3,023 research outputs found

    Robust computation of linear models by convex relaxation

    Get PDF
    Consider a dataset of vector-valued observations that consists of noisy inliers, which are explained well by a low-dimensional subspace, along with some number of outliers. This work describes a convex optimization problem, called REAPER, that can reliably fit a low-dimensional model to this type of data. This approach parameterizes linear subspaces using orthogonal projectors, and it uses a relaxation of the set of orthogonal projectors to reach the convex formulation. The paper provides an efficient algorithm for solving the REAPER problem, and it documents numerical experiments which confirm that REAPER can dependably find linear structure in synthetic and natural data. In addition, when the inliers lie near a low-dimensional subspace, there is a rigorous theory that describes when REAPER can approximate this subspace.Comment: Formerly titled "Robust computation of linear models, or How to find a needle in a haystack

    Robust Low-Rank Subspace Segmentation with Semidefinite Guarantees

    Full text link
    Recently there is a line of research work proposing to employ Spectral Clustering (SC) to segment (group){Throughout the paper, we use segmentation, clustering, and grouping, and their verb forms, interchangeably.} high-dimensional structural data such as those (approximately) lying on subspaces {We follow {liu2010robust} and use the term "subspace" to denote both linear subspaces and affine subspaces. There is a trivial conversion between linear subspaces and affine subspaces as mentioned therein.} or low-dimensional manifolds. By learning the affinity matrix in the form of sparse reconstruction, techniques proposed in this vein often considerably boost the performance in subspace settings where traditional SC can fail. Despite the success, there are fundamental problems that have been left unsolved: the spectrum property of the learned affinity matrix cannot be gauged in advance, and there is often one ugly symmetrization step that post-processes the affinity for SC input. Hence we advocate to enforce the symmetric positive semidefinite constraint explicitly during learning (Low-Rank Representation with Positive SemiDefinite constraint, or LRR-PSD), and show that factually it can be solved in an exquisite scheme efficiently instead of general-purpose SDP solvers that usually scale up poorly. We provide rigorous mathematical derivations to show that, in its canonical form, LRR-PSD is equivalent to the recently proposed Low-Rank Representation (LRR) scheme {liu2010robust}, and hence offer theoretic and practical insights to both LRR-PSD and LRR, inviting future research. As per the computational cost, our proposal is at most comparable to that of LRR, if not less. We validate our theoretic analysis and optimization scheme by experiments on both synthetic and real data sets.Comment: 10 pages, 4 figures. Accepted by ICDM Workshop on Optimization Based Methods for Emerging Data Mining Problems (OEDM), 2010. Main proof simplified and typos corrected. Experimental data slightly adde

    Matrix probing: a randomized preconditioner for the wave-equation Hessian

    Get PDF
    This paper considers the problem of approximating the inverse of the wave-equation Hessian, also called normal operator, in seismology and other types of wave-based imaging. An expansion scheme for the pseudodifferential symbol of the inverse Hessian is set up. The coefficients in this expansion are found via least-squares fitting from a certain number of applications of the normal operator on adequate randomized trial functions built in curvelet space. It is found that the number of parameters that can be fitted increases with the amount of information present in the trial functions, with high probability. Once an approximate inverse Hessian is available, application to an image of the model can be done in very low complexity. Numerical experiments show that randomized operator fitting offers a compelling preconditioner for the linearized seismic inversion problem.Comment: 21 pages, 6 figure

    Completing Low-Rank Matrices with Corrupted Samples from Few Coefficients in General Basis

    Full text link
    Subspace recovery from corrupted and missing data is crucial for various applications in signal processing and information theory. To complete missing values and detect column corruptions, existing robust Matrix Completion (MC) methods mostly concentrate on recovering a low-rank matrix from few corrupted coefficients w.r.t. standard basis, which, however, does not apply to more general basis, e.g., Fourier basis. In this paper, we prove that the range space of an m×nm\times n matrix with rank rr can be exactly recovered from few coefficients w.r.t. general basis, though rr and the number of corrupted samples are both as high as O(min{m,n}/log3(m+n))O(\min\{m,n\}/\log^3 (m+n)). Our model covers previous ones as special cases, and robust MC can recover the intrinsic matrix with a higher rank. Moreover, we suggest a universal choice of the regularization parameter, which is λ=1/logn\lambda=1/\sqrt{\log n}. By our 2,1\ell_{2,1} filtering algorithm, which has theoretical guarantees, we can further reduce the computational cost of our model. As an application, we also find that the solutions to extended robust Low-Rank Representation and to our extended robust MC are mutually expressible, so both our theory and algorithm can be applied to the subspace clustering problem with missing values under certain conditions. Experiments verify our theories.Comment: To appear in IEEE Transactions on Information Theor

    Intrinsic Dynamic Shape Prior for Fast, Sequential and Dense Non-Rigid Structure from Motion with Detection of Temporally-Disjoint Rigidity

    No full text
    While dense non-rigid structure from motion (NRSfM) has been extensively studied from the perspective of the reconstructability problem over the recent years, almost no attempts have been undertaken to bring it into the practical realm. The reasons for the slow dissemination are the severe ill-posedness, high sensitivity to motion and deformation cues and the difficulty to obtain reliable point tracks in the vast majority of practical scenarios. To fill this gap, we propose a hybrid approach that extracts prior shape knowledge from an input sequence with NRSfM and uses it as a dynamic shape prior for sequential surface recovery in scenarios with recurrence. Our Dynamic Shape Prior Reconstruction (DSPR) method can be combined with existing dense NRSfM techniques while its energy functional is optimised with stochastic gradient descent at real-time rates for new incoming point tracks. The proposed versatile framework with a new core NRSfM approach outperforms several other methods in the ability to handle inaccurate and noisy point tracks, provided we have access to a representative (in terms of the deformation variety) image sequence. Comprehensive experiments highlight convergence properties and the accuracy of DSPR under different disturbing effects. We also perform a joint study of tracking and reconstruction and show applications to shape compression and heart reconstruction under occlusions. We achieve state-of-the-art metrics (accuracy and compression ratios) in different scenarios

    Innovation Pursuit: A New Approach to Subspace Clustering

    Full text link
    In subspace clustering, a group of data points belonging to a union of subspaces are assigned membership to their respective subspaces. This paper presents a new approach dubbed Innovation Pursuit (iPursuit) to the problem of subspace clustering using a new geometrical idea whereby subspaces are identified based on their relative novelties. We present two frameworks in which the idea of innovation pursuit is used to distinguish the subspaces. Underlying the first framework is an iterative method that finds the subspaces consecutively by solving a series of simple linear optimization problems, each searching for a direction of innovation in the span of the data potentially orthogonal to all subspaces except for the one to be identified in one step of the algorithm. A detailed mathematical analysis is provided establishing sufficient conditions for iPursuit to correctly cluster the data. The proposed approach can provably yield exact clustering even when the subspaces have significant intersections. It is shown that the complexity of the iterative approach scales only linearly in the number of data points and subspaces, and quadratically in the dimension of the subspaces. The second framework integrates iPursuit with spectral clustering to yield a new variant of spectral-clustering-based algorithms. The numerical simulations with both real and synthetic data demonstrate that iPursuit can often outperform the state-of-the-art subspace clustering algorithms, more so for subspaces with significant intersections, and that it significantly improves the state-of-the-art result for subspace-segmentation-based face clustering

    CUR Decompositions, Similarity Matrices, and Subspace Clustering

    Get PDF
    A general framework for solving the subspace clustering problem using the CUR decomposition is presented. The CUR decomposition provides a natural way to construct similarity matrices for data that come from a union of unknown subspaces U=Mi=1Si\mathscr{U}=\underset{i=1}{\overset{M}\bigcup}S_i. The similarity matrices thus constructed give the exact clustering in the noise-free case. Additionally, this decomposition gives rise to many distinct similarity matrices from a given set of data, which allow enough flexibility to perform accurate clustering of noisy data. We also show that two known methods for subspace clustering can be derived from the CUR decomposition. An algorithm based on the theoretical construction of similarity matrices is presented, and experiments on synthetic and real data are presented to test the method. Additionally, an adaptation of our CUR based similarity matrices is utilized to provide a heuristic algorithm for subspace clustering; this algorithm yields the best overall performance to date for clustering the Hopkins155 motion segmentation dataset.Comment: Approximately 30 pages. Current version contains improved algorithm and numerical experiments from the previous versio
    corecore