6,489 research outputs found

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine

    Get PDF
    Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.Web of Science203art. no. 76

    The burden of proof: the current state of atrial fibrillation prevention and treatment trials

    Get PDF
    Atrial fibrillation (AF) is an age-related arrhythmia of enormous socioeconomic significance. In recent years, our understanding of the basic mechanisms that initiate and perpetuate AF has evolved rapidly, catheter ablation of AF has progressed from concept to reality, and recent studies suggest lifestyle modification may help prevent AF recurrence. Emerging developments in genetics, imaging, and informatics also present new opportunities for personalized care. However, considerable challenges remain. These include a paucity of studies examining AF prevention, modest efficacy of existing antiarrhythmic therapies, diverse ablation technologies and practice, and limited evidence to guide management of high-risk patients with multiple comorbidities. Studies examining the long-term effects of AF catheter ablation on morbidity and mortality outcomes are not yet completed. In many ways, further progress in the field is heavily contingent on the feasibility, capacity, and efficiency of clinical trials to incorporate the rapidly evolving knowledge base and to provide substantive evidence for novel AF therapeutic strategies. This review outlines the current state of AF prevention and treatment trials, including the foreseeable challenges, as discussed by a unique forum of clinical trialists, scientists, and regulatory representatives in a session endorsed by the Heart Rhythm Society at the 12th Global CardioVascular Clinical Trialists Forum in Washington, DC, December 3–5, 2015

    Quality Control in ECG-based Atrial Fibrillation Screening

    Get PDF
    This thesis comprises an introductory chapter and four papers related to quality control in ECG-based atrial fibrillation (AF) screening. Atrial fibrillation is a cardiac arrhythmia characterized by an irregular rhythm and constitutes a major risk factor for stroke. Anticoagulation therapy significantly reduces this risk, and therefore, AF screening is motivated. Atrial fibrillation screening is often done using ECGs recorded outside the clinical environment. However, the higher susceptibility of such ECGs to noise and artifacts makes the identification of patients with AF challenging. The present thesis addresses these challenges at different levels in the data analysis chain. Paper I presents a convolutional neural network (CNN)-based approach to identify transient noise and artifacts in the detected beat sequence before AF detection. The results show that by inserting a CNN, prior to the AF detector, the number of false AF detections is reduced by 22.5% without any loss in the sensitivity, suggesting that the number of recordings requiring expert review can be significantly reduced. Paper II investigates the signal quality of a novel wet electrode technology, and how the improved signal quality translates to improved beat detection and AF detection performance. The novel electrode technology is designed for reduction of motion artifacts typically present in Holter ECG recordings. The novel electrode technology shows a better signal quality and detection performance when compared to a commercially available counterpart, especially when the subject becomes more active. Thus, it has the potential to reduce the review burden and costs associated with ambulatory monitoring.Paper III introduces a detector for short-episode supraventricular tachycardia (sSVT) in AF screening recordings, which has been shown to be associated with an increased risk for future AF. Therefore, the identification of subjects with suchepisodes may increase the usefulness of AF screening. The proposed detector is based on the assumption that the beats in an sSVT episode display similar morphology, and that episodes including detections of deviating morphology should be excluded. The results show that the number of false sSVT detections can be significantly reduced (by a factor of 6) using the proposed detector.Paper IV introduces a novel ECG simulation tool, which is capable of producing ECGs with various arrhythmia patterns and with several different types of noise and artifacts. Specifically, the ECG simulator includes models to generate noise observed in ambulatory recordings, and when recording using handheld recording devices. The usefulness of the simulator is illustrated in terms of AF detection performance when the CNN training in Paper I is performed using simulated data. The results show a very similar performance when training with simulated data compared to when training with real data. Thus, the proposed simulator is a valuable tool in the development and training of automated ECG processing algorithms. Together, the four parts, in different ways, contribute to improved algorithmic efficiency in AF screening

    Photoplethysmography based atrial fibrillation detection: an updated review from July 2019

    Full text link
    Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with significant health ramifications, including an elevated susceptibility to ischemic stroke, heart disease, and heightened mortality. Photoplethysmography (PPG) has emerged as a promising technology for continuous AF monitoring for its cost-effectiveness and widespread integration into wearable devices. Our team previously conducted an exhaustive review on PPG-based AF detection before June 2019. However, since then, more advanced technologies have emerged in this field. This paper offers a comprehensive review of the latest advancements in PPG-based AF detection, utilizing digital health and artificial intelligence (AI) solutions, within the timeframe spanning from July 2019 to December 2022. Through extensive exploration of scientific databases, we have identified 59 pertinent studies. Our comprehensive review encompasses an in-depth assessment of the statistical methodologies, traditional machine learning techniques, and deep learning approaches employed in these studies. In addition, we address the challenges encountered in the domain of PPG-based AF detection. Furthermore, we maintain a dedicated website to curate the latest research in this area, with regular updates on a regular basis

    Current Review of Atrial Fibrillation Detected After Stroke

    Get PDF
    Patients with atrial fibrillation (AF) have a greater probability of a stroke event than patients without AF. As a result of developments in cardiac monitoring, the diagnosis of AF during an ischemic stroke or transient ischemic attack has improved these years.  More cases of AF detected after stroke (AFDAS) are reported, which has implications for future risk of recurrent stroke and prevention. This article provides the current review of AFDAS's monitoring and brief management
    corecore