155 research outputs found

    Low-rank updates of balanced incomplete factorization preconditioners

    Full text link
    [EN] Let Ax = b be a large and sparse system of linear equations where A is a nonsingular matrix. An approximate solution is frequently obtained by applying preconditioned terations. Consider the matrix B = A + PQT where P,Q ∈ Rn×k are full rank matrices. In this work, we study the problem of updating a previously computed preconditioner for A in order to solve the updated linear system Bx = b by preconditioned iterations. In particular, we propose a method for updating a Balanced Incomplete Factorization preconditioner. The strategy is based on the computation of an approximate Inverse Sherman-Morrison decomposition for an equivalent augmented linear system. Approximation properties of the preconditioned matrix and an analysis of the computational cost of the algorithm are studied. Moreover the results of the numerical experiments with different types of problems show that the proposed method contributes to accelerate the convergence.This work was supported by the Spanish Ministerio de Economia y Competitividad under grant MTM2014-58159-P.Cerdán Soriano, JM.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2017). Low-rank updates of balanced incomplete factorization preconditioners. Numerical Algorithms. 74(2):337-370. https://doi.org/10.1007/s11075-016-0151-6S337370742Bellavia, S., Bertaccini, D., Morini, B.: Nonsymmetric preconditioner updates in Newton-Krylov methods for nonlinear systems. SIAM J. Sci. Comput. 33 (5), 2595–2619 (2011)Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT 43(2), 231–244 (2003)Bergamaschi, L., Bru, R., Martínez, A.: Low-rank update of preconditioners for the inexact Newton method with SPD Jacobian. Math. Comput. Model. 54, 1863–1873 (2011)Bergamaschi, L., Bru, R., Martínez, A., Mas, J., Putti, M.: Low-rank update of preconditioners for the nonlinear Richards Equation. Math. Comput. Model. 57, 1933–1941 (2013)Bergamaschi, L., Gondzio, J., Venturin, M., Zilli, G.: Inexact constraint preconditioners for linear systems arising in interior point methods. Comput. Optim. Appl. 36(2-3), 137–147 (2007)Beroiz, M., Hagstrom, T., Lau, S.R., Price, R.H.: Multidomain, sparse, spectral-tau method for helically symmetric flow. Comput. Fluids 102(0), 250–265 (2014)Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49–64 (2004)Bollhöfer, M.: A robust and efficient ILU that incorporates the growth of the inverse triangular factors. SIAM J. Sci. Comput. 25(1), 86–103 (2003)Bollhöfer, M., Saad, Y.: On the relations between ILUs and factored approximate inverses. SIAM. J. Matrix Anal. Appl. 24(1), 219–237 (2002)Bru, R., Cerdán, J., Marín, J., Mas, J.: Preconditioning sparse nonsymmetric linear systems with the Sherman-Morrison formula. SIAM J. Sci. Comput. 25(2), 701–715 (2003)Bru, R., Marín, J., Mas, J., Tůma, M.: Balanced incomplete factorization. SIAM J. Sci. Comput. 30(5), 2302–2318 (2008)Bru, R., Marín, J., Mas, J., Tůma, M.: Improved balanced incomplete factorization. SIAM J. Matrix Anal. Appl. 31(5), 2431–2452 (2010)Cerdán, J., Faraj, T., Malla, N., Marín, J., Mas, J.: Block approximate inverse preconditioners for sparse nonsymmetric linear systems. Electron. Trans. Numer. Anal. 37, 23–40 (2010)Cerdán, J., Marín, J., Mas, J., Tůma, M.: Block balanced incomplete factorization. Technical Report No. TR-IMM2015/04, Polytechnic University of Valencia, Spain (2015)Davis, T.A.: University of Florida Sparse Matrix Collection. available online at http://www.cise.ufl.edu/~davis/sparse/ , NA Digest, vol. 94, issue 42, October 1994.Tebbens, J.D., Tůma, M.: Efficient preconditioning of sequences of nonsymmetric linear systems. SIAM J. Sci Comput. 29(5), 1918–1941 (2007)Tebbens, J.D., Tůma, M.: Preconditioner updates for solving sequences of linear systems in matrix-free environment. Numer Linear Algebra Appl. 17, 997–1019 (2010)Embree, M., Sifuentes, J.A., Soodhalter, K.M., Szyld, D.B., Xue, F.: Short-term recurrence Krylov subspace methods for nearly hermitian matrices. SIAM.J. Matrix Anal. Appl. 33-2, 480–500 (2012)Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64, 697–735 (2011)Gatto, P., Christiansen, R.E., Hesthaven, J.S.: A preconditioner based on a low-rank approximation with applications to topology optimization. Technical Report EPFL-ARTICLE-207108, École polytechnique fédérale de Lausanne, EPFL, CH-1015 Lausanne, 2015.Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing 70(4), 295–334 (2003)Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6(1), 229–269 (1997)Hager, W.W.: Updating the inverse of matrix. SIAM Rev. 31(2), 221–239 (1989)Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. Fundamentals of algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003)Saad, Y.: ILUT: a dual threshold incomplete L U factorization. Numer. Linear Algebra Appl. 1(4), 387–402 (1994)Saad, Y., Schulz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)Simoncini, V., Szyld, D.B.: The effect of non-optimal bases on the convergence of Krylov subspace methods. Numer Math. 100(4), 711–733 (2005)van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631–644 (1992

    Updating preconditioners for modified least squares problems

    Full text link
    [EN] In this paper, we analyze how to update incomplete Cholesky preconditioners to solve least squares problems using iterative methods when the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Our proposed method computes a low-rank update of the preconditioner using a bordering method which is inexpensive compared with the cost of computing a new preconditioner. Moreover, the numerical experiments presented show that this strategy gives, in many cases, a better preconditioner than other choices, including the computation of a new preconditioner from scratch or reusing an existing one.Partially supported by Spanish Grants MTM2014-58159-P and MTM2015-68805-REDT.Marín Mateos-Aparicio, J.; Mas Marí, J.; Guerrero-Flores, DJ.; Hayami, K. (2017). Updating preconditioners for modified least squares problems. Numerical Algorithms. 75(2):491-508. https://doi.org/10.1007/s11075-017-0315-zS491508752Alexander, S.T., Pan, C.T., Plemmons, R.J.: Analysis of a recursive least squares hyperbolic rotation algorithm for signal processing. Linear Algebra Appl. 98, 3–40 (1988)Andrew, R., Dingle, N.: Implementing QR factorization updating algorithms on GPUs. Parallel Comput. 40(7), 161–172 (2014). doi: 10.1016/j.parco.2014.03.003 . http://www.sciencedirect.com/science/article/pii/S0167819114000337 . 7th Workshop on Parallel Matrix Algorithms and ApplicationsBenzi, M., T˚uma, M.: A robust incomplete factorization preconditioner for positive definite matrices. Numer. Linear Algebra Appl. 10(5-6), 385–400 (2003)Benzi, M., Szyld, D.B., Van Duin, A.: Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20(5), 1652–1670 (1999)Björck, Å.: Numerical methods for Least Squares Problems. SIAM, Philadelphia (1996)Bru, R., Marín, J., Mas, J., T˚uma, M.: Preconditioned iterative methods for solving linear least squares problems. SIAM J. Sci. Comput. 36(4), A2002–A2022 (2014)Cerdán, J., Marín, J., Mas, J.: Low-rank upyears of balanced incomplete factorization preconditioners. Numer. Algorithms. doi: 10.1007/s11075-016-0151-6 (2016)Chambers, J.M.: Regression updating. J. Amer. Statist. Assoc. 66, 744–748 (1971)Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM trans. Math. Software 38(1), 1–25 (2011)Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20, 606–627 (1999)Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22, 997–1013 (2001)Davis, T.A., Hager, W.W.: Row modification of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 26, 621–639 (2005)Hammarling, S., Lucas, C.: Updating the QR factorization and the least squares problem. Tech. rep., The University of Manchester, http://www.manchester.ac.uk/mims/eprints (2008)Olsson, O., Ivarsson, T.: Using the QR factorization to swiftly upyear least squares problems. Thesis report, Centre for Mathematical Sciences. The Faculty of Engineering at Lund University LTH (2014)Pothen, A., Fan, C.J.: Computing the block triangular form of a sparse matrix. ACM Trans. Math. Software 16, 303–324 (1990)Saad, Y.: ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1(4), 387–402 (1994)Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston (1996

    On Updating Preconditioners for the Iterative Solution of Linear Systems

    Full text link
    El tema principal de esta tesis es el desarrollo de técnicas de actualización de precondicionadores para resolver sistemas lineales de gran tamaño y dispersos Ax=b mediante el uso de métodos iterativos de Krylov. Se consideran dos tipos interesantes de problemas. En el primero se estudia la solución iterativa de sistemas lineales no singulares y antisimétricos, donde la matriz de coeficientes A tiene parte antisimétrica de rango bajo o puede aproximarse bien con una matriz antisimétrica de rango bajo. Sistemas como este surgen de la discretización de PDEs con ciertas condiciones de frontera de Neumann, la discretización de ecuaciones integrales y métodos de puntos interiores, por ejemplo, el problema de Bratu y la ecuación integral de Love. El segundo tipo de sistemas lineales considerados son problemas de mínimos cuadrados (LS) que se resuelven considerando la solución del sistema equivalente de ecuaciones normales. Concretamente, consideramos la solución de problemas LS modificados y de rango incompleto. Por problema LS modificado se entiende que el conjunto de ecuaciones lineales se actualiza con alguna información nueva, se agrega una nueva variable o, por el contrario, se elimina alguna información o variable del conjunto. En los problemas LS de rango deficiente, la matriz de coeficientes no tiene rango completo, lo que dificulta el cálculo de una factorización incompleta de las ecuaciones normales. Los problemas LS surgen en muchas aplicaciones a gran escala de la ciencia y la ingeniería como, por ejemplo, redes neuronales, programación lineal, sismología de exploración o procesamiento de imágenes. Los precondicionadores directos para métodos iterativos usados habitualmente son las factorizaciones incompletas LU, o de Cholesky cuando la matriz es simétrica definida positiva. La principal contribución de esta tesis es el desarrollo de técnicas de actualización de precondicionadores. Básicamente, el método consiste en el cálculo de una descomposición incompleta para un sistema lineal aumentado equivalente, que se utiliza como precondicionador para el problema original. El estudio teórico y los resultados numéricos presentados en esta tesis muestran el rendimiento de la técnica de precondicionamiento propuesta y su competitividad en comparación con otros métodos disponibles en la literatura para calcular precondicionadores para los problemas estudiados.The main topic of this thesis is updating preconditioners for solving large sparse linear systems Ax=b by using Krylov iterative methods. Two interesting types of problems are considered. In the first one is studied the iterative solution of non-singular, non-symmetric linear systems where the coefficient matrix A has a skew-symmetric part of low-rank or can be well approximated with a skew-symmetric low-rank matrix. Systems like this arise from the discretization of PDEs with certain Neumann boundary conditions, the discretization of integral equations as well as path following methods, for example, the Bratu problem and the Love's integral equation. The second type of linear systems considered are least squares (LS) problems that are solved by considering the solution of the equivalent normal equations system. More precisely, we consider the solution of modified and rank deficient LS problems. By modified LS problem, it is understood that the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Rank deficient LS problems are characterized by a coefficient matrix that has not full rank, which makes difficult the computation of an incomplete factorization of the normal equations. LS problems arise in many large-scale applications of the science and engineering as for instance neural networks, linear programming, exploration seismology or image processing. Usually, incomplete LU or incomplete Cholesky factorization are used as preconditioners for iterative methods. The main contribution of this thesis is the development of a technique for updating preconditioners by bordering. It consists in the computation of an approximate decomposition for an equivalent augmented linear system, that is used as preconditioner for the original problem. The theoretical study and the results of the numerical experiments presented in this thesis show the performance of the preconditioner technique proposed and its competitiveness compared with other methods available in the literature for computing preconditioners for the problems studied.El tema principal d'esta tesi és actualitzar precondicionadors per a resoldre sistemes lineals grans i buits Ax=b per mitjà de l'ús de mètodes iteratius de Krylov. Es consideren dos tipus interessants de problemes. En el primer s'estudia la solució iterativa de sistemes lineals no singulars i antisimètrics, on la matriu de coeficients A té una part antisimètrica de baix rang, o bé pot aproximar-se amb una matriu antisimètrica de baix rang. Sistemes com este sorgixen de la discretització de PDEs amb certes condicions de frontera de Neumann, la discretització d'equacions integrals i mètodes de punts interiors, per exemple, el problema de Bratu i l'equació integral de Love. El segon tipus de sistemes lineals considerats, són problemes de mínims quadrats (LS) que es resolen considerant la solució del sistema equivalent d'equacions normals. Concretament, considerem la solució de problemes de LS modificats i de rang incomplet. Per problema LS modificat, s'entén que el conjunt d'equacions lineals s'actualitza amb alguna informació nova, s'agrega una nova variable o, al contrari, s'elimina alguna informació o variable del conjunt. En els problemes LS de rang deficient, la matriu de coeficients no té rang complet, la qual cosa dificultata el calcul d'una factorització incompleta de les equacions normals. Els problemes LS sorgixen en moltes aplicacions a gran escala de la ciència i l'enginyeria com, per exemple, xarxes neuronals, programació lineal, sismologia d'exploració o processament d'imatges. Els precondicionadors directes per a mètodes iteratius utilitzats més a sovint són les factoritzacions incompletes tipus ILU, o la factorització incompleta de Cholesky quan la matriu és simètrica definida positiva. La principal contribució d'esta tesi és el desenvolupament de tècniques d'actualització de precondicionadors. Bàsicament, el mètode consistix en el càlcul d'una descomposició incompleta per a un sistema lineal augmentat equivalent, que s'utilitza com a precondicionador pel problema original. L'estudi teòric i els resultats numèrics presentats en esta tesi mostren el rendiment de la tècnica de precondicionament proposta i la seua competitivitat en comparació amb altres mètodes disponibles en la literatura per a calcular precondicionadors per als problemes considerats.Guerrero Flores, DJ. (2018). On Updating Preconditioners for the Iterative Solution of Linear Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10492

    A two-level ILU preconditioner for electromagnetic applications

    Full text link
    [EN] Computational electromagnetics based on the solution of the integral form of Maxwell s equations with boundary element methods require the solution of large and dense linear systems. For large-scale problems the solution is obtained by using iterative Krylov-type methods provided that a fast method for performing matrix vector products is available. In addition, for ill-conditioned problems some kind of preconditioning technique must be applied to the linear system in order to accelerate the convergence of the iterative method and improve its performance. For many applications it has been reported that incomplete factorizations often suffer from numerical instability due to the indefiniteness of the coefficient matrix. In this context, approximate inverse preconditioners based on Frobenius-norm minimization have emerged as a robust and highly parallel alternative. In this work we propose a two-level ILU preconditioner for the preconditioned GMRES method. The computation and application of the preconditioner is based on graph partitioning techniques. Numerical experiments are presented for different problems and show that with this technique it is possible to obtain robust ILU preconditioners that perform competitively compared with Frobenius-norm minimization preconditioners.This work was supported by the Spanish Ministerio de Economía y Competitividad under grant MTM2014-58159-P and MTM2015-68805-REDT.Cerdán Soriano, JM.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2017). A two-level ILU preconditioner for electromagnetic applications. Journal of Computational and Applied Mathematics. 309:371-382. https://doi.org/10.1016/j.cam.2016.03.012S37138230

    Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part

    Full text link
    [EN] We present a preconditioning technique for solving nonsymmetric linear systems Ax = b, where the coefficient matrix A has a skew-symmetric part that can be well approximated with a skew-symmetric low-rank matrix. The method consists of updating a preconditioner obtained from the symmetric part of A. We present some results concerning to the approximation properties of the preconditioner and the spectral properties of the preconditioning technique. The results of the numerical experiments performed show that our strategy is competitive compared with some specific methods. (C) 2018 Elsevier B.V. All rights reserved.This work was supported by the Spanish Ministerio de Economia y Competitividad under grants MTM2014-58159-P and MTM2015-68805-REDT.Cerdán Soriano, JM.; Guerrero-Flores, DJ.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2018). Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part. Journal of Computational and Applied Mathematics. 343:318-327. https://doi.org/10.1016/j.cam.2018.04.023S318327343J. Sifuentes, Preconditioned iterative methods for inhomogeneous acoustic scattering applications (Ph.D. thesis), 2010.Beckermann, B., & Reichel, L. (2008). The Arnoldi Process and GMRES for Nearly Symmetric Matrices. SIAM Journal on Matrix Analysis and Applications, 30(1), 102-120. doi:10.1137/060668274Embree, M., Sifuentes, J. A., Soodhalter, K. M., Szyld, D. B., & Xue, F. (2012). Short-Term Recurrence Krylov Subspace Methods for Nearly Hermitian Matrices. SIAM Journal on Matrix Analysis and Applications, 33(2), 480-500. doi:10.1137/110851006Saad, Y., & Schultz, M. H. (1986). GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7(3), 856-869. doi:10.1137/0907058Cerdán, J., Marín, J., & Mas, J. (2016). Low-rank updates of balanced incomplete factorization preconditioners. Numerical Algorithms, 74(2), 337-370. doi:10.1007/s11075-016-0151-6Van der Vorst, H. A. (1992). Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 631-644. doi:10.1137/0913035Bergamaschi, L., Gondzio, J., Venturin, M., & Zilli, G. (2007). Inexact constraint preconditioners for linear systems arising in interior point methods. Computational Optimization and Applications, 36(2-3), 137-147. doi:10.1007/s10589-006-9001-0Davis, T. A., & Hu, Y. (2011). The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1-25. doi:10.1145/2049662.2049663Berry, M. W., Pulatova, S. A., & Stewart, G. W. (2005). Algorithm 844. ACM Transactions on Mathematical Software, 31(2), 252-269. doi:10.1145/1067967.1067972Stewart, G. W. (1999). Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix. Numerische Mathematik, 83(2), 313-323. doi:10.1007/s002110050451Saad, Y. (1994). ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1(4), 387-402. doi:10.1002/nla.168001040

    Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization

    Full text link
    Many problems encountered in science and engineering can be formulated as estimating a low-rank object (e.g., matrices and tensors) from incomplete, and possibly corrupted, linear measurements. Through the lens of matrix and tensor factorization, one of the most popular approaches is to employ simple iterative algorithms such as gradient descent (GD) to recover the low-rank factors directly, which allow for small memory and computation footprints. However, the convergence rate of GD depends linearly, and sometimes even quadratically, on the condition number of the low-rank object, and therefore, GD slows down painstakingly when the problem is ill-conditioned. This chapter introduces a new algorithmic approach, dubbed scaled gradient descent (ScaledGD), that provably converges linearly at a constant rate independent of the condition number of the low-rank object, while maintaining the low per-iteration cost of gradient descent for a variety of tasks including sensing, robust principal component analysis and completion. In addition, ScaledGD continues to admit fast global convergence to the minimax-optimal solution, again almost independent of the condition number, from a small random initialization when the rank is over-specified in the presence of Gaussian noise. In total, ScaledGD highlights the power of appropriate preconditioning in accelerating nonconvex statistical estimation, where the iteration-varying preconditioners promote desirable invariance properties of the trajectory with respect to the symmetry in low-rank factorization without hurting generalization.Comment: Book chapter for "Explorations in the Mathematics of Data Science - The Inaugural Volume of the Center for Approximation and Mathematical Data Analytics". arXiv admin note: text overlap with arXiv:2104.1452

    Preconditioned iterative methods for solving linear least squares problems

    Full text link
    New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the conjugate gradient for least squares (CGLS) method are described. First, direct preconditioning of the normal equations by the balanced incomplete factorization (BIF) for symmetric and positive definite matrices is studied, and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU factors of an n × n submatrix of the system matrix is our second approach. A new way to find this submatrix based on a specific weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic and implementational features of the new approaches and put them into the context of current progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use of the weighted transversal helps to improve the LU-based approach.This work was partially supported by Spanish grant MTM 2010-18674 and the project 13-06684S of the Grant agency of the Czech Republic.Bru García, R.; Marín Mateos-Aparicio, J.; Mas Marí, J.; Tuma, M. (2014). Preconditioned iterative methods for solving linear least squares problems. SIAM Journal on Scientific Computing. 36(4):2002-2022. https://doi.org/10.1137/130931588S2002202236

    The Use of Preconditioning for Training Support Vector Machines

    Get PDF
    Since the introduction of support vector machines (SVMs), much work has been done to make these machines more efficient in classification. In our work, we incorporated the preconditioned conjugate gradient method (PCG) with an adaptive constraint reduction method developed in 2007 to improve the efficiency of training the SVM when using an Interior-Point Method. We reduced the computational effort in assembling the matrix of normal equations by excluding unnecessary constraints. By using PCG and refactoring the preconditioner only when necessary, we also reduced the time to solve the system of normal equations. We also compared two methods to update the preconditioner. Both methods consider the two most recent diagonal matrices in the normal equations. The first method chooses the indices to be updated based on the difference between the diagonal elements while the second method chooses based on the ratio of these elements. Promising numerical results for dense matrix problems are reported
    • …
    corecore