7 research outputs found

    Lower bounding edit distances between permutations

    Get PDF
    International audienceA number of fields, including the study of genome rearrangements and the design of interconnection networks, deal with the connected problems of sorting permutations in "as few moves as possible", using a given set of allowed operations, or computing the number of moves the sorting process requires, often referred to as the distance of the permutation. These operations often act on just one or two segments of the permutation, e.g. by reversing one segment or exchanging two segments. The cycle graph of the permutation to sort is a fundamental tool in the theory of genome rearrangements, and has proved useful in settling the complexity of many variants of the above problems. In this paper, we present an algebraic reinterpretation of the cycle graph of a permutation π as an even permutation π, and show how to reformulate our sorting problems in terms of particular factorisations of the latter permutation. Using our framework, we recover known results in a simple and unified way, and obtain a new lower bound on the prefix transposition distance (where a prefix transposition displaces the initial segment of a permutation), which is shown to outperform previous results. Moreover, we use our approach to improve the best known lower bound on the prefix transposition diameter from 2n/3 to ⌊3n/4⌋, and investigate a few relations between some statistics on π and π

    Circular inversions of permutations and their use in sorting problems

    Get PDF
    Предлагается алгоритм сортировки перестановки на основе её множеств круговых инверсий. Указывается на приложения в молекулярной биологии и в теории групп подстановок

    Sorting by Prefix Block-Interchanges

    Get PDF
    We initiate the study of sorting permutations using prefix block-interchanges, which exchange any prefix of a permutation with another non-intersecting interval. The goal is to transform a given permutation into the identity permutation using as few such operations as possible. We give a 2-approximation algorithm for this problem, show how to obtain improved lower and upper bounds on the corresponding distance, and determine the largest possible value for that distance
    corecore