4,925 research outputs found

    Pseudorandomness via the discrete Fourier transform

    Full text link
    We present a new approach to constructing unconditional pseudorandom generators against classes of functions that involve computing a linear function of the inputs. We give an explicit construction of a pseudorandom generator that fools the discrete Fourier transforms of linear functions with seed-length that is nearly logarithmic (up to polyloglog factors) in the input size and the desired error parameter. Our result gives a single pseudorandom generator that fools several important classes of tests computable in logspace that have been considered in the literature, including halfspaces (over general domains), modular tests and combinatorial shapes. For all these classes, our generator is the first that achieves near logarithmic seed-length in both the input length and the error parameter. Getting such a seed-length is a natural challenge in its own right, which needs to be overcome in order to derandomize RL - a central question in complexity theory. Our construction combines ideas from a large body of prior work, ranging from a classical construction of [NN93] to the recent gradually increasing independence paradigm of [KMN11, CRSW13, GMRTV12], while also introducing some novel analytic machinery which might find other applications

    Finding the Minimum-Weight k-Path

    Full text link
    Given a weighted nn-vertex graph GG with integer edge-weights taken from a range [−M,M][-M,M], we show that the minimum-weight simple path visiting kk vertices can be found in time \tilde{O}(2^k \poly(k) M n^\omega) = O^*(2^k M). If the weights are reals in [1,M][1,M], we provide a (1+ε)(1+\varepsilon)-approximation which has a running time of \tilde{O}(2^k \poly(k) n^\omega(\log\log M + 1/\varepsilon)). For the more general problem of kk-tree, in which we wish to find a minimum-weight copy of a kk-node tree TT in a given weighted graph GG, under the same restrictions on edge weights respectively, we give an exact solution of running time \tilde{O}(2^k \poly(k) M n^3) and a (1+ε)(1+\varepsilon)-approximate solution of running time \tilde{O}(2^k \poly(k) n^3(\log\log M + 1/\varepsilon)). All of the above algorithms are randomized with a polynomially-small error probability.Comment: To appear at WADS 201

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Quantum Algorithms for Fermionic Simulations

    Full text link
    We investigate the simulation of fermionic systems on a quantum computer. We show in detail how quantum computers avoid the dynamical sign problem present in classical simulations of these systems, therefore reducing a problem believed to be of exponential complexity into one of polynomial complexity. The key to our demonstration is the spin-particle connection (or generalized Jordan-Wigner transformation) that allows exact algebraic invertible mappings of operators with different statistical properties. We give an explicit implementation of a simple problem using a quantum computer based on standard qubits.Comment: 38 pages, 2 psfigur

    Efficient Circuits for Quantum Walks

    Full text link
    We present an efficient general method for realizing a quantum walk operator corresponding to an arbitrary sparse classical random walk. Our approach is based on Grover and Rudolph's method for preparing coherent versions of efficiently integrable probability distributions. This method is intended for use in quantum walk algorithms with polynomial speedups, whose complexity is usually measured in terms of how many times we have to apply a step of a quantum walk, compared to the number of necessary classical Markov chain steps. We consider a finer notion of complexity including the number of elementary gates it takes to implement each step of the quantum walk with some desired accuracy. The difference in complexity for various implementation approaches is that our method scales linearly in the sparsity parameter and poly-logarithmically with the inverse of the desired precision. The best previously known general methods either scale quadratically in the sparsity parameter, or polynomially in the inverse precision. Our approach is especially relevant for implementing quantum walks corresponding to classical random walks like those used in the classical algorithms for approximating permanents and sampling from binary contingency tables. In those algorithms, the sparsity parameter grows with the problem size, while maintaining high precision is required.Comment: Modified abstract, clarified conclusion, added application section in appendix and updated reference

    Local tests of global entanglement and a counterexample to the generalized area law

    Get PDF
    We introduce a technique for applying quantum expanders in a distributed fashion, and use it to solve two basic questions: testing whether a bipartite quantum state shared by two parties is the maximally entangled state and disproving a generalized area law. In the process these two questions which appear completely unrelated turn out to be two sides of the same coin. Strikingly in both cases a constant amount of resources are used to verify a global property.Comment: 21 pages, to appear FOCS 201
    • …
    corecore