research

On the Smallest Eigenvalue of Grounded Laplacian Matrices

Abstract

We provide upper and lower bounds on the smallest eigenvalue of grounded Laplacian matrices (which are matrices obtained by removing certain rows and columns of the Laplacian matrix of a given graph). The gap between the upper and lower bounds depends on the ratio of the smallest and largest components of the eigenvector corresponding to the smallest eigenvalue of the grounded Laplacian. We provide a graph-theoretic bound on this ratio, and subsequently obtain a tight characterization of the smallest eigenvalue for certain classes of graphs. Specifically, for Erdos-Renyi random graphs, we show that when a (sufficiently small) set SS of rows and columns is removed from the Laplacian, and the probability pp of adding an edge is sufficiently large, the smallest eigenvalue of the grounded Laplacian asymptotically almost surely approaches Sp|S|p. We also show that for random dd-regular graphs with a single row and column removed, the smallest eigenvalue is Θ(dn)\Theta(\frac{d}{n}). Our bounds have applications to the study of the convergence rate in continuous-time and discrete-time consensus dynamics with stubborn or leader nodes

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 17/09/2020