testing, a local router-based on depth-first graph traversal is implemented in Java as the basis for creating systematic interconnect test templates. Pent wire testing is additionally implemented as a proof of concept. The test clock frequency for all tests exceeds 170 MHz and the hardware overhead is always lower than seven CLBs. All implemented tests are parameterizable such that they can be applied to any portion of the FPGA regardless of size or position

    Programmable logic devices: a test approach for the Input / Output blocks and Pad-to-Pin interconnections

    Get PDF
    Dynamically reconfigurable systems based on partial and dynamically reconfigurable FPGAs may have their functionality partially modified at run-time without stopping the operation of the whole system. The efficient management of the logic space available is one of the biggest problems faced by these systems. When the sequence of reconfigurations to be performed is not predictable, resource allocation decisions have to be made on-line. A rearrangement may be necessary to get enough contiguous space to implement incoming functions, avoiding the spreading of their components and the resulting degradation of system performance.A new software tool that helps to handle the problems posed by the consecutive reconfiguration of the same logic space is presented in this paper. This tool uses a novel on-line rearrangement procedure to solve fragmentation problems and to rearrange the logic space in a way completely transparent to the applications currently running
    corecore