517 research outputs found

    MODIS: Moderate-resolution imaging spectrometer. Earth observing system, volume 2B

    Get PDF
    The Moderate-Resolution Imaging Spectrometer (MODIS), as presently conceived, is a system of two imaging spectroradiometer components designed for the widest possible applicability to research tasks that require long-term (5 to 10 years), low-resolution (52 channels between 0.4 and 12.0 micrometers) data sets. The system described is preliminary and subject to scientific and technological review and modification, and it is anticipated that both will occur prior to selection of a final system configuration; however, the basic concept outlined is likely to remain unchanged

    A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Get PDF
    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD)

    Exploring Himawari-8 geostationary observations for the advanced coastal monitoring of the Great Barrier Reef

    Get PDF
    Larissa developed an algorithm to enable water-quality assessment within the Great Barrier Reef (GBR) using weather satellite observations collected every 10 minutes. This unprecedented temporal resolution records the dynamic nature of water quality fluctuations for the entire GBR, with applications for improved monitoring and management

    Water Quality Observations from Space: A Review of Critical Issues and Challenges

    Get PDF
    Water is the basis of all life on this planet. Yet, approximately one in seven people in the world do not have access to safe water. Water can become unsafe due to contamination by various organic and inorganic compounds due to various natural and anthropogenic processes. Identifying and monitoring water quality changes in space and time remains a challenge, especially when contamination events occur over large geographic areas. This study investigates recent advances in remote sensing that allow us to detect and monitor the unique spectral characteristics of water quality events over large areas. Based on an extensive literature review, we focus on three critical water quality problems as part of this study: algal blooms, acid mine drainage, and suspended solids. We review the advances made in applications of remote sensing in each of these issues, identify the knowledge gaps and limitations of current studies, analyze the existing approaches in the context of global environmental changes, and discuss potential ways to combine multi-sensor methods and different wavelengths to develop improved approaches. Synthesizing the findings of these studies in the context of the three specific tracks will help stakeholders to utilize, share, and embed satellite-derived earth observations for monitoring and tracking the ever-evolving water quality in the earth’s limited freshwater reserves

    Relationship between Land Use and Water Quality and its Assessment Using Hyperspectral Remote Sensing in Mid- Atlantic Estuaries

    Get PDF
    Mid-Atlantic coastal waters are under increasing pressures from anthropogenic disturbances at various temporal and spatial scales exacerbated by the climate change. According to the National Oceanic Atmospheric Association (NOAA), 10 of the 22 estuaries in the Mid-Atlantic, including the Chesapeake Bay, exhibit high levels of eutrophic conditions while seven, including Delaware Bay, exhibit low conditions. Chesapeake Bay is the largest estuarine system in the United States and undergoes frequent eutrophication and low dissolved oxygen events. Although substantially lower in nutrients compared to other Mid-Atlantic Estuaries, the biological, chemical, and ecological status of the Delaware Bay has changed in the past few decades due to high coastal tourism, increased local resident populations, and agricultural activities which have increased nutrient inputs into this shallow coastal bay. As stated by the Academy of Natural Sciences, although the nutrient load has reduced since the Clean Water Act, years of nutrient accumulation, contaminations, and sedimentation have impacted estuarine systems substantially, long-term monitoring is lacking, and ecological responses are not well quantified. Eutrophication within the Bays has degraded water quality conditions advanced by sedimentation. Understanding the quality of the water in any aquatic ecosystem is a critical first step in order to identify characteristics of that ecosystem and draw conclusions about how well adapted the system is in terms of anthropogenic activity and climate change. Determining water quality in intertidal creeks along the Chesapeake and Delaware coastlines is important because land cover is constantly changing. Many of these tidal creeks are lined with forested riparian buffers that may be intercepting nutrients from running off into the waterways. Identifying water conditions, coupled with the marsh land cover, provides a strong foundation to see if the buffer systems are providing the ecosystem services they are designed to provide. Our primary goal in this chapter is to provide research findings on the application of the hyperspectral remote sensing to monitor specific land-use activities and water quality. Along with hyperspectral remote sensing, our monitoring was coupled with the integration of remotely sensed data, global positioning system (GPS), and geographic information system (GIS) technologies that provide a valuable tool for monitoring and assessing waterways in the Mid-Atlantic Estuaries

    Earth Resources: A continuing bibliography with indexes, issue 36

    Get PDF
    This bibliography lists 576 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between October 1 and December 31, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth Resources: A continuing bibliography with indexes, issue 10, August 1976

    Get PDF
    This bibliography lists 506 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1976 and June 1976. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.

    Get PDF
    International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements
    • …
    corecore