118,590 research outputs found

    Fast Back-Projection for Non-Line of Sight Reconstruction

    Get PDF
    Recent works have demonstrated non-line of sight (NLOS) reconstruction by using the time-resolved signal frommultiply scattered light. These works combine ultrafast imaging systems with computation, which back-projects the recorded space-time signal to build a probabilistic map of the hidden geometry. Unfortunately, this computation is slow, becoming a bottleneck as the imaging technology improves. In this work, we propose a new back-projection technique for NLOS reconstruction, which is up to a thousand times faster than previous work, with almost no quality loss. We base on the observation that the hidden geometry probability map can be built as the intersection of the three-bounce space-time manifolds defined by the light illuminating the hidden geometry and the visible point receiving the scattered light from such hidden geometry. This allows us to pose the reconstruction of the hidden geometry as the voxelization of these space-time manifolds, which has lower theoretic complexity and is easily implementable in the GPU. We demonstrate the efficiency and quality of our technique compared against previous methods in both captured and synthetic dat

    Robust phase retrieval with the swept approximate message passing (prSAMP) algorithm

    Full text link
    In phase retrieval, the goal is to recover a complex signal from the magnitude of its linear measurements. While many well-known algorithms guarantee deterministic recovery of the unknown signal using i.i.d. random measurement matrices, they suffer serious convergence issues some ill-conditioned matrices. As an example, this happens in optical imagers using binary intensity-only spatial light modulators to shape the input wavefront. The problem of ill-conditioned measurement matrices has also been a topic of interest for compressed sensing researchers during the past decade. In this paper, using recent advances in generic compressed sensing, we propose a new phase retrieval algorithm that well-adopts for both Gaussian i.i.d. and binary matrices using both sparse and dense input signals. This algorithm is also robust to the strong noise levels found in some imaging applications

    Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy

    Get PDF
    Optical sectioning provides three-dimensional (3D) information in biological tissues. However, most imaging techniques implemented with optical sectioning are either slow or deleterious to live tissues. Here, we present a simple design for wide-field multiphoton microscopy, which provides optical sectioning at a reasonable frame rate and with a biocompatible laser dosage. The underlying mechanism of optical sectioning is diffuser-based temporal focusing. Axial resolution comparable to confocal microscopy is theoretically derived and experimentally demonstrated. To achieve a reasonable frame rate without increasing the laser power, a low-repetition-rate ultrafast laser amplifier was used in our setup. A frame rate comparable to that of epifluorescence microscopy was demonstrated in the 3D imaging of fluorescent protein expressed in live epithelial cell clusters. In this report, our design displays the potential to be widely used for video-rate live-tissue and embryo imaging with axial resolution comparable to laser scanning microscopy

    Image formation in synthetic aperture radio telescopes

    Full text link
    Next generation radio telescopes will be much larger, more sensitive, have much larger observation bandwidth and will be capable of pointing multiple beams simultaneously. Obtaining the sensitivity, resolution and dynamic range supported by the receivers requires the development of new signal processing techniques for array and atmospheric calibration as well as new imaging techniques that are both more accurate and computationally efficient since data volumes will be much larger. This paper provides a tutorial overview of existing image formation techniques and outlines some of the future directions needed for information extraction from future radio telescopes. We describe the imaging process from measurement equation until deconvolution, both as a Fourier inversion problem and as an array processing estimation problem. The latter formulation enables the development of more advanced techniques based on state of the art array processing. We demonstrate the techniques on simulated and measured radio telescope data.Comment: 12 page

    Hardware Impairments Aware Transceiver Design for Full-Duplex Amplify-and-Forward MIMO Relaying

    Full text link
    In this work we study the behavior of a full-duplex (FD) and amplify-and-forward (AF) relay with multiple antennas, where hardware impairments of the FD relay transceiver is taken into account. Due to the inter-dependency of the transmit relay power on each antenna and the residual self-interference in an FD-AF relay, we observe a distortion loop that degrades the system performance when the relay dynamic range is not high. In this regard, we analyze the relay function in presence of the hardware inaccuracies and an optimization problem is formulated to maximize the signal to distortion-plus-noise ratio (SDNR), under relay and source transmit power constraints. Due to the problem complexity, we propose a gradient-projection-based (GP) algorithm to obtain an optimal solution. Moreover, a nonalternating sub-optimal solution is proposed by assuming a rank-1 relay amplification matrix, and separating the design of the relay process into multiple stages (MuStR1). The proposed MuStR1 method is then enhanced by introducing an alternating update over the optimization variables, denoted as AltMuStR1 algorithm. It is observed that compared to GP, (Alt)MuStR1 algorithms significantly reduce the required computational complexity at the expense of a slight performance degradation. Finally, the proposed methods are evaluated under various system conditions, and compared with the methods available in the current literature. In particular, it is observed that as the hardware impairments increase, or for a system with a high transmit power, the impact of applying a distortion-aware design is significant.Comment: Submitted to IEEE Transactions on Wireless Communication

    Revisiting spin state crossover in (MgFe)O by means of high resolution X-ray diffraction from a single crystal

    Full text link
    (MgFe)O is a solid solution with ferrous iron undergoing the high to low spin state (HS-LS) crossover under high pressure. The exact state of the material in the region of the crossover is still a mystery, as domains with different spin states may coexist over a wide pressure range without changing the crystal structure neither from the symmetry nor from the atomic positions point of view. At the conditions of the crossover, (MgFe)O is a special type of microscopic disorder system. We explore the influences of (a) stress-strain relations in a diamond anvil cell, (b) time relaxation processes, and (c) the crossover itself on the characteristic features of a single crystal (111) Bragg spot before, during and after the transformation. Using high resolution X-ray diffraction as a novel method for studies of unconventional processes at the conditions of suppressed diffusion, we detect and discuss subtle changes of the (111) Bragg spot projections which we measure and analyze as a function of pressure. We report changes of the spot shape which can be correlated with the HS-LS relative abundance. In addition, we report the formation of structural defects as an intrinsic material response. These static defects are accumulated during transformation of the material from HS to LS.Comment: 28 pages, 11 Figure
    corecore