66,669 research outputs found

    Distribution-Independent Evolvability of Linear Threshold Functions

    Full text link
    Valiant's (2007) model of evolvability models the evolutionary process of acquiring useful functionality as a restricted form of learning from random examples. Linear threshold functions and their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning theory and hence their evolvability has been the primary focus of research on Valiant's framework (2007). One of the main open problems regarding the model is whether conjunctions are evolvable distribution-independently (Feldman and Valiant, 2008). We show that the answer is negative. Our proof is based on a new combinatorial parameter of a concept class that lower-bounds the complexity of learning from correlations. We contrast the lower bound with a proof that linear threshold functions having a non-negligible margin on the data points are evolvable distribution-independently via a simple mutation algorithm. Our algorithm relies on a non-linear loss function being used to select the hypotheses instead of 0-1 loss in Valiant's (2007) original definition. The proof of evolvability requires that the loss function satisfies several mild conditions that are, for example, satisfied by the quadratic loss function studied in several other works (Michael, 2007; Feldman, 2009; Valiant, 2010). An important property of our evolution algorithm is monotonicity, that is the algorithm guarantees evolvability without any decreases in performance. Previously, monotone evolvability was only shown for conjunctions with quadratic loss (Feldman, 2009) or when the distribution on the domain is severely restricted (Michael, 2007; Feldman, 2009; Kanade et al., 2010

    Deterministic Time-Space Tradeoffs for k-SUM

    Get PDF
    Given a set of numbers, the kk-SUM problem asks for a subset of kk numbers that sums to zero. When the numbers are integers, the time and space complexity of kk-SUM is generally studied in the word-RAM model; when the numbers are reals, the complexity is studied in the real-RAM model, and space is measured by the number of reals held in memory at any point. We present a time and space efficient deterministic self-reduction for the kk-SUM problem which holds for both models, and has many interesting consequences. To illustrate: * 33-SUM is in deterministic time O(n2lglg(n)/lg(n))O(n^2 \lg\lg(n)/\lg(n)) and space O(nlg(n)lglg(n))O\left(\sqrt{\frac{n \lg(n)}{\lg\lg(n)}}\right). In general, any polylogarithmic-time improvement over quadratic time for 33-SUM can be converted into an algorithm with an identical time improvement but low space complexity as well. * 33-SUM is in deterministic time O(n2)O(n^2) and space O(n)O(\sqrt n), derandomizing an algorithm of Wang. * A popular conjecture states that 3-SUM requires n2o(1)n^{2-o(1)} time on the word-RAM. We show that the 3-SUM Conjecture is in fact equivalent to the (seemingly weaker) conjecture that every O(n.51)O(n^{.51})-space algorithm for 33-SUM requires at least n2o(1)n^{2-o(1)} time on the word-RAM. * For k4k \ge 4, kk-SUM is in deterministic O(nk2+2/k)O(n^{k - 2 + 2/k}) time and O(n)O(\sqrt{n}) space

    Threesomes, Degenerates, and Love Triangles

    Full text link
    The 3SUM problem is to decide, given a set of nn real numbers, whether any three sum to zero. It is widely conjectured that a trivial O(n2)O(n^2)-time algorithm is optimal and over the years the consequences of this conjecture have been revealed. This 3SUM conjecture implies Ω(n2)\Omega(n^2) lower bounds on numerous problems in computational geometry and a variant of the conjecture implies strong lower bounds on triangle enumeration, dynamic graph algorithms, and string matching data structures. In this paper we refute the 3SUM conjecture. We prove that the decision tree complexity of 3SUM is O(n3/2logn)O(n^{3/2}\sqrt{\log n}) and give two subquadratic 3SUM algorithms, a deterministic one running in O(n2/(logn/loglogn)2/3)O(n^2 / (\log n/\log\log n)^{2/3}) time and a randomized one running in O(n2(loglogn)2/logn)O(n^2 (\log\log n)^2 / \log n) time with high probability. Our results lead directly to improved bounds for kk-variate linear degeneracy testing for all odd k3k\ge 3. The problem is to decide, given a linear function f(x1,,xk)=α0+1ikαixif(x_1,\ldots,x_k) = \alpha_0 + \sum_{1\le i\le k} \alpha_i x_i and a set ARA \subset \mathbb{R}, whether 0f(Ak)0\in f(A^k). We show the decision tree complexity of this problem is O(nk/2logn)O(n^{k/2}\sqrt{\log n}). Finally, we give a subcubic algorithm for a generalization of the (min,+)(\min,+)-product over real-valued matrices and apply it to the problem of finding zero-weight triangles in weighted graphs. We give a depth-O(n5/2logn)O(n^{5/2}\sqrt{\log n}) decision tree for this problem, as well as an algorithm running in time O(n3(loglogn)2/logn)O(n^3 (\log\log n)^2/\log n)
    corecore