995 research outputs found

    On Vertex Bisection Width of Random dd-Regular Graphs

    Full text link
    Vertex bisection is a graph partitioning problem in which the aim is to find a partition into two equal parts that minimizes the number of vertices in one partition set that have a neighbor in the other set. We are interested in giving upper bounds on the vertex bisection width of random dd-regular graphs for constant values of dd. Our approach is based on analyzing a greedy algorithm by using the Differential Equations Method. In this way, we obtain the first known upper bounds for the vertex bisection width in random regular graphs. The results are compared with experimental ones and with lower bounds obtained by Kolesnik and Wormald, (Lower Bounds for the Isoperimetric Numbers of Random Regular Graphs, SIAM J. on Disc. Math. 28(1), 553-575, 2014).Comment: 31 pages, 2 figure

    Absorption Time of the Moran Process

    Get PDF
    The Moran process models the spread of mutations in populations on graphs. We investigate the absorption time of the process, which is the time taken for a mutation introduced at a randomly chosen vertex to either spread to the whole population, or to become extinct. It is known that the expected absorption time for an advantageous mutation is O(n^4) on an n-vertex undirected graph, which allows the behaviour of the process on undirected graphs to be analysed using the Markov chain Monte Carlo method. We show that this does not extend to directed graphs by exhibiting an infinite family of directed graphs for which the expected absorption time is exponential in the number of vertices. However, for regular directed graphs, we show that the expected absorption time is Omega(n log n) and O(n^2). We exhibit families of graphs matching these bounds and give improved bounds for other families of graphs, based on isoperimetric number. Our results are obtained via stochastic dominations which we demonstrate by establishing a coupling in a related continuous-time model. The coupling also implies several natural domination results regarding the fixation probability of the original (discrete-time) process, resolving a conjecture of Shakarian, Roos and Johnson.Comment: minor change

    On the Smallest Eigenvalue of Grounded Laplacian Matrices

    Full text link
    We provide upper and lower bounds on the smallest eigenvalue of grounded Laplacian matrices (which are matrices obtained by removing certain rows and columns of the Laplacian matrix of a given graph). The gap between the upper and lower bounds depends on the ratio of the smallest and largest components of the eigenvector corresponding to the smallest eigenvalue of the grounded Laplacian. We provide a graph-theoretic bound on this ratio, and subsequently obtain a tight characterization of the smallest eigenvalue for certain classes of graphs. Specifically, for Erdos-Renyi random graphs, we show that when a (sufficiently small) set SS of rows and columns is removed from the Laplacian, and the probability pp of adding an edge is sufficiently large, the smallest eigenvalue of the grounded Laplacian asymptotically almost surely approaches ∣S∣p|S|p. We also show that for random dd-regular graphs with a single row and column removed, the smallest eigenvalue is Θ(dn)\Theta(\frac{d}{n}). Our bounds have applications to the study of the convergence rate in continuous-time and discrete-time consensus dynamics with stubborn or leader nodes
    • …
    corecore