1,635 research outputs found

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ

    Frame Structure Design and Analysis for Millimeter Wave Cellular Systems

    Full text link
    The millimeter-wave (mmWave) frequencies have attracted considerable attention for fifth generation (5G) cellular communication as they offer orders of magnitude greater bandwidth than current cellular systems. However, the medium access control (MAC) layer may need to be significantly redesigned to support the highly directional transmissions, ultra-low latencies and high peak rates expected in mmWave communication. To address these challenges, we present a novel mmWave MAC layer frame structure with a number of enhancements including flexible, highly granular transmission times, dynamic control signal locations, extended messaging and ability to efficiently multiplex directional control signals. Analytic formulae are derived for the utilization and control overhead as a function of control periodicity, number of users, traffic statistics, signal-to-noise ratio and antenna gains. Importantly, the analysis can incorporate various front-end MIMO capability assumptions -- a critical feature of mmWave. Under realistic system and traffic assumptions, the analysis reveals that the proposed flexible frame structure design offers significant benefits over designs with fixed frame structures similar to current 4G long-term evolution (LTE). It is also shown that fully digital beamforming architectures offer significantly lower overhead compared to analog and hybrid beamforming under equivalent power budgets.Comment: Submitted to IEEE Transactions for Wireless Communication

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • …
    corecore