74 research outputs found

    Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound

    Full text link
    Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems, since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We present the signal model for the estimation problem and derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation problem. Next, we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking. Numerical results show that, compared to existing algorithms, the performance of the proposed ECM-based estimator is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance

    Low-Complexity Multi-User MIMO Algorithms for mmWave WLANs

    Get PDF
    Very high throughput and high-efficiency wireless local area networks (WLANs) have become essential for today's significant global Internet traffic and the expected significant global increase of public WiFi hotspots. Total Internet traffic is predicted to expand 3.7-fold from 2017 to 2022. In 2017, 53% of overall Internet traffic used by WiFi networks, and that number is expected to increase to 56.8% by 2022. Furthermore, 80% of overall Internet traffic is expected to be video traffic by 2022, up from 70% in 2017. WiFi networks are also expected to move towards denser deployment scenarios, such as stadiums, large office buildings, and airports, with very high data rate applications, such as ultra-high definition video wireless streaming. Thus, in order to meet the predicted growth of wireless traffic and the number of WiFi networks in the world, an efficient Internet access solution is required for the current IEEE 802.11 standards. Millimeter wave (mmWave) communication technology is expected to play a crucial role in future wireless networks with large user populations because of the large spectrum band it can provide. To further improve spectrum efficiency over mmWave bands in WLANs with large numbers of users, the IEEE 802.11ay standard was developed from the traditional IEEE 802.11ad standard, aiming to support multi-user MIMO. Propagation challenges associated with mmWave bands necessitate the use of analog beamforming (BF) technologies that employ directional transmissions to determine the optimal sector beam between a transmitter and a receiver. However, the multi-user MIMO is not exploited, since analog BF is limited to a single-user, single-transmission. The computational complexity of achieving traditional multi-user MIMO BF methods, such as full digital BF, in the mmWave systems becomes significant due to the hardware constraints. Our research focuses on how to effectively and efficiently realize multi-user MIMO transmission to improve spectrum efficiency over the IEEE 802.11ay mmWave band system while also resolving the computational complexity challenges for achieving a multi-user MIMO in mmWave systems. This thesis focuses on MAC protocol algorithms and analysis of the IEEE 802.11ay mmWave WLANs to provide multi-user MIMO support in various scenarios to improve the spectrum efficiency and system throughput. Specifically, from a downlink single-hop scenario perspective, a VG algorithm is proposed to schedule simultaneous downlink transmission links while mitigating the multi-user interference with no additional computational complexity. From a downlink multi-hop scenario perspective, a low-complexity MHVG algorithm is conducted to realize simultaneous transmissions and improve the network performance by taking advantage of the spatial reuse in a dense network. The proposed MHVG algorithm permits simultaneous links scheduling and mitigates both the multi-user interference and co-channel interference based only on analog BF information, without the necessity for feedback overhead, such as channel state information (CSI). From an uplink scenario perspective, a low-complexity user selection algorithm, HBF-VG, incorporates user selection with the HBF algorithm to achieve simultaneous uplink transmissions for IEEE 802.11ay mmWave WLANs. With the HBF-VG algorithm, the users can be selected based on an orthogonality criterion instead of collecting CSI from all potential users. We optimize the digital BF to mitigate the residual interference among selected users. Extensive analytical and simulation evaluations are provided to validate the performance of the proposed algorithms with respect to average throughput per time slot, average network throughput, average sum-rate, energy efficiency, signal-to-interference-plus-noise ratio (SINR), and spatial multiplexing gain

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    Software-hardware systems for the Internet-of-Things

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages [187]-201).Although interest in connected devices has surged in recent years, barriers still remain in realizing the dream of the Internet of Things (IoT). The main challenge in delivering IoT systems stems from a huge diversity in their demands and constraints. Some applications work with small sensors and operate using minimal energy and bandwidth. Others use high-data-rate multimedia and virtual reality systems, which require multiple-gigabits-per-second throughput and substantial computing power. While both extremes stress the computation, communications, and energy resources available to the underlying devices, each intrinsically requires different solutions to satisfy its needs. This thesis addresses both bandwidth and energy constraints by developing custom software-hardware systems. To tackle the bandwidth constraint, this thesis introduces three systems. First, it presents AirShare, a synchronized abstraction to the physical layer, which enables the direct implementation of diverse kinds of distributed protocols for loT sensors. This capability results in a much higher throughput in today's IoT networks. Then, it presents Agile-Link and MoVR, new millimeter wave devices and protocols which address two main problems that prevent the adoption of millimeter wave frequencies in today's networks: signal blockage and beam alignment. Lastly, this thesis shows how these systems enable new IoT applications, such as untethered high-quality virtual reality. To tackle the energy constraint, this thesis introduces a VLSI chip, which is capable of performing a million-point Fourier transform in real-time, while consuming 40 times less power than prior fast Fourier transforms. Then, it presents Caraoke, a small, low-cost and low-power sensor, which harvests its energy from solar and enables new smart city applications, such as traffic management and smart parking.by Omid Salehi-Abari.Ph. D
    • …
    corecore