68,258 research outputs found

    Comprehending Kademlia Routing - A Theoretical Framework for the Hop Count Distribution

    Full text link
    The family of Kademlia-type systems represents the most efficient and most widely deployed class of internet-scale distributed systems. Its success has caused plenty of large scale measurements and simulation studies, and several improvements have been introduced. Its character of parallel and non-deterministic lookups, however, so far has prevented any concise formal analysis. This paper introduces the first comprehensive formal model of the routing of the entire family of systems that is validated against previous measurements. It sheds light on the overall hop distribution and lookup delays of the different variations of the original protocol. It additionally shows that several of the recent improvements to the protocol in fact have been counter-productive and identifies preferable designs with regard to routing overhead and resilience.Comment: 12 pages, 6 figure

    Parallel Algorithms for Summing Floating-Point Numbers

    Full text link
    The problem of exactly summing n floating-point numbers is a fundamental problem that has many applications in large-scale simulations and computational geometry. Unfortunately, due to the round-off error in standard floating-point operations, this problem becomes very challenging. Moreover, all existing solutions rely on sequential algorithms which cannot scale to the huge datasets that need to be processed. In this paper, we provide several efficient parallel algorithms for summing n floating point numbers, so as to produce a faithfully rounded floating-point representation of the sum. We present algorithms in PRAM, external-memory, and MapReduce models, and we also provide an experimental analysis of our MapReduce algorithms, due to their simplicity and practical efficiency.Comment: Conference version appears in SPAA 201

    OneMax in Black-Box Models with Several Restrictions

    Full text link
    Black-box complexity studies lower bounds for the efficiency of general-purpose black-box optimization algorithms such as evolutionary algorithms and other search heuristics. Different models exist, each one being designed to analyze a different aspect of typical heuristics such as the memory size or the variation operators in use. While most of the previous works focus on one particular such aspect, we consider in this work how the combination of several algorithmic restrictions influence the black-box complexity. Our testbed are so-called OneMax functions, a classical set of test functions that is intimately related to classic coin-weighing problems and to the board game Mastermind. We analyze in particular the combined memory-restricted ranking-based black-box complexity of OneMax for different memory sizes. While its isolated memory-restricted as well as its ranking-based black-box complexity for bit strings of length nn is only of order n/lognn/\log n, the combined model does not allow for algorithms being faster than linear in nn, as can be seen by standard information-theoretic considerations. We show that this linear bound is indeed asymptotically tight. Similar results are obtained for other memory- and offspring-sizes. Our results also apply to the (Monte Carlo) complexity of OneMax in the recently introduced elitist model, in which only the best-so-far solution can be kept in the memory. Finally, we also provide improved lower bounds for the complexity of OneMax in the regarded models. Our result enlivens the quest for natural evolutionary algorithms optimizing OneMax in o(nlogn)o(n \log n) iterations.Comment: This is the full version of a paper accepted to GECCO 201

    Small Depth Quantum Circuits

    Full text link
    Small depth quantum circuits have proved to be unexpectedly powerful in comparison to their classical counterparts. We survey some of the recent work on this and present some open problems.National Security Agency; Advanced Research and Development Agency under Army Research Office (DAAD 19-02-1-0058

    A Lower Bound Technique for Communication in BSP

    Get PDF
    Communication is a major factor determining the performance of algorithms on current computing systems; it is therefore valuable to provide tight lower bounds on the communication complexity of computations. This paper presents a lower bound technique for the communication complexity in the bulk-synchronous parallel (BSP) model of a given class of DAG computations. The derived bound is expressed in terms of the switching potential of a DAG, that is, the number of permutations that the DAG can realize when viewed as a switching network. The proposed technique yields tight lower bounds for the fast Fourier transform (FFT), and for any sorting and permutation network. A stronger bound is also derived for the periodic balanced sorting network, by applying this technique to suitable subnetworks. Finally, we demonstrate that the switching potential captures communication requirements even in computational models different from BSP, such as the I/O model and the LPRAM
    corecore