9,274 research outputs found

    Low-Rank and Sparse Decomposition for Hyperspectral Image Enhancement and Clustering

    Get PDF
    In this dissertation, some new algorithms are developed for hyperspectral imaging analysis enhancement. Tensor data format is applied in hyperspectral dataset sparse and low-rank decomposition, which could enhance the classification and detection performance. And multi-view learning technique is applied in hyperspectral imaging clustering. Furthermore, kernel version of multi-view learning technique has been proposed, which could improve clustering performance. Most of low-rank and sparse decomposition algorithms are based on matrix data format for HSI analysis. As HSI contains high spectral dimensions, tensor based extended low-rank and sparse decomposition (TELRSD) is proposed in this dissertation for better performance of HSI classification with low-rank tensor part, and HSI detection with sparse tensor part. With this tensor based method, HSI is processed in 3D data format, and information between spectral bands and pixels maintain integrated during decomposition process. This proposed algorithm is compared with other state-of-art methods. And the experiment results show that TELRSD has the best performance among all those comparison algorithms. HSI clustering is an unsupervised task, which aims to group pixels into different groups without labeled information. Low-rank sparse subspace clustering (LRSSC) is the most popular algorithms for this clustering task. The spatial-spectral based multi-view low-rank sparse subspace clustering (SSMLC) algorithms is proposed in this dissertation, which extended LRSSC with multi-view learning technique. In this algorithm, spectral and spatial views are created to generate multi-view dataset of HSI, where spectral partition, morphological component analysis (MCA) and principle component analysis (PCA) are applied to create others views. Furthermore, kernel version of SSMLC (k-SSMLC) also has been investigated. The performance of SSMLC and k-SSMLC are compared with sparse subspace clustering (SSC), low-rank sparse subspace clustering (LRSSC), and spectral-spatial sparse subspace clustering (S4C). It has shown that SSMLC could improve the performance of LRSSC, and k-SSMLC has the best performance. The spectral clustering has been proved that it equivalent to non-negative matrix factorization (NMF) problem. In this case, NMF could be applied to the clustering problem. In order to include local and nonlinear features in data source, orthogonal NMF (ONMF), graph-regularized NMF (GNMF) and kernel NMF (k-NMF) has been proposed for better clustering performance. The non-linear orthogonal graph NMF combine both kernel, orthogonal and graph constraints in NMF (k-OGNMF), which push up the clustering performance further. In the HSI domain, kernel multi-view based orthogonal graph NMF (k-MOGNMF) is applied for subspace clustering, where k-OGNMF is extended with multi-view algorithm, and it has better performance and computation efficiency

    Low rank methods for optimizing clustering

    Get PDF
    Complex optimization models and problems in machine learning often have the majority of information in a low rank subspace. By careful exploitation of these low rank structures in clustering problems, we find new optimization approaches that reduce the memory and computational cost. We discuss two cases where this arises. First, we consider the NEO-K-Means (Non-Exhaustive, Overlapping K-Means) objective as a way to address overlapping and outliers in an integrated fashion. Optimizing this discrete objective is NP-hard, and even though there is a convex relaxation of the objective, straightforward convex optimization approaches are too expensive for large datasets. We utilize low rank structures in the solution matrix of the convex formulation and use a low-rank factorization of the solution matrix directly as a practical alternative. The resulting optimization problem is non-convex, but has a smaller number of solution variables, and can be locally optimized using an augmented Lagrangian method. In addition, we consider two fast multiplier methods to accelerate the convergence of the augmented Lagrangian scheme: a proximal method of multipliers and an alternating direction method of multipliers. For the proximal augmented Lagrangian, we show a convergence result for the non-convex case with bound-constrained subproblems. When the clustering performance is evaluated on real-world datasets, we show this technique is effective in finding the ground-truth clusters and cohesive overlapping communities in real-world networks. The second case is where the low-rank structure appears in the objective function. Inspired by low rank matrix completion techniques, we propose a low rank symmetric matrix completion scheme to approximate a kernel matrix. For the kernel k-means problem, we show empirically that the clustering performance with the approximation is comparable to the full kernel k-means

    ๊ฐ•์ธํ•œ ์ €์ฐจ์› ๊ณต๊ฐ„์˜ ํ•™์Šต๊ณผ ๋ถ„๋ฅ˜: ํฌ์†Œ ๋ฐ ์ €๊ณ„์ˆ˜ ํ‘œํ˜„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์˜ค์„ฑํšŒ.Learning a subspace structure based on sparse or low-rank representation has gained much attention and has been widely used over the past decade in machine learning, signal processing, computer vision, and robotic literatures to model a wide range of natural phenomena. Sparse representation is a powerful tool for high-dimensional data such as images, where the goal is to represent or compress the cumbersome data using a few representative samples. Low-rank representation is a generalization of the sparse representation in 2D space. Behind the successful outcomes, many efforts have been made for learning sparse or low-rank representation effciently. However, they are still ineffcient for complex data structures and lack robustness under the existence of various noises including outliers and missing data, because many existing algorithms relax the ideal optimization problem to a tractable one without considering computational and memory complexities. Thus, it is important to use a good representation algorithm which is effciently solvable and robust against unwanted corruptions. In this dissertation, our main goal is to learn algorithms with both robustness and effciency under noisy environments. As for sparse representation, most of the optimization problems are relaxed to convex ones based on surrogate measures, such as the l1-norm, to resolve the computational intractability and high noise sensitivity of the original sparse representation problem based on the l0-norm. However, if the system at interest, other than the sparsity measure, is inherently nonconvex, then using a convex sparsity measure may not be the best choice for the problems. From this perspective, we propose desirable criteria to be a good nonconvex sparsity measure and suggest a corresponding family of measure. The proposed family of measures allows a simple measure, which enables effcient computation and embraces the benefits of both l0- and l1-norms, and most importantly, its gradient vanishes slowly unlike the l0-norm, which is suitable from an optimization perspective. For low-rank representation, we first present an effcient l1-norm based low-rank matrix approximation algorithm using the proposed alternating rectified gradient methods to solve an l1-norm minimization problem, since conventional algorithms are very slow to solve the l1-norm based alternating minimization problem. The proposed methods try to find an optimal direction with a proper constraint which limits the search domain to avoid the diffculty that arises from the ambiguity in representing the two optimization variables. It is extended to an algorithm with an explicit smoothness regularizer and an orthogonality constraint for better effciency and solve it under the augmented Lagrangian framework. To give more stable solution with flexible rank estimation in the presence of heavy corruptions, we present a new solution based on the elastic-net regularization of singular values, which allows a faster algorithm than existing rank minimization methods without any heavy operations and is more stable than the state-of-the-art low-rank approximation algorithms due to its strong convexity. As a result, the proposed method leads to a holistic approach which enables both rank minimization and bilinear factorization. Moreover, as an extension to the previous methods performing on an unstructured matrix, we apply recent advances in rank minimization to a structured matrix for robust kernel subspace estimation under noisy scenarios. Lastly, but not least, we extend a low-rank approximation problem, which assumes a single subspace, to a problem which lies in a union of multiple subspaces, which is closely related to subspace clustering. While many recent studies are based on sparse or low-rank representation, the grouping effect among similar samples has not been often considered with the sparse or low-rank representation. Thus, we propose a robust group subspace clustering lgorithms based on sparse and low-rank representation with explicit subspace grouping. To resolve the fundamental issue on computational complexity of existing subspace clustering algorithms, we suggest a full scalable low-rank subspace clustering approach, which achieves linear complexity in the number of samples. Extensive experimental results on various applications, including computer vision and robotics, using benchmark and real-world data sets verify that our suggested solutions to the existing issues on sparse and low-rank representations are considerably robust, effective, and practically applicable.1 Introduction 1 1.1 Main Challenges 4 1.2 Organization of the Dissertation 6 2 Related Work 11 2.1 Sparse Representation 11 2.2 Low-Rank Representation 14 2.2.1 Low-rank matrix approximation 14 2.2.2 Robust principal component analysis 17 2.3 Subspace Clustering 18 2.3.1 Sparse subspace clustering 18 2.3.2 Low-rank subspace clustering 20 2.3.3 Scalable subspace clustering 20 2.4 Gaussian Process Regression 21 3 Effcient Nonconvex Sparse Representation 25 3.1 Analysis of the l0-norm approximation 26 3.1.1 Notations 26 3.1.2 Desirable criteria for a nonconvex measure 27 3.1.3 A representative family of measures: SVG 29 3.2 The Proposed Nonconvex Sparsity Measure 32 3.2.1 Choosing a simple one among the SVG family 32 3.2.2 Relationships with other sparsity measures 34 3.2.3 More analysis on SVG 36 3.2.4 Learning sparse representations via SVG 38 3.3 Experimental Results 40 3.3.1 Evaluation for nonconvex sparsity measures 41 3.3.2 Low-rank approximation of matrices 42 3.3.3 Sparse coding 44 3.3.4 Subspace clustering 46 3.3.5 Parameter Analysis 49 3.4 Summary 51 4 Robust Fixed Low-Rank Representations 53 4.1 The Alternating Rectified Gradient Method for l1 Minimization 54 4.1.1 l1-ARGA as an approximation method 54 4.1.2 l1-ARGD as a dual method 65 4.1.3 Experimental results 74 4.2 Smooth Regularized Fixed-Rank Representation 88 4.2.1 Robust orthogonal matrix factorization (ROMF) 89 4.2.2 Rank estimation for ROMF (ROMF-RE) 95 4.2.3 Experimental results 98 4.3 Structured Low-Rank Representation 114 4.3.1 Kernel subspace learning 115 4.3.2 Structured kernel subspace learning in GPR 119 4.3.3 Experimental results 125 4.4 Summary 133 5 Robust Lower-Rank Subspace Representations 135 5.1 Elastic-Net Subspace Representation 136 5.2 Robust Elastic-Net Subspace Learning 140 5.2.1 Problem formulation 140 5.2.2 Algorithm: FactEN 145 5.3 Joint Subspace Estimation and Clustering 151 5.3.1 Problem formulation 151 5.3.2 Algorithm: ClustEN 152 5.4 Experiments 156 5.4.1 Subspace learning problems 157 5.4.2 Subspace clustering problems 167 5.5 Summary 174 6 Robust Group Subspace Representations 175 6.1 Group Subspace Representation 176 6.2 Group Sparse Representation (GSR) 180 6.2.1 GSR with noisy data 180 6.2.2 GSR with corrupted data 181 6.3 Group Low-Rank Representation (GLR) 184 6.3.1 GLR with noisy or corrupted data 184 6.4 Experimental Results 187 6.5 Summary 197 7 Scalable Low-Rank Subspace Clustering 199 7.1 Incremental Affnity Representation 201 7.2 End-to-End Scalable Subspace Clustering 205 7.2.1 Robust incremental summary representation 205 7.2.2 Effcient affnity construction 207 7.2.3 An end-to-end scalable learning pipeline 210 7.2.4 Nonlinear extension for SLR 213 7.3 Experimental Results 215 7.3.1 Synthetic data 216 7.3.2 Motion segmentation 219 7.3.3 Face clustering 220 7.3.4 Handwritten digits clustering 222 7.3.5 Action clustering 224 7.4 Summary 227 8 Conclusion and Future Work 229 Appendices 233 A Derivations of the LRA Problems 235 B Proof of Lemma 1 237 C Proof of Proposition 1 239 D Proof of Theorem 1 241 E Proof of Theorem 2 247 F Proof of Theorems in Chapter 6 251 F.1 Proof of Theorem 3 251 F.2 Proof of Theorem 4 252 F.3 Proof of Theorem 5 253 G Proof of Theorems in Chapter 7 255 G.1 Proof of Theorem 6 255 G.2 Proof of Theorem 7 256 Bibliography 259 ์ดˆ๋ก 275Docto

    Kernel Truncated Regression Representation for Robust Subspace Clustering

    Get PDF
    Subspace clustering aims to group data points into multiple clusters of which each corresponds to one subspace. Most existing subspace clustering approaches assume that input data lie on linear subspaces. In practice, however, this assumption usually does not hold. To achieve nonlinear subspace clustering, we propose a novel method, called kernel truncated regression representation. Our method consists of the following four steps: 1) projecting the input data into a hidden space, where each data point can be linearly represented by other data points; 2) calculating the linear representation coefficients of the data representations in the hidden space; 3) truncating the trivial coefficients to achieve robustness and block-diagonality; and 4) executing the graph cutting operation on the coefficient matrix by solving a graph Laplacian problem. Our method has the advantages of a closed-form solution and the capacity of clustering data points that lie on nonlinear subspaces. The first advantage makes our method efficient in handling large-scale datasets, and the second one enables the proposed method to conquer the nonlinear subspace clustering challenge. Extensive experiments on six benchmarks demonstrate the effectiveness and the efficiency of the proposed method in comparison with current state-of-the-art approaches.Comment: 14 page
    • โ€ฆ
    corecore