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Abstract

Learning a subspace structure based on sparse or low-rank representation has

gained much attention and has been widely used over the past decade in machine

learning, signal processing, computer vision, and robotic literatures to model a

wide range of natural phenomena. Sparse representation is a powerful tool for

high-dimensional data such as images, where the goal is to represent or compress

the cumbersome data using a few representative samples. Low-rank represen-

tation is a generalization of the sparse representation in 2D space. Behind the

successful outcomes, many efforts have been made for learning sparse or low-rank

representation efficiently. However, they are still inefficient for complex data struc-

tures and lack robustness under the existence of various noises including outliers

and missing data, because many existing algorithms relax the ideal optimization

problem to a tractable one without considering computational and memory com-

plexities. Thus, it is important to use a good representation algorithm which is

efficiently solvable and robust against unwanted corruptions. In this dissertation,

our main goal is to learn algorithms with both robustness and efficiency under

noisy environments.

As for sparse representation, most of the optimization problems are relaxed

to convex ones based on surrogate measures, such as the l1-norm, to resolve the

computational intractability and high noise sensitivity of the original sparse rep-

resentation problem based on the l0-norm. However, if the system at interest,

other than the sparsity measure, is inherently nonconvex, then using a convex

sparsity measure may not be the best choice for the problems. From this per-

spective, we propose desirable criteria to be a good nonconvex sparsity measure

and suggest a corresponding family of measure. The proposed family of measures

allows a simple measure, which enables efficient computation and embraces the



benefits of both l0- and l1-norms, and most importantly, its gradient vanishes

slowly unlike the l0-norm, which is suitable from an optimization perspective.

For low-rank representation, we first present an efficient l1-norm based low-

rank matrix approximation algorithm using the proposed alternating rectified

gradient methods to solve an l1-norm minimization problem, since conventional

algorithms are very slow to solve the l1-norm based alternating minimization

problem. The proposed methods try to find an optimal direction with a proper

constraint which limits the search domain to avoid the difficulty that arises from

the ambiguity in representing the two optimization variables. It is extended to an

algorithm with an explicit smoothness regularizer and an orthogonality constraint

for better efficiency and solve it under the augmented Lagrangian framework.

To give more stable solution with flexible rank estimation in the presence of

heavy corruptions, we present a new solution based on the elastic-net regular-

ization of singular values, which allows a faster algorithm than existing rank

minimization methods without any heavy operations and is more stable than the

state-of-the-art low-rank approximation algorithms due to its strong convexity.

As a result, the proposed method leads to a holistic approach which enables both

rank minimization and bilinear factorization. Moreover, as an extension to the

previous methods performing on an unstructured matrix, we apply recent ad-

vances in rank minimization to a structured matrix for robust kernel subspace

estimation under noisy scenarios.

Lastly, but not least, we extend a low-rank approximation problem, which

assumes a single subspace, to a problem which lies in a union of multiple sub-

spaces, which is closely related to subspace clustering. While many recent studies

are based on sparse or low-rank representation, the grouping effect among similar

samples has not been often considered with the sparse or low-rank representa-



tion. Thus, we propose a robust group subspace clustering algorithms based on

sparse and low-rank representation with explicit subspace grouping. To resolve

the fundamental issue on computational complexity of existing subspace cluster-

ing algorithms, we suggest a full scalable low-rank subspace clustering approach,

which achieves linear complexity in the number of samples.

Extensive experimental results on various applications, including computer vi-

sion and robotics, using benchmark and real-world data sets verify that our sug-

gested solutions to the existing issues on sparse and low-rank representations are

considerably robust, effective, and practically applicable.

Keywords: Sparse representation, low-rank representation, subspace learning,

low-rank matrix factorization, subspace clustering, computer vision
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Chapter 1

Introduction

Over the past few years, we are facing a deluge of high-dimensional data, such as

images, videos, and texts, from recent advances in digital technology. While the

high quality data have improved the quality of life, handling or processing such

massive data is a daunting and time-consuming task, since the advancement of

processing power of a computing device does not follow the geometric growth of

the amount of data. The term ”big data” emerges recently from this perspective

(see Figure 1.11 for more details) and obviously it is difficult to address the huge

data by conventional processing tools. Therefore, many researchers are continu-

ously searching for a method to handle such data efficiently without losing critical

information in the data. To this end, a number of algorithms using the concept

of sparsity and low-rank-ness have been proposed to model the data efficiently in

the presence of naturally occurring noises [1, 2, 3, 4].

A fundamental approach using the concept of parsimony is sparse representa-

tion [3, 2, 5]. The basic task of the sparse representation is to select informative

1Source: Thomson Reuters, http://blog.thomsonreuters.com/index.php/big-data-graphic-of-

the-day
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Chapter 1. Introduction

Figure 1.1: Graphical illustration of growth of data and the amount of stored

data in the hottest industries in the world.

words in an overcomplete dictionary to fit target data. It is based on the l0-norm

and many algorithms proposed recently use the convex relaxation of the l0-norm,

i.e., l1-norm, to learn a sparse coefficient vector. The sparse representation can

be applied to various problems such as image denoising [3], dictionary learning

[6], face recognition [5], and image super-resolution [7], etc.

An extension to the sparse representation to a 2D space is low-rank represen-

tation which is also known as low-rank matrix approximation. This approach is

motivated by the fact that high-dimensional data can be well represented with

a fewer number of basis factors in practice (see Figure 1.2 [8]). For example,

in computer vision, most of the structure-from-motion methods are based on a

fixed low-rank problem and background subtraction with a static camera can be

2



Chapter 1. Introduction

Figure 1.2: Visualization of the MNIST dataset. (A) The two dimensional codes

by taking the first two principal components extracted from PCA. (B) The two

dimensional codes found by low-dimensional learning using an autoencoder [8].

solved easily by a rank-1 problem with clean data or a rank-2 problem in the

presence of corruptions. The most popular algorithm to reduce the dimension

of data in high-dimensional space is the principal component analysis (PCA) [9]

and its variants for modeling the low-dimensional structures have been proposed

for a number of problems, such as data reconstruction [10], image denoising [11],

collaborative filtering [1], background modeling [12], structure from motion [13],

and photometric stereo [14], to name a few.

As a generalization of the low-rank approximation, which learns basis vectors to

construct a single subspace, we can consider data which lie in a union of multiple

subspaces. Finding the subspace structures of a complex space is closely related

to subspace clustering [15, 16, 4], which identifies subspace membership of each

data sample, where unknown multiple subspaces exist, by assuming that data

are self-expressive, i.e., a data point can be represented by linear combination

3



Chapter 1. Introduction

(a) Sparse representation (b) Low-rank representation (c) Subspace clustering [18]

Figure 1.3: Graphical illustration of three subspace representation methods ad-

dressed in this thesis.

of other points in the same subspace. Subspace clustering has been successfully

applied to a number of clustering problems, such as motion segmentation [15], face

clustering [4], and image segmentation [17]. Figure 1.3 illustrates data structures

of the three main problems addressed in the thesis.

1.1 Main Challenges

Behind the successful application of sparse and low-rank representation, there are

still challenges for the existing algorithms. In this section, we consider two main

challenges, robustness and efficiency, for three main tasks, sparse representation

[3, 2, 6], low-rank representation [1, 10, 19], and subspace clustering [15, 16, 4],

presented in this dissertation, which are summarized as follows:

• Efficient sparsity measure for inherently nonconvex problems.

For sparse representation, many algorithms use the relaxation of the original

sparse representation problem based on the l0-norm, i.e., the l1-norm, since

it is computationally tractable and easy to guarantee applied algorithms.

4
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Although the relaxed approach successfully applied to many problems with

promising results, it is beneficial only when the relaxed problem indeed

becomes convex. To tell the truth, there are few sparse representation ap-

proaches to consider inherently nonconvex problems. Obviously, there are

many nonconvex problems we are faced with, such as matrix factorization

[20, 21], rank-constrained optimization [22, 19], and sparse coding jointly

optimized with dictionary learning [3, 2, 6]. Even though there are sev-

eral algorithms performed in a greedy manner to directly solve the l0-norm

[23, 24], they can fail to find a reasonable solution according to the quality

of a dictionary. There can be also a computational issue when the size of a

dictionary is large.

• Robustness and computational efficiency for low-rank represen-

tation. Conventional low-rank approximation algorithms based on the

l2-norm is sensitive to outliers and missing entries, because the l2-norm can

sometimes amplify the negative effects of such data. This prevents recogni-

tion or machine learning systems from performing well. As an alternative,

many studies based on a robust function such as the l1-norm have been

conducted [10, 25] to overcome the weakness of the conventional algorithms

by assuming a non-Gaussian noise model. While the algorithms give robust

solutions in the presence of outliers, they are too computationally intensive,

making them not applicable in practice.

Recently, robust PCA (RPCA) methods have been emerged to solve the

non-Gaussian noise model based on the rank minimization strategy. While

the rank minimization methods have been utilized in many problems, they

still take heavy computational complexity due to the minimization strategy

of a relaxed version of the rank function, and even they are not suitable for

5
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fixed-rank problems posed in computer vision literature. In summary, there

is no clear winner for the low-rank representation problem satisfying both

robustness and computational efficiency under the existence of unwanted

corruptions.

• Robust representation and scalability for subspace clustering. Re-

cent subspace clustering algorithms [15, 16, 4] consider both noise model

and outlier model by switching the loss function in the formulation, but

they can only guarantee the correct recovery of a block diagonal structure

of subspaces only for clean data. Indeed, it is difficult to show the cor-

rectness of the algorithms under noisy scenarios. Furthermore, even though

notable results have been reported for existing algorithms, they are still

insufficient for achieving high clustering performance because of weak con-

nections among similar samples.

Another weakness of subspace clustering is heavy computational complex-

ities as in the previous problems. Most of the state-of-the-art algorithms

using sparsity or low-rank-ness take at least cubic complexity, which is prac-

tically unfavorable. There is additional factor to consider when we obtain

an affinity matrix from an optimization: post-processing and spectral clus-

tering steps whose time complexities are also significantly high (in general,

over cubic complexity).

1.2 Organization of the Dissertation

Chapter 2 introduces related works in this dissertation. As a simple vector case

of parsimonious modeling of data, we discuss sparse representation algorithms

which are based on two main family; greedy pursuit and basis pursuit algorithms.

6
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Then, we further discuss the 2D extension of the sparse representation, low-

rank representation, and two important problems; fixed-rank representation (or

low-rank matrix approximation) and automatic rank minimization (called robust

principal component analysis). To consider general scenarios where data come

from a union of multiple subspaces, we introduce the subspace clustering task and

its two popular methods; sparse subspace clustering and low-rank representation.

We also summarize the Gaussian process regression (GPR) which is used to model

complex behavior of moving objects or pedestrians, where low-rank structured

matrix approximation is considered in GPR for robustness.

In Chapter 3, we present a new sparsity measure, termed slowly vanishing gra-

dient (SVG), for sparse representation in general nonconvex problems. We first

suggest that the difficulty of handling the l0-norm does not only come from the

nonconvexity but also from its gradient either being zero (for the most parts) or

not being well-defined. Accordingly, we analyze the space of approximate func-

tions for the l0-norm and the proposed measure, SVG. Locally, it follows the

l1-norm to reduce the chance of numerous local optima without losing the ability

of promoting parsimony. Globally, SVG follows the l0-norm to reduce penalty on

large-values, but it still possesses slowly vanishing gradients to help drawing the

solution of an optimization algorithm to sparse points. Moreover, we present an

efficient proximity operator for the measure. The proposed measure is applied to

various applications to demonstrate its adequacy. Experimental results confirm

that our proposal performs favorably against those of state-of-the-art algorithms.

Chapter 4 describes several low-rank representation algorithms. We first pro-

pose a low-rank matrix approximation method based on the l1-norm using the

proposed alternating rectified gradient approach (l1-ARG), which finds optimal

directions for faster convergence compared to existing algorithms. Then, we in-
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troduce an efficient Frobenius-norm regularizer to prevent the overfitting problem

which can arise from an alternative minimization algorithm and an orthogonality

constraint to reduce the solution space for further speed-up. The new approach,

called robust orthogonal matrix factorization (ROMF), is constructed under the

augmented Lagrangian framework. It is also extended to handle the rank uncer-

tainty issue by a rank estimation strategy for practical real-world problems. As

an extension to the low-rank representation, we present a robust kernel subspace

learning method based on recent advances in rank minimization in GPR to model

trajectories of pedestrians or moving objects.

In Chapter 5, we develop a robust and stable algorithm with rank estimation

for finding subspace structures of grossly corrupted data by proposing elastic-net

subspace representation based on elastic-net regularization of singular values of

data (FactEN). FactEN is a holistic approach which utilizes both nuclear-norm

minimization and bilinear factorization. The strong convexity of the proposed

regularizer alleviates the instability problem by shrinking and correcting inac-

curate singular values in the presence of unwanted noises. We demonstrate the

performance of the proposed methods in terms of the reconstruction error and

computational speed using well-known benchmark datasets including non-rigid

motion estimation, photometric stereo, and background modeling. Furthermore,

in order to address data which lie in a union of multiple subspaces, we extend

FactEN to a joint optimization algorithm which updates the data matrix cor-

rupted by noises and subspace representation matrix or affinity matrix based on

the noise-reduced data matrix by FactEN. Since we reduce unfavorable noises

from the low-rank representation task, we simply adapt the sparse subspace seg-

mentation task in the joint optimization framework.

In Chapter 6 and 7, we discuss algorithms on a subspace clustering task where

8
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data lie in a complex space composed of more than two different subspaces. Sim-

ilar to the previous problems, we first consider robustness of subspace clustering.

To this end, we consider grouping capability of the algorithms since the group-

ing effect among similar samples is very important when constructing an affinity

matrix but it has not been often considered with sparse or low-rank representa-

tion. Hence, we propose two robust group subspace representation algorithms by

extending sparse and low-rank representation with explicit subspace grouping.

We show that the proposed methods capture the similarities among data samples

collected from the same subspace, theoretically and empirically.

It is worthwhile to note that the previous algorithms with most of the state-

of-the-art methods are not applicable for large-scale or streaming data due to

their expensive computational cost. As a remedy for the high computational

requirement, we propose an end-to-end solution to reduce the complexity of all

tasks in subspace clustering, by assuming low-rank-ness of data samples. To the

best of our knowledge, this is the first attempt to propose an end-to-end solution

over all the tasks in subspace clustering to consider the scalability for large-

scale problems with linear time complexity in the number of samples. The above

mentioned algorithms are applied to various subspace clustering tasks, including

face clustering, motion segmentation, handwritten digits clustering, and action

clustering, to demonstrate the superiority of the methods.

Table 1.1 describes the three main problems and their characteristics which

will be discussed in detail throughout the dissertation. Table 1.2 summarizes our

proposals for every chapter and shows the comparison of them.

9
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Table 1.1: Overview of the main problems discussed in this dissertation. (·) de-

notes the representative function or algorithm in the literature. “General” means

that a wide range of conditions can be applied to the problem.

Sparse represent. Low-rank represent. Subspace clustering

Sparsity 1D 2D 1D or 2D

Rank No rank Fixed or unknown Unknown

No. subspaces General Single Multiple

Data structure General General Structured

Convexity Convex/nonconvex Convex/nonconvex Convex/nonconvex

(Methods) (l1-norm/l0-norm) (RPCA/LRMA) (SSC,LRR/LRSC)

Challenges Nonconvexity Inefficiency, unstable Scalability

Chapter Ch.3 Ch.4, 5 Ch.5, 6, 7

Table 1.2: The propose algorithms, represented by loss function floss, regulariza-

tion Ωreg, and constraint C. Here, E , Y −D and D , PX.

floss Ωreg C

Ch. 3 ‖W � E‖F ‖X‖εSVG −

Ch. 4

‖W � E‖1 − −

‖W � E‖1 ‖X‖2F PTP = I

‖Y − PMPT ‖1 ‖M‖∗ PTP = I,M � 0

Ch. 5
‖W � E‖1 ‖D‖∗ + α‖D‖2F rank(D) = r

‖W � E‖1 ‖D‖∗ + α‖D‖2F + β‖C‖1 D = DC,diag(C) = 0

Ch. 6 ‖Y − Y Z‖1 ‖Z‖1(or ‖Z‖∗) + γ‖Z‖2F diag(Z) = 0

Ch. 7 ‖Y − Y Z‖F ‖Z‖2F −

10
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Related Work

In this chapter, we first briefly summarize the two main approaches of this dis-

sertation: spare representation and low-rank representation. The low-rank repre-

sentation usually considers that data lie in a single subspace and it finds a basis

matrix whose columns span the subspace. As a general case where data lie in a

union of multiple subspaces, we also describe subspace clustering and its popular

algorithms. Finally, we also discuss on Gaussian process regression, which is used

to model unknown complex functions. With the introduction of the problems and

related studies, we describe fundamental and existing practical issues of them,

which will be addressed in the subsequent chapters.

2.1 Sparse Representation

Recently, sparse representation of signals has been one of the most successful

models in many fields including computer vision and signal processing. Sparse

representation has shown to be a powerful tool for high-dimensional data such

as images [3, 6], where the goal is to represent or compress cumbersome data

using a few representative samples. A simple sparse representation problem (for
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Figure 2.1: Graphical illustration of a simple sparse representation problem.

a noiseless scenario) can be described as follows:

min
α
‖α‖0, s.t. x = Dα, (2.1)

where ‖α‖0 = #{i : αi 6= 0, ∀i} is the l0-norm, x ∈ Rm is an observation data,

D ∈ Rm×p is an overcomplete dictionary (m� p), and α ∈ Rp is the coefficient

vector to be estimated. Figure 2.11 illustrates the sparse representation problem,

where an input vector is represented by sparse linear combination of three selected

words in the dictionary. Typical applications of sparse representation include face

recognition [5], image restoration [26], and super-resolution [7], to name a few.

Behind the successful outcomes, many efforts have been made for learning

the sparse representation efficiently [24, 27, 3, 5, 28, 29, 30, 31, 32, 33], since

solving the sparse representation using the l0-norm has two main drawbacks:

(1) the computational intractability of a combinatorial search and (2) its noise

sensitivity due to the nature of the l0 ball. One of the most popular algorithms

to estimate sparse signals is the orthogonal matching pursuit (OMP) [24], which

finds the best matching projection based on an overcomplete dictionary. However,

the greedy pursuit method can find a sub-optimal solution and even can fail to

1Source: http://ranger.uta.edu/~huang/R_Cervigram.htm
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find a reasonable solution. Even worse, there can be a computational issue when

the size of the dictionary is large.

There is little doubt that the recent popularity of the sparse representation is

attributed to the attempt that the l0-norm is relaxed to its convex counterpart,

i.e., the l1-norm [34]. In many cases, the use of the l1-norm turns the problem

into convex optimization, which can be efficiently solved with theoretical guar-

antees. Especially, some analyses showed that the l1-norm-based problems can

exactly recover the best sparse solution under certain conditions [6, 35], making

a strong justification for the use of the l1-norm. Accordingly, the l1-norm has

been extensively utilized in many problems under different forms, and many ef-

ficient methods, including the basis pursuit denoising (BPDN) methods such as

FISTA [36], have been proposed to solve l1-norm minimization problems. Even

for general problems, for which the exact recovery is not guaranteed, the convex

formulation using the l1-norm may provide an effective and tractable algorithm.

Obviously, the l1-norm relaxation is beneficial when the relaxed problem or

system indeed becomes convex. However, some problems are inherently nonconvex

and, for those problems, replacing the sparsity measure to a convex one does not

necessarily make the overall problem convex. Some well-known examples of such

problems are: matrix factorization [1], rank-constrained subspace learning [22],

and recently popularized deep learning [37]. For these problems, using the l1-norm

will not bear as much significance as the previous examples. In fact, for general

problems aside from some special (convex) cases mentioned above, the constant

slope of the l1-norm, which is also known as a biased penalty function2 [28], can

over-penalize the values of nonzero elements unlike the l0-norm and make the

solution deviate from the desired solution [28, 29, 32, 33]. This constant slope is

2Throughout this paper, we use the term penalty function and measure interchangeably.
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the one that makes the l1-norm a convex measure, which is not really necessary

for the nonconvex settings discussed here. Note that there is a tighter convex

approximation to the l0-norm [38], but it also has a constant gradient along each

direction.

As prior works, there have been attempts to use nonconvex smooth (or possibly

nonsmooth) approximations of the l0-norm [27, 39, 28, 29, 40, 30, 32]. We will

discuss the theoretical relevance and difference of the proposed measure compared

to the nonconvex measures in Section 3.2.2.

2.2 Low-Rank Representation

There are two major approaches to find the low-dimensional subspace structure

(low-rank representation) of data: low-rank matrix approximation (LRMA) [1,

10, 41, 42, 21, 19] and robust principal component analysis (RPCA) [43, 5, 41,

35, 44, 45, 12]. In this section, we briefly review the two approaches and consider

their limitations.

2.2.1 Low-rank matrix approximation

We briefly review a fixed-rank matrix factorization problem based on the l1-

norm and discuss its related work. The problem arises in a number of problems

in computer vision, pattern recognition, and machine learning to handle miss-

ing data, such as rigid and non-rigid motion estimation [46, 47], collaborative

filtering [1, 41, 42], and background modeling [5, 48, 22], to name a few. A mini-

mization problem based on the l1-norm can be regarded as a maximum likelihood

estimation problem under the Laplacian noise distribution [10, 21].

We first consider a problem for a vector y = [y1 y2 . . . ym]T by a multiplication
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of a vector x ∈ Rm and a scalar α, i.e.,

y = αx+ δ, (2.2)

where δ is a noise vector whose elements have the independently and identically

distributed Laplacian distribution [21]. The probability model for (2.2) can be

written as

p(y|x) ∼ exp

(
−‖y − αx‖1

s

)
, (2.3)

where ‖ · ‖1 denotes the l1-norm, and s > 0 is a scaling constant [10]. Maximizing

the log likelihood of the observed data is equivalent to minimizing the following

cost function for given x:

J(α) = ‖y − αx‖1. (2.4)

The problem (2.2) can be generalized to the problem of matrix approximation.

Let us consider the l1 approximation of matrix Y such that

min
P,X

J(P,X) = ‖Y − PX‖1, (2.5)

where Y ∈ Rm×n, P ∈ Rm×r, and X ∈ Rr×n are the observation, projection,

and coefficient matrices, respectively. Here, r is a predefined parameter less than

min(m,n) and PX is a low-rank approximation of Y . Typical illustration of the

low-rank approximation problem is described in Figure 2.2. In addition, since it

is difficult to obtain observations for all entries of the observation matrix in prac-

tice, this problem can be considered as the following weighted low-rank matrix

approximation problem to consider unknown entries:

min
P,X
||W � (Y − PX)||1, (2.6)

where W is a weight or mask matrix, whose element wij is 1 if yij is known and 0

if yij is unknown, and � is the component-wise multiplication or the Hadamard

product.
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Figure 2.2: Graphical illustration of a typical low-rank representation problem.

An observation matrix Y can be decomposed into a clean low-rank matrix D and

a noisy matrix E , Y −D. In the problem, D can be factorized by two matrices

P and X, i.e., D = PX for fixed-rank representation.

Despite the robustness against outliers, the discussed l1-norm based methods

require a heavy computational load for finding a solution using linear or quadratic

programming [10], which requires a large number of iterations to obtain a reason-

able solution, making them applicable only for small-scale problems. To overcome

the computational complexity issue, methods based on an augmented Lagrangian

method (ALM) have been proposed [11, 22] and it solves the problem using an

alternating minimization technique, which minimizes the cost function with re-

spect to one target variable while other variables are held fixed. In addition, a

nuclear-norm regularized l1-norm minimization method (Regl1-ALM) has been

proposed to improve convergence by introducing an implicit rank constraint into

the cost function via the bilinear form of PX [49, 50]. However, it is difficult for a

matrix factorization method to find the global optimal solution because the con-

sidered problem is non-convex. Furthermore, when the rank of the data matrix

is unknown, the problem becomes more challenging.
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2.2.2 Robust principal component analysis

Low-rank matrix approximation finds a low-rank matrix representation of an

observation or data matrix, such that the difference between the estimated low-

rank matrix and the observation matrix is small. This problem is an attractive

topic with a great variety of applications. A well-known method for addressing

this issue is robust principal component analysis (RPCA) [43, 5, 41, 35, 44, 45, 12].

RPCA decomposes an observation matrix into a low-rank matrix and a sparse

matrix by solving the l1-norm regularized nuclear-norm minimization problem as

follows:

min
Z,E
||Z||∗ + λ||E||1, s.t. Y = Z + E, (2.7)

where Z, E, and Y are low-rank, sparse error, and observation matrices, respec-

tively. Here, the nuclear-norm or trace-norm of a matrix is the sum of its singular

values, i.e., ||A||∗ =
∑

i σi(A), where σi(A) are singular values of A. RPCA has

recently achieved many successful results in machine learning and computer vi-

sion, such as background modeling, corruption removal, and collaborative filtering

[5, 41, 35, 45]. However, RPCA may not be suitable for solving fixed-rank matrix

approximation problems for which the rank of the target matrix is known or can

be reliably estimated beforehand. It has been reported that RPCA can some-

times fail to find a (nearly) correct rank when there are many outliers [49, 21]. In

addition, since RPCA methods decompose an observation matrix into low-rank

and sparse matrices of the same size unlike factorization methods [49, 21], the

computational load of RPCA for each iteration can be heavier. Moreover, since

RPCA is transductive, it cannot incorporate new data incrementally for online

computation [50, 51], making it less scalable.
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2.3 Subspace Clustering

Subspace clustering [15] segments data samples into their respective subspaces,

which is defined as follows:

Definition 1 (Subspace clustering). Given a set of samples X = [X1, ...,Xk] =

[x1, ...,xn] ∈ Rd×n drawn from a union of k subspaces {Si}ki=1. Let Xi be a

collection of ni samples drawn from the subspace Si and n =
∑k

i=1 ni. The task

of SC is to segment the samples according to the respective subspaces they are

drawn from.

While previously proposed clustering techniques, such as spectral clustering

[52], are generally based on a given distance measure, subspace clustering finds

cluster memberships of data points using a linear combination of other data points

(or a linear combination of basis vectors in a dictionary or observation matrix)

with the assumption that data are self-expressive. There are two main tasks to

achieve subspace clustering. We first compute an affinity matrix to represent mul-

tiple subspaces and then apply clustering algorithms, such as Normalized Cuts

[52], to the affinity matrix to identify subspace memberships of data samples.

Most of subspace clustering algorithms are focused on finding a good affinity ma-

trix. Two popular algorithms of subspace clustering is sparse subspace clustering

(SSC) [53, 16] and low-rank representation (LRR) [54, 4]. Typical applications

of subspace clustering include motion segmentation [55], face clustering [54], and

digit clustering [56]. Figure 2.3 shows a subspace clustering example.

2.3.1 Sparse subspace clustering

The basic idea of SSC [53, 16] is to find a sparse representation of a sample using

a linear combination of other samples in the same cluster by assuming that the
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Figure 2.3: Motion segmentation example for subspace clustering [57]. (a) Two

motions, each forming one subspace. (b) Affinity matrix obtained by the subspace

clustering method in [57]. Clustering results are obtained by performing spectral

clustering [52] to the obtained affinity matrix.

observation data can be represented by itself. The basic problem of SSC without

noises is formulated as follows:

min
Z
‖Z‖1, s.t. X = XZ, diag(Z) = 0, (2.8)

where Z is a subspace representation matrix or a latent matrix to identify clusters

in data and ‖Z‖1 is the l1-norm of Z, which is the entry-wise sum of absolute

values in Z. Since the subspace representation matrix is unbalanced, an affinity

matrix of an undirected graph is built as Z = (|Z| + |ZT |)/2, where |Z| is an

element-wise absolute value operator. Finally, by performing spectral clustering,

such as Normalized Cuts [52] and NJW [58], we can segment observed samples

into k clusters. Although SSC works well in practice, it can seek to find the

sparsest representation. Hence, it may divide samples in the same cluster into

different clusters. Thus, it lacks the capability of capturing the similarity between

samples which are drawn from the same cluster.
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2.3.2 Low-rank subspace clustering

LRR [54, 4] is a subspace clustering method which seeks to find the lowest rank

subspace representation matrix. By relaxing the rank function to the nuclear

norm, which is the sum of singular values of a matrix, the LRR problem is con-

structed as follows:

min
Z
‖Z‖∗, s.t. X = XZ, (2.9)

and the problem (2.9) has a closed-form solution [4]. LRR is similar to the well-

known low-rank approximation algorithm, robust PCA (RPCA) [35], in that they

use a rank minimization approach to find a low-rank solution. Since RPCA does

not have a self-expressive system unlike LRR, it cannot perform a clustering

task. Therefore, we can see that LRR is a general form which addresses both

subspace learning and clustering. Notice that, unlike SSC, LRR is based on a

dense representation by enforcing the low-rank property to the representation

matrix and has the grouping effect as discussed in [59].

2.3.3 Scalable subspace clustering

While the above mentioned methods have been successfully applied to difficult

clustering problems, there are still challenges in terms of scalability and an ability

to handle out-of-samples. These methods compute an affinity matrix using all ob-

served samples in a batch mode, which are iterative or computationally intensive

approaches.

To address these limitations, three types of methods have been proposed re-

cently: fast [60, 61], distributed [62], and scalable learning [63, 64, 65]. First, two

speed-up approaches for solving subspace clustering were proposed [60, 61]. Even

though they run faster than existing baseline algorithms, they still have iterative

procedures with high computation at each iteration and only consider the affinity
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learning step. The goal of [62] is to reduce the computation complexity using dis-

tributed learning for large-scale problems. It utilizes a divide-factor-combine tech-

nique for an LRR problem, which solves LRR for small matrices in a distributed

manner and combines resulting small affinity matrices to form an overall affinity

matrix. However, its clustering performance depends on the number of partitions

and each partition must have an enough number of samples for each cluster to

achieve a reasonable performance since LRR assumes that there are enough sam-

ples for each cluster [54]. Another type of approaches is a scalable method for

handling out-of-sample data, named scalable SSC (SSSC) [63]. It first performs

SSC for in-sample data (or a selected small number of samples) and classifies

out-of-sample data using the learned subspaces. It assumes that in-sample data

are collected from all subspaces to represent out-of-sample data. However, since

SSSC assigns the cluster membership using linear classification without spectral

clustering, the performance of SSSC can be degraded. Recently, another scalable

subspace clustering algorithm, SSC-OMP [64, 65] has been proposed to speed-up

SSC. But, it only focuses on reducing complexity when constructing an affinity

matrix without considering post-processing and spectral clustering steps, which

have heavy computational complexity. Thus, scalability of this approach is still

limited in practice.

2.4 Gaussian Process Regression

A Gaussian process (GP) is a collection of random variables which has a joint

Gaussian distribution and is specified by its mean function m(x) and covariance

function k(x,x′) [66]. A Gaussian process f(x) is expressed as:

f(x) ∼ GP (m(x), k(x,x′)) (2.10)
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Figure 2.4: Graphical illustration of a Gaussian process. Left: Graphical model

for a Gaussian process for regression. Right: Gaussian process regression results

for modeling an unknown function.

and its graphical explanation is shown in Figure 2.4. Suppose that x ∈ Rnx is

an input and yi ∈ R is an output. For a noisy observation set D = {(xi, yi)|i =

1, ..., n}, we can consider the following observation model:

yi = f(xi) + εi, (2.11)

where εi ∈ R is a zero-mean Gaussian noise with variance σ2
ε . Then the covariance

of yi and yj can be expressed as

cov(yi, yj) = k(xi,xj) + σ2
ε δij , (2.12)

where δij is the Kronecker delta function which is 1 if i = j and 0 otherwise.

k(xi,xj) = φ(xi)·φ(xj) is a covariance function based on some nonlinear mapping

function φ. The function k is also known as a kernel function.

We can represent (2.12) in a matrix form as follows:

cov(y) = K + σ2
ε I, (2.13)

where y = [y1 . . . yn]T and K is a kernel matrix such that [K]ij = k(xi, xj).

The conditional distribution of a new output y∗ at a new input x∗ given D
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becomes

y∗|D,x∗ ∼ N (y∗, σ
2
y∗), (2.14)

where

y∗ = kT∗ (K + σ2
ε I)−1y = kT∗ Λy, (2.15)

where Λ = (K + σ2
wI)−1 and the variance of y∗ is

σ2
y∗ = k(x∗,x∗)− kT∗ (K + σ2

ε I)−1k∗. (2.16)

Here, k∗ ∈ Rn is a covariance vector between the new data x∗ and existing data,

such that [k∗]i = k(x∗, xi). Note that when it comes to making a prediction

given a collected training set, the computational cost of GP can be reduced by

pre-computing the inverse of a kernel matrix [67].
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Chapter 3

Efficient Nonconvex Sparse

Representation

In this chapter, we propose a nonconvex sparsity measure for sparse represen-

tation (SR) in general nonconvex problems which complements both l0- and

l1-norms from practical considerations. The motivation emerges as the follow-

ing question: What is a good nonconvex sparsity measure if it is not possible to

transform a problem to a convex one? As an answer to this question, we first an-

alyze the possible approximations of the l0-norm. Then, we propose the desirable

criteria to be a good nonconvex measure and present a representative family of

curves, termed slowly vanishing gradient (SVG), that is a solution of a differen-

tial equation. We also show that there is a trade-off between the values and the

vanishing speed of their gradients. Interestingly, these analyses lead to a simple

but effective nonconvex sparsity measure, which was proposed over two decades

ago [39], and we shed light on the measure with new analysis and algorithms

since it did not receive much attention compared to other popular penalties in

the literature. In [39], the measure was simply proposed as an approximation
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of the l0-norm without analysis similar to ours. In this study, however, we find

that the measure has very important property of having its gradient vanishing

slowly. Locally, the measure follows the l1-norm to reduce the chance of numer-

ous local optima without losing the ability of promoting sparsity. Globally, it

follows the l0-norm to reduce penalty on large-values, but it still possesses slowly

vanishing gradients to help drawing the solution of an optimization algorithm to

sparse points. Moreover, we present an efficient proximity operator for the mea-

sure. The proposed measure is applied to various applications, including low-rank

approximation (LRA), sparse coding with dictionary learning (SC), and sparse

subspace clustering (SSC) problems, to demonstrate its adequacy and experimen-

tal results confirm that the proposed method performs favorably against those of

other well-known sparsity measures.

3.1 Analysis of the l0-norm approximation

3.1.1 Notations

An observation matrix is denoted by X ∈ Rm×n, where each column corresponds

to a data sample in Rm. We denote matrices, vectors, and scalars by bold letters

in upper case, bold letters in lower case, and letters in lower case, respectively,

unless stated otherwise. Spaces and subspaces are denoted by bold italic letters

in upper case. Throughout this chapter, we use ‖A‖q to denote matrix norms

of a matrix A, with q = 1 for the matrix l1-norm,
∑

ij |aij |, and q = F for

the Frobenius-norm,
√∑

ij |aij |2. We denote the projection operator by P(·) and

the support set of a matrix A by ΩA. rank(A) denotes the rank of A and | · |

denotes the absolute value operation of a scalar. Diagonal elements in a matrix

A is denoted by diag(A).
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3.1.2 Desirable criteria for a nonconvex measure

In this section, we will mainly discuss about a sparse representation problem

whose cost function consists of a data term and a regularizer. As explained earlier,

if the problem itself (data term) has a nonconvex structure, then the convexity

of the sparsity measure (regularizer) is not absolutely necessary. In this case, the

constant slope of the l1-norm will not necessarily make the problem convex but

over-penalize nonzero values in the input, which makes the solution deviate from

the desired solution, especially when the problem assumes the presence of noises.

Hence, we might be interested in finding a good nonconvex measure for such

general nonconvex problems. Prior works support the superiority of nonconvex

sparsity-promoting measures [29, 40, 32, 68, 69].

If the nonconvexity of the l0-norm is not a problem, then the only difficulty

in handling it is that its value only changes around zero (or we can imagine

that its shape appears as if it gives an extremely local gradient at the origin),

which is very bad from the perspective of conventional optimization methods.

That is, the derivative of the l0-norm is zero for nonzero inputs, which has no

effect on gradient-based optimization, and is not well-defined otherwise, which

can be difficult for discovering a good local optimum. In order to find a measure

which has least undesirable effects on nonzero values and can also be handled

efficiently in the conventional optimization methods, we might consider smooth

approximations of the l0-norm [29, 30, 33]. However, there can be infinitely many

such approximations and we need some criteria for finding a good measure. Below

are basic assumptions to be a good candidate:

Assumption 1. We pose the following criteria on the measure φ(x)1 (defined

1For ease of explanation, we sometimes deal with a scalar function throughout the paper due

to the separability of the measure, even though this chapter is about the sparsity-promoting
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on −∞ ≤ x <∞) we are looking for:

1. Symmetry: The sign of an input does not matter but the magnitude, hence,

we assume φ(x) = φ(−x).

2. Asymptotic convergence: Assume φ(0) = 0. Then, φ(x) satisfies limx→∞ φ(x) =

1. This prevents φ(x) from penalizing large nonzero inputs equally as small

ones, and makes it closer to the l0-norm.

3. Monotonicity: In order for φ to be a valid measure, we assume φ′(x) > 0 for

x > 0 where φ′(x) is the derivative of φ(x) at x, i.e., φ is a monotonically

increasing function on x > 0.

4. Smoothness (Monotonicity of gradient): There can be some choices of φ

that φ′(x) goes up and down, but this behavior is unnecessary and will over-

complicate φ(x). Hence, we assume φ′′(x) < 0 for x > 0, i.e., the gradient

decreases monotonically for x > 0.

5. Finite nonzero gradient at x = 0: Let us define the “gradient at x = 0” as

φ′(0+) = limx→0+ φ
′(x). Then, φ′(0+) should be a finite nonzero value to

promote sparsity, i.e., 0 < φ′(0+) = b < ∞. In many examples, b will be

chosen as b = 1 for ease of explanation.

Remark 1. We give more details for the last assumption. First, φ′(0+) should be

nonzero to promote sparsity. This being nonzero makes the Clarke’s generalized

gradient [70], ∂̄φ, at x = 0, has a nonempty interior, which increases the chance of

the (local) optimum being a sparse point as for the l1-norm. Second, φ′(0+) should

be finite, so that ∂̄φ(0) is bounded. This can be good for not creating too many

local optima at sparse points, because unfavorable local optima can be deviated

penalty. An extension to a vector case is straightforward.
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due to the influence of the data term whose slopes are high enough. If φ′(0+) is

unbounded, the possibility of local optima can increase for various sparse points,

many of which will not be good solutions. The “finite nonzero gradient at x = 0”

assumption is thus important, in that it makes the problem prefer solutions that

are not only sparse, but also have small values for the data term, as for the case

of using the l1-norm.

Aside from the above criteria, we have another criterion on the choice of φ.

As discussed before, the gradient either being 0 or not being well-defined is what

makes the optimization difficult for the l0-norm. Thus, we aim to find a measure

that has an opposite characteristic: φ(x) whose gradient is as large as possible

across the entire interval. Because of the fourth criterion above, this is equivalent

to finding φ(x) that has slowly vanishing gradient. If φ′(x) decreases slowly, then

the effect of the sparsity measure can spread across a large region to help drawing

the solution to sparse points. This can be viewed as mimicking the constant slope

of the l1-norm under the above criteria. Hence, we might try to find φ(x) with

the most slowly decreasing gradient. However, due to the second criterion, the

“total amount” of gradient is finite, i.e.,
∫∞

0+ φ
′(x)dx = 1. This means that we

have to divide this finite value for 0 < x <∞.

3.1.3 A representative family of measures: SVG

To analyze the situation discussed above more closely, we present two extreme

examples among the possible family of measures that satisfy the above criteria.

Because of the first criterion, we can assume φ(x) = y(|x|) for some function y

on R+.

First, let us see an example that is a smooth relaxation of the l0-norm, but its
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gradient is still concentrated in a relatively local region. An easy example is

y = 1− e−x, (3.1)

which satisfies y(0) = 0, y(∞) = 1, y′(0+) = 1, and all of the above criteria. Its

derivative is y′(x) = e−x, which means that the gradient vanishes exponentially.

Hence, this measure will quickly become negligible except the local region near

x = 0.

As an opposite example, let us consider a case, in which the gradient vanishes

very slowly;

y = 1− 1

(1 + x
a )a

, (3.2)

with very small a > 0. Its derivative is

y′(x) =
1

(1 + x
a )1+a

, (3.3)

and this also satisfies y(0) = 0, y(∞) = 1, y′(0+) = 1, and all of the above

criteria. Here, since a is very small, y′(x) is close to a reciprocal function 1
1+x

a
.

Integrating 1
1+x

a
for 0 ≤ x < ∞ does not converge, hence, this can be seen as

an extreme example with very slowly vanishing gradients. However, 1
(1+x

a
)1+a

is

very close to 0 for most of x, which is a natural consequence of spreading a

finite value (
∫∞

0 y′(x)dx = 1) to a broad interval. Indeed, we can verify that

lima→0
1

(1+x
a

)1+a
= 0 if x 6= 0 and the function itself approaches to zero, i.e.,

lima→0 1 − 1
(1+x

a
)a = 0. Note that the previous example can be viewed as an

opposite extreme in this sense as

lim
a→∞

1

(1 + x
a )1+a

= e−x. (3.4)

Therefore, there is a tradeoff between the spread (vanishing speed) of gradients

and their actual values. Some example curves of y and its derivative y′ for various

values of a are illustrated in Figure 3.1.
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Figure 3.1: Graphical illustration of a family of representative curves (a) y and

(b) their derivatives y′ for different choices of a.

In addition to the extreme examples, there are infinitely many functions that

satisfy our criteria. However, the details of curve shapes do not matter much

because local differences between two curves does not bear a significant meaning

for general problems. Hence, it suffices to choose a representative family of curves

that has a nice interpretation and includes various rates of gradient vanishment,

in order to narrow down our choices. In fact, the previous examples are good

candidates, since they are solutions to the following differential equation that has

an elegant meaning:

(1− y)1+ 1
a = εy′, y(0) = 0, (3.5)

where a > 0 and ε > 0 are parameters. It is worth noting that (1− y) on the left

side is the difference between the l0-norm and y, thus, the decreasing speed of

(1− y) is identical to the rate of asymptotic convergence (criterion 2). Therefore,

this equation describes the rate of gradient vanishment in terms of the rate of

asymptotic convergence. This can be transformed into a Bernoulli equation, and

the solution is given as

y(x) = 1− 1

(1 + x
aε)

a
, (3.6)
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which satisfies y′(0+) = 1
ε , y(0) = 0, and y(∞) = 1 for a > 0. We call the cor-

responding penalty functions satisfying the equation (3.6) as a family of slowly

vanishing gradient (SVG) measures. As a special case of the family of SVG mea-

sures when ε = 1 and a→∞, the solution leads to (3.1), i.e., y = 1− e−x.

3.2 The Proposed Nonconvex Sparsity Measure

3.2.1 Choosing a simple one among the SVG family

As explained in the previous section, there is a tradeoff between the vanishing

speed and the actual value of the gradient. Thus, we can, at best, choose a good

compromise between them. Since there is no clear winner between the curves

in our SVG family, it is better to choose a simplest one among the reasonable

choices. Accordingly, we constrained a to be an integer, and find one that gives

the slowest decreasing rate of gradient, which is a = 1. As a result, we have

y(x) = 1− ε
x+ε = x

x+ε . Based on this function, our proposed sparsity measure2 is

given as follows:

‖α‖εSVG =
∑
i

|αi|
|αi|+ ε

, (3.7)

where ε > 0 is a weighting factor that determines the slope at αi = 0+.

Proposition 1. SVG approximates the l0- and l1-norms:

1. ‖α‖εSVG ≤ ‖α‖0 ∀ε and ‖α‖εSVG → ‖α‖0 if ε→ 0.

2. ε‖α‖εSVG ≤ ‖α‖1 ∀ε and ε‖α‖εSVG → ‖α‖1 if ε→∞.

Proof. See Appendix C.

2We just denote the measure as SVG in that it is one of our SVG family.
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Figure 3.2: Graphical illustration of SVG of a vector α with respect to various

values of ε (a) compared to the l0-norm, and (b) to the l1-norm. (·) denotes the

value of ε.

Note that the above properties still hold for the proposed SVG family based

on (3.6). Some example curves of SVG are illustrated in Figure 4.6 to visualize

these properties.

Another nice property of SVG is that it possesses a simple proximity opera-

tor. Recently, there have been remarkable theoretical progresses on convergence

analysis for the sparse optimization techniques, and nonconvex versions for the

accelerated proximal gradient method (nAPG) [71] and the alternating direc-

tional method of multipliers (nADMM) [72] have been proposed to solve sparse

optimization problems efficiently in nonconvex settings. Hence, even though SVG

is nonconvex, having a simple proximity operator is still a good advantage to in-

corporate the above methods for efficient nonconvex programming.

The proximity operator for SVG is defined by the following problem:

proxεSVG,λ(x) = min
u
λ‖u‖εSVG +

1

2
‖x− u‖2. (3.8)

Note that this equation is separable, and we can solve it for each element of u.

Since SVG is a symmetric function for each element, an element of the solution

vector û will either be of the same sign with the corresponding element of x
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or be zero. Let us assume that the sign of xi, the ith element of x, is positive

without loss of generality. Then, one of the positive solutions of the following

cubic equation

(ui + ε)2

(
λui
ui + ε

+
1

2
(xi − ui)2

)′
= λε+ (ui − xi)(ui + ε)2 , g(ui) = 0

(3.9)

or zero will be the optimal point of ui. Note that the coefficient of the third-order

term of g(ui) is positive, as well as the value of g(−ε) = λε > 0. This indicates

that g(ui) has at least one root for ui < 0, i.e., there can be at most two roots

for ui ≥ 0. If there is no root or a double root for ui ≥ 0, g(ui) is nonnegative

for ui ≥ 0, i.e., the cost function is monotonically increasing for positive ui, and

the optimal point will be 0. If there are two distinct roots, then the solution

with a larger value is a local minimum, so either this solution or zero will be the

optimal point. In conclusion, the optimal ûi is either the largest positive root of

(3.9) or zero, and we can compare the costs of these two points to find the final

solution. This analysis will relieve the computational complexity when solving

the third-order equation.

3.2.2 Relationships with other sparsity measures

There are many nonconvex sparsity-promoting measures (regularizers), such as

smoothly clipped absolute deviation (SCAD) [28], minimax concave penalty (MCP)

[32], and Capped-l1 penalty [40], which have been proposed to approximate the

l0-norm. Extensions to low-rank representation for the nonconvex measures have

been explored in [69]. A comprehensive study on the nonconvex sparsity measure

can be found in [68, 73]. In [28], authors advocate a nonconvex penalty function

that has three desired properties: unbiasedness, sparsity, and continuity. More

34



Chapter 3. Efficient Nonconvex Sparse Representation

general properties to be a good nonconvex penalty are described in [73] (see As-

sumption 1). Note that our family of measures satisfies the conditions and so

it is covered by the well-developed theory for good nonconvex sparsity penalty

functions [73]. Further details on this point are included in Section 3.2.3. Besides,

ours further extends the properties by introducing an important new criterion:

We suggest the slowly vanishing gradient criterion and derive a corresponding

family of measures. The above penalties do not satisfy this condition, since they

have large flat regions (gradient zero or quickly converging gradient). This may

increase the chance of local optima if some local optima of a loss function (data

term) are located at the plateau of the penalty functions (regularizers). Our aim

is to mitigate this effect.

Unlike the previous functions that give a large flat region, there is another line

of penalty functions as an alternative to the original l0-norm, such as the lq-norm

penalty (0 < q < 1) [27], which gives a constantly inclinatory curve analogous to

the proposed penalty. However, there is no analysis about the lq-norm analogous

to ours. Even worse, the lq-norm is known to be difficult to solve because it is

not separable and it does not have an efficient proximity operator due to the q-th

power, making it less practical. Whereas, ours enjoys a simple proximity operator

and handles the raised issues efficiently. Analogous to the lq-norm penalty, the

log-sum penalty (LSP) [29] gives a non-flat curve similar to ours, but it does not

give the satisfying performance compared to the proposed penalty as shown in

Section 3.3.1. There has been another attempt to use a smooth approximation of

the l0-norm based on an exponential function in [30], but no analysis was provided

for justifying such a choice. In fact, our analysis shows that the approximation

based on an exponential function also has fast vanishing gradients, which is more

prone to local optima, and thus this approximation does not give satisfactory
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performance as shown in Section 3.3.4.

While preparing this manuscript, we became aware of that our proposal, as a

special case of the SVG family, leads to the same type of measure proposed by

Geman and Yang [39] (sometimes called the Geman penalty) over two decades

ago. However, it is important to note that there are clear differences between their

and our studies. First, the specific choice for approximating the l0-norm is not

justified in [39] because its focus is an image reconstruction problem. Second, the

optimization approach in [39] is outdated, while we provide efficient algorithms

based on a proximity operator derived from a nice property of the penalty.

To the best of our knowledge, our analysis gives a new insight from the op-

timization perspective for nonconvex sparsity-promoting penalty functions. The

proposed penalty provides superior performance compared to the existing non-

convex and convex surrogates of the l0-norm, because it has (1) a slowly vanishing

gradient to reduce the chance of local optima, (2) unbiasedness to reduce the over-

penalized issue due to the constant gradient of the l1-norm. Besides, it is easily

solvable by its simple and separable proximity operator. Experimental evidences

verify the superiority of the proposed penalty in Section 3.3.

3.2.3 More analysis on SVG

We show that the sparse representation based on the SVG measure (regularizer)

satisfies the well-studied theory for nonconvex sparsity-promoting measures [73],

whose graphical illustrations are shown in Figure 3.3. In order for the proposed

family to apply the theory, we need to show that our family satisfies the following

well-analyzed assumptions:

Assumption 2 ([73]). We consider a scalar variable x for simplicity and define

a regularizer as φλ : R→ R.
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1. The function φλ satisfies φλ(0) = 0 and is symmetric around zero (i.e.,

φλ(x) = φλ(−x) for all x ∈ R).

2. On the nonnegative real line, φλ is nondecreasing.

3. For x > 0, the function x 7→ φλ(x)
x is nonincreasing.

4. A measure φλ is differentiable for all x 6= 0 and subdifferentiable at x = 0,

with limx→0+ φ
′
λ(x) = λL.

5. There exist µ > 0 such that ρλ,µ(x) , φλ(x) + µ
2x

2 is convex.

We first show that our representative family of measures satisfying the criteria

presented in Assumption 1 meets the above assumptions:

Lemma 1. The representative family of measures φλ designed by our criteria

with the parameters ε and a satisfies the conditions of Assumption 2 with L = 1
ε

and µ = − (a+1)λ
aε2

.

Proof. See Appendix B.

From the lemma, we directly obtain the following result on the proposed mea-

sure as a special case:

Corollary 1. The SVG measure with the parameter ε satisfies the conditions of

Assumption 2 with L = 1
ε and µ = 2λ

ε2
.

By Corollary 1, we confirm that the proposed measure satisfies the Assumption

2 and this makes that the sparse representation based on the proposed measure

can directly follows the theory on the error bound under mild conditions [73]. In

other words, any stationary points guaranteed by a nonconvex sparse optimization

method are close to the small ball around the optimal point.
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Figure 3.3: Illustrations of curves for nonconvex sparsity measures.

3.2.4 Learning sparse representations via SVG

The proposed measure can be applied to various sparse representation problems

that the l0-norm and l1-norm are applied. In this section, we focus on three impor-

tant problems including low-rank approximation (LRA) [1], sparse coding (SC)

[3], and sparse subspace clustering (SSC) [53].

SVG for LRA. Sparse representation has been widely used in many applica-

tions to filter out outliers in data. One of the most popular applications is the

low-rank approximation (LRA) of a matrix under the existence of outliers, and

the l1-norm is usually used to model the sparse outliers [6, 11]. If the rank of a

matrix is not specified, then using the nuclear-norm [35] can be a good choice

that makes the entire problem convex. However, there are many problems that

the rank is explicitly specified, such as structure reconstruction [74] and photo-

metric stereo [35], to name a few. In this case, it becomes a nonconvex problem.
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For the LRA problem, we apply SVG for modeling sparse errors, whose problem

formulation (LRA-SVG) is constructed as follows:

min
E,M

‖PΩX
(E)‖εSVG, s.t. E = X −M , rank(M) ≤ r. (3.10)

This problem can be efficiently solved using the nADMM framework [72] as dis-

cussed before. The derivation of LRA-SVG is included in Appendix A.

SVG for SC. The proposed measure can be applied to another well-known

nonconvex sparse representation problem, sparse coding with dictionary learning

[3, 2], which is basically a matrix factorization problem. Unlike LRA problems,

SVG is used to enforce the sparsity of the encodings in this case. The problem

formulation of SC for an observation vector x based on SVG (SC-SVG) can be

given as follows:

min
D,α

1

2
‖x−Dα‖22 + λ‖α‖εSVG, (3.11)

where D and α are an overcomplete dictionary consisting of word vectors and

a sparse coefficient vector, respectively. This problem is solved in an alternating

fashion based on the proximal gradient method.

SVG for SSC. Subspace clustering is a problem to find the cluster member-

ships of data points based on an assumption that a point can be represented by

a linear combination of other points in the same cluster. Note that this prob-

lem can be efficiently solved based on convex optimization, nevertheless we apply

SVG to this problem, in order to verify the capability of the proposed measure

in general problems. We apply SVG to the well-known sparse subspace clustering

(SSC) [53], where the corresponding formulation (SSC-SVG) under noisy scenario

39



Chapter 3. Efficient Nonconvex Sparse Representation

is given as follows:

min
Z

1

2
‖X −XZ‖2F + λ‖Z‖εSVG, s.t. diag(Z) = 0. (3.12)

This problem can be efficiently solved by nAPG [71]. Especially, we incorporate

the nonmonotone update framework [71] to accelerate the convergence of the

algorithm.

Note that the initial values of optimization variables for the proposed algo-

rithms are set to zero, based on empirical observations that they are not sensitive

to the choice of the initial values.

3.3 Experimental Results

In this section, we report numerical results of the sparse representation algo-

rithms based on SVG. We compare these algorithms with other state-of-the-art

algorithms3: RPCA-IALM (RPCA-I) [35], ALADM [11], and LRA-L1 (an l1-norm

version of LRA-SVG) for low-rank approximation problems, KSVD [3] and SC

[2] for sparse coding problems, and LRR [75], SSC-BP [53], SSC-OMP [76], and

SSC-SL0 (SSC based on smoothed l0-norm [30]) for subspace clustering tasks.

We also compare the proposed measure with other well-known nonconvex spar-

sity measures, SCAD [28], MCP [32], Capped-L1 (CapL1) [40], and LSP [29],

in order to demonstrate the superiority of the proposed nonconvex measure for

problems described above. For the compared algorithms, we used the codes pro-

vided by the authors, unless stated otherwise. For low-rank approximation and

sparse coding problems, we compute the reconstruction error as

‖W � (MGT −M)‖1/‖W ‖1, (3.13)

3In order to compare the proposed method with various algorithms, we report experimental

results also for convex algorithms based on the l1-norm.
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where MGT and M are the ground-truth and reconstructed matrices, respec-

tively, W is a weight matrix concerning missing entries, and � is the Hadamard

product operator. For subspace clustering, we compute the accuracy by the Hun-

garian method [77]. We set the parameter ε of SVG to 0.05 for entire experiments,

since it was not sensitive to various problems in our empirical experiences. More

analyses on parameters are included in Section 3.3.5. All experiments were per-

formed using MATLAB environment on a desktop computer with 24GB RAM

and a 3.4GHz quad-core CPU.

3.3.1 Evaluation for nonconvex sparsity measures

We first evaluate the proposed penalty, SVG, on synthetically made examples to

compare with other renowned nonconvex sparsity-promoting penalties. We used

the codes of other compared penalties provided by the work in [33], which solves

the nonconvex optimization problems efficiently with a convergence guarantee.

Following the experiments in [33], we performed the sparse approximations based

on the penalties, whose problem formulation is to find a sparse coefficient vector

α:

min
α

1

2
‖x−Dα‖22 + φ(α), (3.14)

where x ∈ Rm is a target vector, D ∈ Rm×p is a data matrix, and φ(α) is a

penalty function. For all experiments in this subsection, we set m = p = 500. We

made a scenario by varying sparsity (0 ∼ 90%) of a ground-truth coefficient vector

αGT , where lower sparsity means denser representation, and made an observation

xGT from the multiplication of D and αGT , which are obtained by the Gaussian

distribution from N (0, 1). Based on xGT , we made x by adding Gaussian noises

from N (0, 10−2). For each setting in the scenario, we performed k independent
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runs, where k is set to 30. The average reconstruction error is computed as

1

k

k∑
i=1

‖xGTi −Diαi‖2, (3.15)

where xGTi is the ground-truth vector for the i-th scenario.

Results of the compared measures are shown in Figure 3.4. As shown in Figure

3.4(a), the proposed measure performs better than the other nonconvex measures

on average. LSP, which represents a similar non-flat curve, gives the similar per-

formance to ours when the sparsity ratio is larger than 30%. SCAD and MCP

show the similar but worst performances in this problem. Figure 3.4(b) shows the

l2 errors between the true coefficient vector and obtained vectors based on dif-

ferent measures under the sparsity ratio of 90%. The proposed measure finds all

the sparse coefficients with the lowest errors, whereas LSP and CapL1 give larger

errors than ours for all cases. SCAD and MCP perform competitively compared

to the proposed measure for some scenarios, but they sometimes fail to find the

exact coefficient vectors. The average computation times (sec) of the measures

for the reconstruction problem are as follows: 0.15 for CapL1, 0.28 for SCAD,

0.26 for MCP, 0.23 for LSP, and 0.3 for SVG, respectively. In the problem, most

of the methods take similar execution times.

3.3.2 Low-rank approximation of matrices

We report the results for low-rank approximation problems using both synthetic

and real-world problems. To generate synthetic examples, we made a matrix

whose size is 500 × 500 and set the rank of the matrix to 10. In the matrix, we

added Gaussian noises with N (0, 10−5) and outliers with magnitude of 10 for

randomly chosen elements. The outlier ratio is varied from 0% to 60% to verify

the robustness of the proposed method. Here, we compare with three nonconvex
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Figure 3.4: Average performances on synthetic examples for nonconvex sparsity

measures. (a) Reconstruction errors w.r.t. the sparsity. (b) Errors in ascending

order for different scenarios.

penalties in the same framework to ours, LRA-CapL1, LRA-MCP, and LRA-LSP,

based on CapL1 [40], MCP [32], and LSP [29], respectively. The experimental re-

sults of the synthetic problems for 50 independent trials are described in Figure

3.5(a). From the figure, we can see that the proposed method withstands much

higher outlier ratios than the other methods, which confirms its excellent robust-

ness, whereas other methods fail to find a good solution roughly over 30%. The

three nonconvex penalty based algorithms mentioned above perform better than

the other methods based on the convex penalty, i.e., the l1-norm, on average,

but they could not endure as many outliers as the proposed penalty. The average

computation times (sec) of the algorithms are as follows: 0.62 for ALADM, 11.74

for RPCA-I, 1.76 for LRA-L1, 50.24 for LRA-LSP, 13.77 for LRA-MCP, 13.8 for

LRA-CapL1, and 3.16 for LRA-SVG, respectively.

We have performed real-world experiments on two problems; nonrigid motion

estimation [13] and photometric stereo [74]. For nonrigid motion estimation, we
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used the Shark sequence [13]. The rank of the problem is set to r = 6. In or-

der to consider missing environments, we replaced 10% randomly selected entries

in the Shark dataset as missing. For photometric stereo, we used Static Face

dataset [74] which has 42% missing entries. We set the rank to r = 4 for this

problem. For these problems, we did not evaluate RPCA-IALM because they are

rank-constrained matrix completion problems. Figure 3.5(b) and 3.5(c) show the

average reconstruction errors of the algorithms for 50 independent runs under

various outlier ratios (0 ∼ 50%). From the figure, we can confirm that the pro-

posed method outperforms the other methods for both problems. Especially, the

proposed method is highly robust against outliers and missing data for the Static

Face dataset. While LRA-LSP gives competitive results to the proposed method

for the Shark sequence, it performs poorer than ours for the Static Face dataset.

The l1-norm based approaches, LRA-L1 and ALADM, perform worse than other

nonconvex measure based algorithms on average for both datasets.

3.3.3 Sparse coding

We have conducted experiments for a sparse coding problem (3.11) based on

well-known example images in the literature: Barbara, Lena, Boat, and Peppers.

Following the practice of [3], we extracted n 64-dimensional word vectors based

on 8 × 8 local patches for each image, where n is the number of training data

which was set to n = 15, 000. Based on these word vectors, we learned both

a dictionary and a sparse code for each sample. In the problem, we compare

with two well-known sparse coding methods with dictionary learning: SC [2] and

KSVD [3]. For all tested images, the size of dictionary D was set to 250, i.e.,

D ∈ R64×250. In each dataset, we added Gaussian noises from N (0, 0.3). The

average reconstruction errors of the tested algorithms are shown in Table 3.1.
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Figure 3.5: Average performances on low-rank approximation problems in the

presence of outliers and missing data.

45



Chapter 3. Efficient Nonconvex Sparse Representation

Table 3.1: Average reconstruction errors (×102) for sparse coding.

Methods Barbara Lena Boat Peppers Average

KSVD [3] 2.23 1.90 2.04 2.05 2.06

SC [2] 2.11 2.02 2.15 2.12 2.1

SVG (Ours) 1.15 0.7 0.97 1.09 0.98

In the table, our algorithm gives excellent results for all cases. KSVD, which

uses OMP, performs slightly better than SC based on the l1-norm, but it is

unsatisfactory compared to ours.

3.3.4 Subspace clustering

Face clustering. We have evaluated the proposed measure on the Extended

Yale B database [78] for subspace clustering. The dataset used for this experiment

consists of 38 subjects, each of which has 64 frontal face images under illumination

changes. We collected the first c subjects, where c ∈ {2, 5, 8, 10}, and performed

subspace clustering on the image of these subjects. In this problem, we compare

with state-of-the-art subspace clustering algorithms assuming sparsity [53, 76]

and low-rank-ness [75]. For each problem, we used PCA to project images in

9c-dimensional subspaces to make an overcomplete dictionary. Table 3.2 shows

the clustering accuracy for different numbers of subjects. The proposed method,

SSC-SVG, shows a superior clustering performance compared to the existing al-

gorithms based on the convex or nonconvex regularizers. SSC-OMP performs

better than SSC-BP, SSC-SL0, and LRR on average, but it gives lower accuracy

than ours for most cases. Especially, its performance collapses considerably when

the number of clusters is larger than 5. SSC-SL0 shows the worst performance

among the tested algorithms.
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Table 3.2: Performance comparison on clustering accuracy (%) on the Extended

Yale B dataset for face clustering.

No. clusters (c) 2 5 8 10 Average

LRR [75] 96.9 89.1 87.5 80.3 88.5

SSC-BP [53] 94.5 93.1 88.9 70.5 86.8

SSC-OMP [76] 98.4 97.8 81.1 82.9 90.5

SSC-SL0 [30] 98.4 75.6 66.2 53.4 73.4

SSC-SVG (Ours) 99.2 96.3 95.7 90.3 95.4

Motion segmentation. The goal of motion segmentation task is to segment

trajectories of rigidly moving objects based on tracked points along the frames.

Since collected trajectories from a rigid motion lie in a low-dimensional subspace,

we can solve the motion segmentation as a subspace clustering problem [53].

Hence, we applied SSC-SVG to the well-known benchmark dataset, Hopkins 155

[55], which consists of 155 video sequences with two or three motion clusters.

Four quantitative measures were used for clustering performance: mean, stan-

dard deviation (Std.), minimum, and median, following the work in [53]. The

average performance of the algorithms are shown in Table 3.3. As shown in the

table, our proposal outperforms existing algorithms approximating the l0-norm

and the dense representation method, LRR. SSC-BP and LRR give the similar

performance, but they are unsatisfactory compared to ours. Two algorithms ap-

proximating the l0-norm, SSC-OMP and SSC-SL0, show the disappointing results

in this problem. Some graphical results on the dataset for four selected methods

are illustrated in Figure 3.6.

47



Chapter 3. Efficient Nonconvex Sparse Representation

Figure 3.6: Motion segmentation results (snapshots) of five randomly chosen video

sequences from the Hopkins 155 dataset by four methods: the proposed method,

SSC-BP [53], SSC-OMP [76], and LRR [75]. Tracked points are marked by a sym-

bol ’+’. Different colors in the mark correspond to independent motion clusters.

(·) denotes the segmentation accuracy. Best viewed in color (x2).
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Table 3.3: Performance comparison with respect to clustering accuracy on the

Hopkins 155 dataset for motion segmentation.

Algorithms LRR SSC-BP SSC-OMP SSC-SL0 SSC-SVG (Ours)

Mean 96.53 96.47 87.16 77.93 97.31

Std. 8.04 9.12 14.04 16.82 7.25

Median 99.72 100 93.10 80.82 100

Minimum 58.19 52.81 46.82 39.44 58.14

3.3.5 Parameter Analysis

The proposed measure has two parameters: the measure parameter ε and the bal-

ancing parameter λ. Following our analysis on the slowly vanishing gradient of

the measure as shown in Figure 3.2, we can set the measure parameter ε to a small

value (usually, it is recommended to have in the range of [10−2, 1]). Nonetheless,

we evaluate the impact of the parameter ε on the low-rank approximation prob-

lems using the Shark and Face data sets. Figure 3.7 gives the reconstruction error

with variations of ε for the data sets. From the figure, we can observe that the

proposed measure performs similarly with the choice of any value in the enough

range of the parameter for each scenario, which confirms that our measure does

not sensitive to the choice of the parameter value.

Now, we further report specific values of the parameters for all conducted exper-

iments as shown in Table 3.4. Note that there is no specified λ in the formulation

of the low-rank approximation problem, thus we do not report the value of the

parameter for the problem. Since we have seen that the parameters are not sen-

sitive to the choice of the values for data sets in each experimental subsection,

we fix the two parameters for each subsection. Especially, we set the measure
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Figure 3.7: Reconstruction error with respect to values of the parameter ε for two

data sets.

Table 3.4: Parameter values of (ε, λ) used in this work.

Parameter ε λ

Evaluation-Synthetic (Section 3.3.1)

0.05

0.05

Low-rank approximation (Section. 3.3.2) −

Sparse coding (Section 3.3.3) 0.6

Subspace clustering (Section 3.3.4) 15

parameter ε to 0.05 throughout the experiments due to the empirical observa-

tions that it consistently gives satisfying performance with a fixed value for all

tested problems. Since λ is a balancing parameter between the sparse regularizer

and data term, it is natural to have different values according to independent

problems.
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3.4 Summary

In this chapter, we have analyzed desirable criteria to be a good nonconvex spar-

sity measure and presented a corresponding family of measures that are a solution

of a differential equation, named slowly vanishing gradients (SVG). Among the

SVG measures, we selected a practical one as a proposed measure, which comple-

ments both l0- and l1-norms from practical considerations. The penalty is a good

alternative to the l0-norm that possesses slowly vanishing gradient, which can

be good for gradient-based optimization, and a simple proximity operator, which

can be efficiently utilized in nonconvex optimizations. The proposed measure has

been tested on various applications to demonstrate its effectiveness and empirical

results have confirmed the superiority of the proposal.
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Chapter 4

Robust Fixed Low-Rank

Representations

This chapter describes several robust low-rank matrix approximation algorithms

for an unstructured matrix and a structure matrix based on the robust l1-norm.

The motivation of the algorithms is derived from the fact that conventional low-

rank approximation algorithms are neither robust to outliers nor efficient when

handling real-world applications. We first propose a gradient descent based al-

gorithm for an l1 minimization problem, where the alternating rectified gradient

method is suggested to solve the algorithm quickly. For better performance than

the gradient-based algorithm which only consider the error measure, we introduce

an efficient regularizer and an orthogonality constraint and the overall framework

is solved using alternating minimization under the augmented Lagrangian frame-

work. Since they assume a user-defined fixed-rank problem, we extend to handle

rank uncertainty issue by proposing a rank estimation strategy for practical real-

world problems. We also study a case where an observation matrix is structured,

in which a robust kernel subspace learning algorithm based on the recently at-
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tracted rank minimization is devised to model trajectories of moving objects

under noisy environments. The performance of the algorithms are demonstrated

from several experiments on well-known real-world data sets.

4.1 The Alternating Rectified Gradient Method for l1

Minimization

1In this section, we propose two alternating rectified gradient algorithms that

solve the l1-based factorization problems at significantly less running time and

memory for large-scale problems. Even though the proposed methods are based on

an alternating minimization method, they give fast convergence rates owing to the

novel method of finding the update direction by a rectified representation based

on matrix orthogonalization. These methods are derived from the observation

that there are numerous projections and coefficient matrices that give the same

multiplication result while the convergence speed depends largely on how these

matrices are chosen. The methods proposed in this section are more efficient and

robust than other l1-norm based factorization and RPCA methods in solving

various problems in Section 4.1.3.

4.1.1 l1-ARGA as an approximation method

Gradient-based update

We first describe the problem of low-rank matrix approximation in the l1-norm

by an alternating gradient descent framework. The cost function for the low-rank

1This section is based on the paper appeared in IEEE Transactions on Neural Networks and

Learning Systems: “Efficient l1-Norm-Based Low-Rank Matrix Approximations for Large-Scale

Problems Using Alternating Rectified Gradient Method” [21].
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matrix approximation is

min
P,X

J(P,X) = ‖Y − PX‖1, (4.1)

where Y ∈ Rm×n, P ∈ Rm×r, and X ∈ Rr×n are the observation, projection, and

coefficient matrices, respectively. Here, r is a predefined parameter and less than

min(m,n). Since |x| is not differentiable, we approximate |x| by limε→0

√
x2 + ε2.

Then we approximate the derivative of |x| using the derivative of limε→0

√
x2 + ε2

as follows:

d|x|
dx
≈ lim

ε→0

∂
√
x2 + ε2

∂x
= lim

ε→0

x√
x2 + ε2

= sgn(x), (4.2)

where sgn(x) is the signum function of x and the approximation is exact except

at x = 0. In this way, we can differentiate (4.1) with respect to (w.r.t.) X and

find that its derivative is

∇XJ(P,X) = −P T sgn(Y − PX). (4.3)

Here, sgn(Y ) for matrix Y represents a matrix whose (i, j)-th element is sgn(yij).

Now, we consider the problem of finding an optimal step size α > 0 to update

X by the steepest gradient descent method.

min
α
J(α|P,X,∇XJ) = ‖Y − P (X − α∇XJ(P,X))‖1

= ‖Y ′ − αPP T sgn(Y ′)‖1

= ‖Y ′ − αA‖1,

(4.4)

where Y ′ = Y − PX and A = PP T sgn(Y ′). We apply the weighted median

algorithm to the ratio y′ij/aij with weight |aij | to get the step size α that minimizes

the cost function (4.4). Note that in this algorithm, we apply the weighted median

algorithm to update either P or X at a time, to reduce the total computation

time and this is different from [10], where the algorithm is applied columnwise.
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Finally, Y ′ and X are updated as

Y ′ ← Y ′ − αPP T sgn(Y ′),

X ← X + αP T sgn(Y ′).

(4.5)

For P , we can also differentiate (4.1) w.r.t. P in the same manner as

∇PJ(P,X) = − sgn(Y − PX)XT . (4.6)

The projection and coefficient matrices P and X are updated alternatingly until

convergence is achieved.

However, a serious issue arises in this updating procedure, because there are

numerous pairs of P and X that give the same multiplication result of PX. To

see this, let us reexamine the minimization problem (4.1). If P ′ = PH−1 and

X ′ = HX for some nonsingular matrix H ∈ Rr×r, then

min
P ′,X′

J(X ′, P ′) = ‖Y − P ′X ′‖1 = ‖Y − PX‖1. (4.7)

Accordingly, the step-size problem for X ′ can be written as

min
β
J(β|P ′, X ′,∇X′J) = ‖Y ′ − βP ′P ′T sgn(Y ′)‖1, (4.8)

where β is a step size. When H is orthogonal, (4.4) and (4.8) are the same because

of the relation P ′P ′T = PH−1H−TP T = PHTHP T = PP T . If it is not the case,

then the update direction of (4.8) changes depending on H, i.e.,

PP T sgn(Y ′) 6= P ′P ′T sgn(Y ′). (4.9)

This means that the update direction depends on the choice of P and X. There-

fore, it is important to find P and X that will give a good update direction for

fast convergence.
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Finding an optimal direction for alternating updates

In the previous subsection, we have shown that the update direction depends on

the representation of P and X, which can influence the convergence rate. This

happens because P and X are the intermediate variables of the following basic

problem:

min
G

‖Y −G‖1

s.t. G ∈ Rm×nr ,

(4.10)

where Rm×nr is a set of m × n matrices with rank r. However, this problem is

difficult to solve directly because Rm×nr is not convex. This is why it is common

to use alternating updates based on intermediate variables like P and X for low-

rank matrix approximation. In summary, it is difficult to solve the problem (4.10),

while the less difficult problem (4.1) can still lead to a slow convergence because

of the ambiguity of the update direction.

Then, how do we compromise? To answer this question, notice that the gradient

w.r.t. X can also be expressed as the solution to the following problem:

min
∆X′

J(∆X ′|P,X) = ‖Y − P (X + ∆X ′)‖1

s.t. ‖∆X ′‖2F = ε̆2,

(4.11)

where ∆X ′ is the variation of X that we are seeking and ε̆ � 1. This problem

is to minimize the directional derivative of the cost function w.r.t. ∆X ′ and the

optimal ∆X ′ is the same as ∇XJ up to scale if ε̆→ 0. To avoid the ambiguity in

representing P and X, and to convert the problem as if it were to be solved for

G ∈ Rm×nr in the basic problem, we modify the constraint as

min
∆X′

J(∆X ′|P,X) = ‖Y − P (X + ∆X ′)‖1

, ‖Y ′ −∆G′‖1

s.t. ‖∆G′‖2F , ‖P∆X ′‖2F = ε2.

(4.12)

57



Chapter 4. Robust Fixed Low-Rank Representations

In this modified problem, we search the update direction for X, but the new

constraint limits the search domain with respect to ∆G′ = P∆X ′, the update of

G, instead of ∆X ′. In this manner, we can preserve the convexity of the search

domain while avoiding the difficulty that arises from the ambiguity in representing

P and X.

By introducing a Lagrange multiplier to (4.12), the resulting Lagrangian is

‖Y ′ − P∆X ′‖1 +
λ

2
(tr(∆X ′TP TP∆X ′)− ε2), (4.13)

where tr is the trace operator (‖A‖2F = tr(ATA)). Differentiating (4.13) w.r.t.

∆X ′ and equating it to zero, we obtain

−P T sgn(Y ′ − P∆X ′) + λP TP∆X ′ = 0,

which gives

∆X ′ =
1

λ
P+ sgn(Y ′ − P∆X ′), (4.14)

where P+ = (P TP )−1P T is the left pseudo-inverse of P . By applying (4.14) to

‖P∆X ′‖2F = ε2, we get

1

λ
=

ε

‖PP+ sgn(Y ′ − P∆X ′)‖F
, (4.15)

and finally

∆X ′ =
P+ sgn(Y ′ − P∆X ′)

‖PP+ sgn(Y ′ − P∆X ′)‖F
· ε. (4.16)

For an infinitesimal ε, the update direction becomes

lim
ε→0

∆X ′ ∝ lim
ε→0

P+ sgn(Y ′ − P∆X ′)

= P+ sgn(Y ′) , ∆X.

(4.17)

Note limε→0 sgn(Y ′ − P∆X ′) = sgn(Y ′) in (4.14) because limε→0 ∆X ′ = 0 in

(4.16) and we regard sgn as a limit of a smooth function as defined in (4.2). Here,
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we ignore ‖PP+ sgn(Y ′ − P∆X ′)‖F in (4.16) because we are interested only in

the direction, which is denoted as ∆X, and the step size for the update will be

found next. Note that the update direction of the low-rank approximation is given

as

∆G , P∆X = PP+ sgn(Y ′), (4.18)

and this does not change depending on the representation of P and X, i.e., there is

no ambiguity in ∆G unlike PP T sgn(Y ′) in (4.9). With the new update direction

∆G, we revise the step-size problem (4.4) as the following:

min
α
‖Y ′ − α∆G‖1 = ‖Y ′ − αPP+ sgn(Y ′)‖1, (4.19)

where α is determined by the weighted median technique. For updating P , we

can obtain ∆P in the same manner under the constraint (‖∆P ′X‖2F = ε2) as

∆P = sgn(Y ′)X+, (4.20)

and find the optimal step size as in (4.19).

There is an observation to be made on this updating rule. This new update

direction is analogous to the Gauss-Newton update direction in the least-squares

problem. The Gauss-Newton direction of ‖F (x)‖2F is given as −∇xF (x)+F (x). If

we regard F (x) as a result of
∂‖F (x)‖2F
∂F (x) ignoring its scale, then it is similar to the

expression ∆X = P+ sgn(Y ′). Hence, we may consider this update direction as

an extension of the Gauss-Newton method to l1-norm problems and expect it to

be better than the normal gradient direction.

Note that this procedure is equivalent to changing the representation of P and

X so that the fixed matrix, either P or X, is orthonormal. This means that

the step size problem (4.8) of the normal gradient method becomes the same as

(4.19) when P and X are chosen so that P is orthogonal. We can easily find such
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an orthogonal matrix using the QR decomposition. We call this as the rectified

representation. Hence, it is better to use ordinary gradient descent in conjunction

with this representation change, which is faster than calculating a pseudo-inverse.

Summary of the proposed algorithm

First, we update P while X is fixed in (4.1). To make X orthonormal, we apply

QR decomposition to XT :

XT = X ′TR,

PX = PRTX ′ = P ′X ′,

(4.21)

where orthogonal matrix X ′T and upper triangular matrix R are obtained from

QR decomposition, and P ′ = PRT . Then, we can compute ∆P by using X ′ and

find the optimal step size using the weighted median algorithm.

Once the update of P is finished, we update X with P fixed. Again, we apply

QR decomposition to P to change the representation. The update rule is similar

to that of the P update. Then, we continue to update P and X alternatingly; the

overall procedure is described in Algorithm 1. We call the method as l1-norm-

based alternating rectified gradient method based on approximation, l1-ARGA,

because it find the gradient by approximated manner. In the algorithm, P and

X are rectified by the QR decomposition at line 8 and 14, respectively.

To deal with numerical errors, we modify the signum function as:

sgn′(x) =


1 x ≥ γ,

0 −γ < x < γ,

−1 x ≤ −γ,

(4.22)

where γ is a threshold with a small positive value. Using this modified function,

we can find a better solution despite the difficulties that numerical errors might
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create.

Algorithm 1 l1-norm-based matrix approximation using the approximated al-

ternating rectified gradient method (l1-ARGA)

1: Input: Y ∈ Rm×n, the subspace dimension r

2: Output: P ∈ Rm×r, X ∈ Rr×n

3: Initialize P to a zero matrix and X randomly

4: Y ′ ← Y

5: while residual Y ′ does not converge do

6: ## P update (Fix X, update P )

7: while residual Y ′ does not converge do

8: X ′TR← XT , P ′ ← PRT

9: ∆P ← sgn′(Y ′)X ′T

10: (Y ′, P ′)← Update(Y ′, P ′, X ′,∆P )

11: end while

12: ## X update (Fix P , update X)

13: while residual Y ′ does not converge do

14: PR← P ′, X ← RX ′

15: ∆X ← P T sgn′(Y ′)

16: (Y ′T , X ′T )← Update(Y ′T , XT , P T ,∆XT )

17: end while

18: end while

In Algorithm 1, the update of either P or X is repeated until convergence, and

then the roles of the matrices are switched. Even though the algorithm can work

by just alternating the updates of P and X one by one, the present approach gave

us better performance in some of the experiments, such as the nonrigid motion

estimation in Section 4.1.3. This is not exactly an “alternating” update, but we

61



Chapter 4. Robust Fixed Low-Rank Representations

Algorithm 2 Function: Update (Y,U, V, Z)

1: Input: Y, U, V, Z: matrices

2: Output: T, R: matrices

3: ## Line-search (by weighted median)

4: α← arg minα ‖Y − αZV ‖1

5: T ← Y − αZV

6: R← U + αZ

still call it alternating rectified gradient method. The projection and coefficient

matrices are updated by line-search technique using the weighted median method

in Algorithm 2.

As mentioned earlier, the step size α is determined by using the weighted me-

dian algorithm. For the weighted median algorithm, we may use a divide and

conquer algorithm such as quick-select [79, 80], which can find the solution in

linear time on average. However, in practice, it is faster to use existing sorting

functions when the number of elements is not large. Moreover, since we are ap-

plying the weighted median algorithm to find the step size, which does not need

to be accurate, it is better to calculate the weighted median of randomly selected

samples, when the number of samples is large. To see how the weighted median

depends on the number of samples, we consider the problem of finding an approx-

imate weighted median from a set consisting of an infinite number of elements.

To simplify the problem, we assume that elements have the same weights. Then

the cumulative probability F (q; 2d+ 1) that the sample median of 2d+ 1 samples

is less than the (100 × q)% quantile of original elements is equal to the cumu-

lative probability that the success is no more than d for a binomial distribution

B(2d+ 1, 1− q). Since the cumulative distribution function of a binomial distri-

bution can be represented in terms of the regularized incomplete beta function,

62



Chapter 4. Robust Fixed Low-Rank Representations

the result is given as

F (q; 2d+ 1) = P (Z ≤ d) = Iq(d+ 1, d+ 1), (4.23)

where Z is the binomial random variable and Iq is the regularized incomplete

beta function. This expression can be calculated numerically, and we have found

that

F (1/2 + 0.005; 105 + 1)− F (1/2− 0.005; 105 + 1) ≈ 0.998.

This means that if we use 105 samples, then the sample median resides within

the ±0.5% range of the true median with probability 0.998. Even if this result

applies for the case of equally weighted samples, the result is also meaningful

for the weighted median if the weights are moderately distributed. This is a

valid assumption because ∆G, which is an orthogonal projection of sgn′(Y ′), is

bounded by ‖ sgn′(Y ′)‖F . In experiments, we randomly selected 105 samples if

the number of elements is greater than 105, and then applied an existing sorting

function to find the weighted median. There is a small chance that the weighted

median technique may not reduce the cost function due to random sampling, but

the problem can be resolved by a slight tweak in the algorithm, such as repeating

the random sampling until it reduces the cost function.

The downside of the proposed algorithm is the difficulty of guaranteeing whether

P (t) and X(t) will converge to a local minimum, due primarily to the assumption

that the derivative of |x| is sgn(x), which is in fact not differentiable at 0. Hence,

there is a possibility that the algorithm may find an update direction that does

not decrease the cost function when many of the elements of Y ′ are zero, even

though it is not a local minimum. In that case, the step size will be zero and

the algorithm will be terminated. Nonetheless, if this happens, it will be near

a local minimum since many of the residual elements are zero. Besides, there is
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usually some Gaussian noise in Y for practical problems, which prevent many of

the residual elements from being zero at the same time. Therefore, the proposed

algorithm will work well in practical problems and we verify the convergence

using real world problems in Section 4.1.3.

Weighted method of l1-ARGA with missing data

In real applications, there are not only outliers but also missing data, which can

have a negative effect on vision and recognition systems. We solve the problem

of low-rank matrix approximation using the l1-norm in the presence of missing

data which is also known as a matrix completion (MC) problem by extending the

result from the previous subsection.

The problem can be formulated as

min
P,X

J(P,X|W ) = ‖W � (Y − PX)‖1, (4.24)

where � is the component-wise multiplication or Hadamard product. Here, W ∈

Rm×n is a weight matrix, whose element wij is 1 if yij is known, and is 0 if yij is

unknown. Similar to the problem (4.12), we can formulate the weighted low-rank

matrix factorization in the l1-norm under the constraint ‖P∆X ′‖2F = ε2 as

min
∆X′

J(∆X ′|P,X,W ) = ‖(W � (Y ′ − P∆X ′))‖1,

s.t. ‖P∆X ′‖2F = ε2.

(4.25)

Similarly as in Section 4.1.1, the solution to this problem can be represented in

vector form as

vec(∆X) = (I ⊗ P+)Wvec(sgn(W � Y ′))

= (I ⊗ P+)vec(W � sgn(W � Y ′)),
(4.26)

where⊗ is the Kronecker product,W = diag(w) ∈ Rmn×mn,w = (wT
1 ,w

T
2 , ...,w

T
n )T ∈

Rmn×1, wi is the i-th column vector of W , and I denotes an n×n identity matrix.
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Because the elements of W are either 0 or 1, (4.26) can be rewritten as

vec(∆X) = (I ⊗ P+)vec(sgn(W � Y ′))

= vec(P+ sgn(W � Y ′)),
(4.27)

and this gives

∆X = P+ sgn(W � Y ′). (4.28)

Similar to (4.19), the cost function to find the step size α becomes

min
α
J(α|P,X,W,∆X) = min

α
‖W � (Y ′ − αP∆X)‖1

= min
α
‖W � Y ′ − αW � (PP+ sgn(W � Y ′))‖1.

(4.29)

Compared to (4.19), the only difference is the presence of W in the cost function.

When we vary P for a fixed X, we can obtain ∆P and the cost function to

find the optimal step size similarly.

∆P = sgn(W � Y ′)X+, (4.30)

min
α′

J(α′|P,X,W,∆P ) = min
α′
‖W � (Y ′ − α′∆PX)‖1

= min
α′
‖W � Y ′ − α′W � (sgn(W � Y ′)X+X)‖1.

(4.31)

The step sizes in (4.29) and (4.31) can also be solved by the weighted median

algorithm.

4.1.2 l1-ARGD as a dual method

l1-ARGD in the presence of outliers

In this section, we propose a second novel method to find a proper descending

direction without the gradient approximation of ∆X. Since it is difficult to guar-

antee that l1-ARGA converges to a local minimum, we propose the second novel

method with a convergence guarantee. We refer to the algorithm as a l1-norm-

based alternating rectified gradient method using the dual problem, l1-ARGD. As
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mentioned earlier, the problem to find the gradient of X for a fixed P in low-rank

matrix approximation is formulated as

min
P,X

‖Y ′ − P∆X‖1

s.t. ||P∆X||2F = ε2.

(4.32)

We reformulate (4.32) to an unconstrained problem as

min
∆X

fη(X,∆X) , ||Y ′ − P∆X||1 +
1

2η
||P∆X||2F , (4.33)

where η > 0 is a weight parameter. Here, we assume that P is orthonormalized

using the QR decomposition, i.e., ||P∆X||2F = ||∆X||2F .

We can obtain the Lagrangian of (4.33) by substituting ||Y ′ −P∆X||1 to Z as

L(∆X,Λ,M) = 1TZ1 +
1

2η
||∆X||2F

+ tr(ΛT (Y ′ − P∆X − Z)) + tr(MT (−Y + P∆X − Z)),

(4.34)

where 1 ∈ Rm and Λ,M ≤ 0 are Lagrange multipliers. By taking a derivative of

(4.34) and solving for Z and ∆X at a stationary point, we can obtain 11T −Λ−

M = 0 and ∆X = ηP T (Λ −M) = ηP T Ṽ , respectively, where Ṽ , Λ −M and

−1 ≤ ṽij ≤ 1 for all elements of Ṽ . Therefore, (4.34) can be reformulated as

1

2η
||∆X||2F + tr((Ṽ )T (Y ′ − P∆X)),

s.t. − 1 ≤ ṽij ≤ 1.

(4.35)

Hence, the dual problem of (4.33) is constructed by using the corresponding

primal solution ∆X = ηP T Ṽ and ηṼ = V as

max
V

gη(V ) ,
1

η
tr(V TY ′)− 1

2η
||P TV ||2F ,

s.t. − η ≤ vij ≤ η.
(4.36)
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We use the proximal gradient technique [81] to solve this problem. We convert

the sign of (4.36) and reformulate it as an unconstrained problem

min
V

−1

η
tr(V TY ′) +

1

2η
||P TV ||2F + Iη(V ), (4.37)

where Iη(V ) is the indicator function for each element of matrix V

Iη(vij) =


0 −η ≤ vij ≤ η,

∞ else.

(4.38)

Denoting U as the V in the previous step, the proximal approximation [81] of

(4.37) is given as

1

η
tr((V − U)T (−Y ′ + PP TU)) +

L

2η
||V − U ||2F

+
1

2η
||P TU ||2F −

1

η
tr(UTY ′) + Iη(V ),

(4.39)

where L is the Lipschitz constant of (4.37) and is 1 in this case because P is

orthogonal.

The above equation can be simplified as

1

2η
||V − U − Y ′ + PP TU ||2F + Iη(V ) + constant, (4.40)

and this gives the following result

V =


η V ′ > η,

V ′ −η < V ′ < η,

−η V ′ < −η,

(4.41)

where

V ′ = Y ′ + U − PP TU. (4.42)

Since this iterative process itself can take a non-ignorable amount of time, we

perform the iteration just enough to find a good descending direction, rather
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than calculating the exact optimal solution. We update the solution V and cor-

responding primal solution ∆X = P TV until the ratio between the difference of

the previous and current primal cost values and the difference of the previous

primal and current dual cost values is no less than a positive scalar 0 < β ≤ 1 as

fη(X,∆Xk)− fη(X,∆Xk+1)

fη(X,∆Xk)− gη(Vk+1)
≥ β. (4.43)

Let ∆X∗ = arg min∆X fη(X,∆X), then we obtain the following relation

fη(X, 0)− fη(X,∆X) ≥ β(fη(X, 0)− gη(V ))

≥ β(fη(X, 0)− fη(X,∆X∗)).
(4.44)

Note that during the proximal optimization, gη(Vk+1) is always not larger than

fη(X,∆Xk+1). After finding a solution that satisfies (4.43), we apply the weighted

median method as an exact line-search2 to find the optimal step size of the gra-

dient. The overall procedure is described in Algorithm 3. In the algorithm, η is

decreased during the iteration and is bounded by 0 < ηmin ≤ η ≤ ηmax < ∞

where ηmin and ηmax are predefined constants. P and X are rectified by the QR

decomposition at line 7 and 11 in the algorithm, respectively. We find the gradient

of P or X by Algorithm 4.

The main difference between the two proposed methods is that we can for-

mally guarantee that l1-ARGD converges to a subspace-wise local minimum (see

Section 4.1.2), whereas a local minimum is not guaranteed for l1-ARGA due to

the approximation of the l1 cost function. Although both algorithms may reach

similar cost values, they can find different solutions as shown in Section 4.1.3.

2Here, we assume that an exact line-search is performed in order to simplify the proof in the

below.
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Algorithm 3 l1-norm-based matrix approximation using the exact alternating

rectified gradient method (l1-ARGD)

1: Input: Y ∈ Rm×n, low-rank r, β = 10−4, ηmin = 10−6

2: Output: P ∈ Rm×r, X ∈ Rr×n

3: Initialize P to a zero matrix and X randomly, η =∞

4: Y ′ ← Y

5: while residual Y ′ does not converge do

6: # P update (Fix X, update P )

7: X ′TR← XT , P ′ ← PRT

8: ∆P T ← findGradient(X ′T , P T , Y ′T , V T , η, ηmin, β)

9: (Y ′, P ′)← Update(Y ′, P ′, X,∆P )

10: # X update (Fix P , update X)

11: PR← P ′, X ← RX ′

12: ∆X ← findGradient(P,X, Y ′, V, η, β)

13: (Y ′T , XT )← Update(Y ′T , XT , P T ,∆XT )

14: end while
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Algorithm 4 Function: findGradient (K,L, Y, V, η, ηmin, β)

1: Input: K, L, Y, and V: matrices; η, ηmin, β: scalars

2: Output: ∆S: a matrix

3: Description:

4: η ← max(min(η, ||Y ||1/mn), ηmin), k = 1, V0 = 0

5: fη(K,∆K0) = fη(K,∆K1) = ||Y ||1, gη(V1) = 0

6: while
fη(K,∆Kk−1)−fη(K,∆Kk)
fη(K,∆Kk−1)−gη(Vk) < β do

7: η ← max(η2 , ηmin)

8: Vk ← Y + Vk−1 − Vk−1L
TL and by (4.41)

9: ∆Kk ← VkL
T

10: fη(K,∆Kk+1)← ||Y −∆KkL||1 + 1
2η ||∆Kk||2F

11: gη(Vk+1)← tr(Y TVk)− 1
2η ||∆Kk||2F

12: k ← k + 1

13: end while

14: ∆S ← ∆Kk−1
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Proof of convergence

Regardless of the initial point, the proposed method, l1-ARGD, which is a de-

scent algorithm, converges to a subspace-wise local minimum according to the

Zangwill’s global convergence theorem [82, 83]. Subspace-wise local minimum is

defined as follows:

Definition 2 (Subspace-wise local minimum). Let the cost function of l1-ARGD

be J(P,X) , ||Y − PX||1. If there is no ∆X or ∆P such that ||Y − P (X +

∆X)||1 < ||Y − PX||1 or ||Y − (P + ∆P )X||1 < ||Y − PX||1, then (P,X) is a

subspace-wise local minimum.

A local minimum is a subspace-wise local minimum. If a cost function is smooth,

a subspace-wise local minimum is also a local minimum [83]. However, the cost

function (4.1) is not smooth, and consequently, a subspace-wise local minimum

may not be a local minimum. Nonetheless, it is worth finding a subspace-wise

local minimum because a subspace-wise local minimum is a necessary condition

to be a local minimum. It also minimizes the cost function as well as the other

state-of-the-art methods in the experiments of Section 4.1.3.

Let us denote A : (P,X )→ (P,X ) as a point-to-set mapping [82, 83] that de-

scribes the behavior of l1-ARGD, where P, and X are the domains of P and X,

respectively. According to the Zangwill’s theorem, a descent algorithm is globally

convergent under the following three conditions (converges to a subspace-wise

local minimum irrespective of the initial point).

1. All (Pk, Xk) should be contained in a compact set.

2. For cost function J(P,X) = ||Y − PX||1,

(a) if (P,X) is not in the solution set consisting of subspace-wise local
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minimums, J(P ′, X ′) < J(P,X) for all (P ′, X ′) ∈ A(P,X).

(b) if (P,X) is in the solution set, J(P ′, X ′) ≤ J(P,X) for all (P ′, X ′) ∈

A(P,X).

3. Mapping A is closed at points that are not subspace-wise local minimum.

Theorem 1. l1-ARGD converges to a subspace-wise local minimum irrespective

of the initial point under the three conditions.

Proof. See Appendix D

The local convergence rate is hard to find, but we show empirically that l1-

ARGD gives fast convergence in Section 4.1.3. Table 4.1 shows the comparison

between the proposed methods with and without applying rectification (QR de-

composition) for three reconstruction problems with 5% outliers over 10 inde-

pendent runs. As shown in the table, the methods using rectification take much

shorter execution time and need less number of iterations, and give lower recon-

struction error.

Weighted method of l1-ARGD with missing data

The proposed method, l1-ARGD, can be applied to real application problems

in the presence of missing data. We solve the problem of low-rank matrix ap-

proximation using the l1-norm by extending the proposed method as a weighted

low-rank approximation problem.

The problem can be formulated as

||W � (Y ′ − P∆X)||1 +
1

2η
||P∆X||2F , (4.45)

where η is a small positive constant. We assume that P is orthonormalized by

the QR decomposition.
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The dual problem of (4.45) is constructed in the similar fashion as in the

previous section

max
V

1

η
tr((W � V )TY ′)− 1

2η
||P T (W � V )||2F ,

s.t. − η ≤ Vij ≤ η,
(4.46)

and this gives the following unconstrained minimization problem as a proximal

mapping operator

min
V

1

2η
||P T (W � V )||2F −

1

η
tr((W � V )TY ′) + Iη(V ), (4.47)

where Iη(V ) is an indicator function. Now, we consider the following approxima-

tion of (4.47):

1

η
tr((V − U)T [−W � Y ′ +W � (PP T (W � U))])

+
L

2η
||V − U ||2F + Iη(V ) + constant,

(4.48)

where L is the Lipshitz constant (L = 1). Then this can be reformulated as

1

2η
||V − U −W � Y ′ +W � (PP T (W � U)||2F + Iη(V ) + constant. (4.49)

Therefore, we obtain the result in the same form as (4.41) with V ′ = U + Y ′ +

W � (PP TU).

4.1.3 Experimental results

We evaluated the performance of the proposed methods (l1-ARGA and l1-ARGD)

by experimenting with various data. We compared the proposed algorithms to

other methods (IALM and EALM [43], ALADM [11], l1-AQP [10], Regl1-ALM

[49]) in terms of the reconstruction error and execution time. The initial pro-

jection and coefficient matrices were set to zero and Gaussian random numbers,

respectively, for the proposed methods and l1-AQP. All the elements of the weight
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matrix for Regl1-ALM was set to 1 for non-weighted factorization problems. In

addition, the weighted median method used in the proposed methods was imple-

mented as described in Section 4.1.1. We set ρ = 10−5 in the stopping condition

and γ as the same as ρ for all of the proposed methods. The trace-norm reg-

ularizer of Regl1-ALM was set to 20, which gave the best performance in the

experiments, if not stated otherwise.

We also performed experiments with missing data using the weighted version of

the proposed methods (Wl1-ARGA and Wl1-ARGD) in Section 4.1.1 and Section

4.1.3, and the performances were compared to those of other methods that can

handle missing data (ALADM-MC which is a weighted version of ALADM [11],

Regl1-ALM [49]). We did not evaluate the methods l1-AQP [10] for large-scale

data because of its heavy computational complexity and memory requirement.

We set the parameters of ALADM and ALADM-MC as described in [11], and

all of the parameters of the proposed methods were the same as those of non-

weighted versions. To show the usefulness of the proposed algorithm, we also

applied the proposed methods to the non-rigid structure from motion problem

[49]. All experiments were conducted using MATLAB on a computer with 8GB

RAM and a 3.4GHz quad-core CPU.

Synthetic data with outliers

Firstly, we applied the proposed methods to synthetic examples with outliers.

We generated an (m × r) matrix B and an (r × n) matrix C whose elements

were uniformly distributed in the range [−1, 1]. We also generated an (m × n)

noise matrix N whose elements had the Gaussian distribution with zero mean

and variance of 0.01. Based on Y0 = BC + N , we constructed the observation

matrix Y by replacing 25 percent of the elements from the 25 percent randomly
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selected samples in Y0 by outliers that were uniformly distributed in the range

[−10, 10]. We generated five sets from small-size to large-scale examples (500 ×

500 ∼ 10, 000× 10, 000). We set the rank of each example matrix to min(m,n)×

0.08. We compared the proposed methods to IALM, EALM, ALADM, Regl1-

ALM, and l1-AQP in terms of the reconstruction error and execution time. We

used the global parameter for IALM and EALM as in [43].

In the experiment, the average reconstruction error E1(r) was calculated as

E1(r) =
1

n
||Y org − Y low−rank||1, (4.50)

where n is the number of samples, Y org is the ground truth, Y low−rank is the

matrix approximated by an algorithm.

The average reconstruction errors and execution times are shown in Table 4.2.

We did not evaluate the methods l1-AQP, EALM, and Regl1-ALM for large-scale

data because of their heavy computational load. Unlike the fixed-rank approx-

imation methods that give the matrix whose rank is approximately 8% of the

original matrix dimension, IALM and EALM give the matrix whose rank is ap-

proximately 55% of the original matrix dimension on average in this section. In

the table, l1-ARGD gives the best result in terms of the reconstruction error and

execution time. Although ALADM takes a shorter execution time compared to

the proposed methods, it gives poor reconstruction performance. The proposed

methods are superior to the other methods especially for large-scale problems

because it uses the weighted median algorithm to handle large-scale problems

efficiently. The computational complexities of the proposed methods, ALADM,

and l1-AQP are O(rmn) for each iteration. However, l1-AQP have to perform a

whole convex optimization in each iteration, which is very inefficient in terms of

processing time.

The computational complexity isO(min(m,n) max(m,n)2) for IALM and EALM,
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Table 4.3: Reconstruction error with respect to various r for a 1,000 × 1,000

matrix with rank 80

Algorithm r=70 r=75 r=80 r=85 r=90

l1-ARGA 202.74 141.64 14.88 15.08 19.68

l1-ARGD 188.28 126.03 6.16 23.19 45.03

ALADM 199.76 144.13 17.16 30.61 46.63

Regl1-ALM 193.06 129.19 5.01 12.39 21.39

and O(rmax(m,n)2) for Regl1-ALM, for each iteration. IALM, EALM, and

Regl1-ALM perform SVD in each iteration, and hence, need much computation

time for a large-scale matrix. Figure 4.1 shows the cost function of the proposed

methods at each iteration for three examples (500 × 500, 1000 × 1000, 2000 ×

2000). As shown in the figure, the cost function of l1-ARGD decreases much faster

than that of l1-ARGA, and both methods converge to nearly the same value. Fig-

ure 4.2 shows the reconstruction error with respect to the execution time for an

example (1,000 × 1,000). In the figure, the proposed method l1-ARGD outper-

forms other methods. Table 4.3 shows the reconstruction error with respect to

various r for a 1,000 × 1,000 matrix with rank 80. As shown in the table, l1-

ARGD gives the best results when r is lower than or equal to the exact rank,

whereas l1-ARGA shows good results when r is larger than the exact rank. It can

be explained as follows. Since l1-ARGD tries to find a solution that minimizes

the cost function for a given r, the performance can be a little bit poorer when

r is not correct. l1-ARGA finds an approximate solution to the original problem,

hence, its result may be worse than l1-ARGD. But l1-ARGA is less sensitive to

the rank uncertainty.
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Face reconstruction

We applied various methods to face reconstruction problems and compared their

performances. In the experiments, we used 830 images having five different il-

luminations for 166 people from the Multi-PIE face database [84], which were

resized to 100×120 pixels. The intensity of each pixel was normalized to have a

value in the range of [0, 1]. Each 2-D image was converted to a 12,000-dimensional

vector. We only considered an occlusion case for the experiments of the images

and measured the average reconstruction error for occluded images. To generate

occlusions, 50 percent of the images were randomly selected, and each of selected

images was occluded by a randomly located rectangle, whose size varied in the

range of 20×20 pixels to 60×60 pixels, with each pixel of the rectangle having a

value randomly selected from [0, 1]. We could not apply l1-AQP and EALM to

these problems because they required too much computation time (more than an

hour).

Figure 4.3 shows some examples of face images with occlusions and their re-

constructed faces with 100 projection vectors. In the figure, we can see that the

occlusion blocks have almost disappeared for most of the cases. IALM and EALM

tend to produce blurry images, and ALADM gives the poorest results among the

methods. Table 4.4 shows the average reconstruction errors E1 for the face im-

ages. In the table, we can see that our methods show competitive performance

in both of the reconstruction error and processing time compared to the other

methods. IALM and EALM give a little bit smaller errors than our methods,

because the ranks of their reconstructed matrices are higher (around 200) than

the others (100). Except ALADM, which gives the poorest reconstruction error,

all the compared methods are about 4 to 350 times slower than our methods.
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Figure 4.3: Face images with occlusions and their reconstructed faces.

Experiments with missing data

We performed experiments with simple examples in the presence of missing data

using the proposed methods Wl1-ARGA and Wl1-ARGD compared with the other

state-of-the-art methods, ALADM-MC [11] and Regl1-ALM [49], which can han-

dle missing data. We generated five examples as in the previous synthetic prob-

lem. Here, we did not perform the experiment for a matrix of 10, 000 × 10, 000

because of memory limitation. To construct the weight matrix, we randomly se-

lected 20 percent of the elements of matrix W for each example and set them to

zero (missing), while the other elements were set to one.

Table 4.5 shows the average result for the five examples with outlier and missing

data. In the table, Wl1-ARGD gives the best performance and needs much shorter

execution time than the other methods except ALADM-MC. Although ALADM-

MC gives the shortest execution time, its performance is much worse than the

proposed methods. Because of the execution time and the performance, Regl1-

ALM is impractical to use for large-scale data.
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Table 4.4: Average performance for face data with occlusions

m=12,000, n=830, r=100

Algorithm Error (E1) Time (sec)

l1-ARGA 276.957 71.164

l1-ARGD 279.442 29.760

IALM 261.895 275.426

EALM 257.392 10543.432

Regl1-ALM 287.749 478.168

ALADM 314.298 9.902

We also performed a face image reconstruction experiment using the proposed

methods and the other methods in the presence of occlusions and missing data.

Occlusion blocks were generated as described before in 50 percent randomly se-

lected images. To generate missing blocks, 50 percent of images were randomly

selected again, and a randomly located square block, whose side length varied

from 30 to 60 pixels, was considered as missing in each image. The values of the

block elements were set to zero. The number of projection vectors was set to 100.

The average reconstruction error E1 and execution time for various methods are

shown in Table 4.6. In the table, Wl1-ARGD shows good performance in both

of the reconstruction error and execution time compared to the other methods.

Although Regl1-ALM gives the comparable reconstruction error to the proposed

methods, its computation time is longer than the proposed methods. Figure 4.4

shows the reconstructed face images in the presence of occlusions and missing

data. We do not see much difference between the reconstructed images of the

proposed methods and Regl1-ALM in this figure.
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Table 4.6: Average performance for face data with occlusions and missing blocks

m=12,000, n=830, r=100

Algorithm Error (E1) Time (sec)

Wl1-ARGA 305.893 262.976

Wl1-ARGD 319.462 82.671

ALADM-MC 387.628 11.872

Regl1-ALM 327.556 538.014

Figure 4.4: Face images with occlusions and missing blocks, and their recon-

structed faces.
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Non-rigid motion estimation

Non-rigid motion estimation [13] with outliers and missing data from image se-

quences can be considered as a factorization problem. In this problem, l1-norm-

based factorization can be applied to restore 2D tracks contaminated by outliers

and missing data. In this experiment, we used the well-known giraffe sequence3

consisting of 166 tracked points and 120 frames. The data size is 240 × 166 and

30.24% of entries are missing. In this section, we also present another algorithm,

Wl1-ARGA+D, which is Wl1-ARGD using the result of Wl1-ARGA as an initial

value. The goal of using Wl1-ARGA+D is to verify the superiority of Wl1-ARGD

compared to Wl1-ARGA by showing that Wl1-ARGD can improve the quality of

the solution beyond what is possible by Wl1-ARGA.

To demonstrate the robustness of the proposed method, we replaced 10 percent

of the points in a frame by outliers in the range of [-1,000, 2,000], whereas the

data points are in the range of [127, 523]. In another experiment, we constructed

the data by replacing 20 percent of the points in a frame by outliers. The number

of shape bases was set to 2, which gave a matrix of rank 6 = 2 × 3 (for x, y,

and z coordinates). We compared the proposed weighted version to ALADM-MC

and Regl1-ALM. We set the stopping condition ρ to 10−6 and β in (4.43) to

10−1. The result of reconstruction error4 for the observation data can be seen

in Table 4.7. As shown in the table, Wl1-ARGA gives better performance than

Wl1-ARGD but poor than Wl1-ARGA+D in this problem. We suspect that Wl1-

ARGD is more sensitive to the initial value and can be trapped in a local minimum

for a complex problem. Thus, Wl1-ARGA can sometimes find a better solution

than Wl1-ARGD. But when we apply Wl1-ARGD with a good initial value, such

3Available at http://www.robots.ox.ac.uk/~abm/
4Reconstruction error is calculated as stated at http://www.robots.ox.ac.uk/~abm/
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Table 4.7: Reconstruction results for giraffe sequence in the presence of additional

outliers

10% outliers 20% outliers

Algorithm Error Time (sec) Error Time (sec)

Wl1-ARGA 2.910 3.623 3.006 1.589

Wl1-ARGD 3.224 1.217 3.950 0.895

Wl1-ARGA+D 2.847 4.051 2.979 1.754

Regl1-ALM 3.792 0.810 3.939 0.820

ALADM-MC 9.835 0.017 21.908 0.013

as a solution found by Wl1-ARGA, we can improve the quality of the solution

further. It suggests that the combination Wl1-ARGA+D can be a good approach

for many complex problems. Although ALADM-MC takes shorter execution time

than the other methods, it gives poor reconstruction results. Regl1-ALM gives

the competitive results compared to Wl1-ARGA w.r.t. to the error and execution

time in this experiment.

We also performed the non-rigid motion estimation problem using the shark

sequence [13] which consists of 91 tracked points for each non-rigid shark shape

in 240 frames. In this data, we examine how robust the proposed methods are

for various missing ratios in the presence of outliers. We replaced 10 percent of

the points in each frame by outliers in the range of [−1000, 1000], whereas the

data points were located in the range of [−105, 105]. We set from 10 percent

to 70 percent of tracked points as missing in each frame. The number of shape

basis for each coordinate was set to two, thus it can be formulated as a rank-6

approximation problem.
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Table 4.8: Average error and time (sec) for the Shark sequence.

missing 10% missing 30% missing 50% missing 70%

Algorithm Error Time Error Tim Error Time Error Time

Wl1-ARGA 0.069 0.562 0.106 0.819 0.460 0.660 1.767 1.590

Wl1-ARGD 0.266 0.078 0.366 0.217 0.929 0.233 3.101 0.895

Wl1-ARGA+D 0.063 0.615 0.087 0.895 0.443 0.744 1.676 1.889

Regl1-ALM 0.032 0.805 0.039 0.815 2.739 0.872 24.806 0.364

ALADM-MC 0.402 0.025 0.942 0.023 7.449 0.206 10.015 0.029
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Figure 4.5: Non-rigid shape estimation from the Shark image sequences.
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The average performance for the various methods are shown in Table 4.8. Sim-

ilar to Table 4.7, Wl1-ARGA gives better reconstruction results than Wl1-ARGD

for this problem but performs worse than Wl1-ARGA+D due to the approximated

nature of Wl1-ARGA. Although Regl1-ALM gives excellent reconstruction error

when 10% and 30% of data were missing, but its performance gets worse as the

missing data increases. The reconstruction results for a few selected frames are

shown in Figure 4.5.

4.2 Smooth Regularized Fixed-Rank Representation

5Since the previous algorithms are based on pure l1-norm error term without any

regularization term, they may be vulnerable to an overfitting issue. Moreover,

conventional gradient based methods do not give satisfying results compared to

recent advanced in low-rank optimization using augmented Lagrangian frame-

work. From the motivation, we present a new robust orthogonal matrix approxi-

mation method using fixed-rank factorization based on the l1-norm for low-rank

subspace learning problems in the presence of various corruptions. We intro-

duce an efficient Frobenius-norm regularizer to prevent the overfitting problem

which can arise from an alternative minimization algorithm and orthogonality

constraint to reduce the solution space for faster convergence. The proposed reg-

ularized optimization problem is constructed under the augmented Lagrangian

framework and solved using an alternating direction approach. We also present

a rank estimation strategy for the proposed method without increasing the com-

putational complexity to overcome the disadvantage of fixed-rank factorization

and the parameterization issue when the exact rank of a problem is unknown.

5This section is based on the paper appeared in Neurocomputing : “Robust Orthogonal Matrix

Factorization for Efficient Subspace Learning” [85].

88



Chapter 4. Robust Fixed Low-Rank Representations

4.2.1 Robust orthogonal matrix factorization (ROMF)

Problem formulation

In this section, we consider the weighted low-rank matrix approximation problem

based on the l1-norm to consider missing entries simultaneously as follows:

min
P,X
||W � (Y − PX)||1, (4.51)

where ‖ · ‖1 denotes the entry-wise l1-norm, i.e., ||S||1 =
∑

i,j |Sij | for a matrix

S, which is different from the induced l1-norm. But, when there are no missing

entries, we can also solve the problem by setting the values of all elements of W to

one. Generally, (4.51) is a nonconvex and nonsmooth problem which is difficult to

solve. To solve the problem in practice, a common strategy is to use an alternating

minimization approach which solves for one variable while other variables are

fixed [10]. In addition, it is reasonable to enforce an orthogonality constraint to

the basis matrix, i.e., enforcing P to be a column orthogonal matrix, for the

robustness and faster convergence by shrinking the solution space of P . Notice

that there can be many pairs of P and X which generate the same multiplication

result of PX, i.e.,

P ′X ′ = (PH)(H−1X) = PX, (4.52)

for some nonsingular matrix H ∈ Rr×r. Hence, the orthogonality constraint finds

P and X, such that HTH = Ir, and this leads to a smaller solution space to work

with. We also consider a regularization term for P and X to prevent overfitting.6

Note that, without these regularization terms, the problem (4.51) becomes pure

l1 minimization problem and it can be solved by algorithms, such as [11, 21].

6Note that regularization constrains a learning algorithm to select a simpler hypothesis h

from a hypothesis set H in order to control overfitting [86].
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We can omit the regularization term for P because we enforce an orthogonal-

ity constraint over P , which has the smoothness effect as well. From the above

analysis, we reformulate the low-rank matrix approximation problems as follows:

min
P,X
||W � (Y − PX)||1 +

λ

2
||X||2F , s.t. P TP = Ir, (4.53)

where λ is a weighting parameter and Ir is an r × r identity matrix.

If the nuclear norm ‖X‖∗ is used instead of ‖X‖F in (4.53), the problem be-

comes Regl1-ALM proposed in [49], which finds a solution by factorization in

conjunction with the nuclear-norm minimization to improve convergence. How-

ever, it requires a longer computation time than the proposed method since it

keeps trying to find a solution with a smaller nuclear-norm under the fixed-rank

constraint by performing two singular value decomposition operations at each

iteration. There is another approach using a l1-norm regularized nuclear-norm

minimization problem [50] by applying the weight factor λ to the other term.

Note that both methods can find a suboptimal solution since the optimization

based on the nuclear-norm may find a solution with a rank lower than the desired

rank of the problem (see Section 4.2.3 for examples). If (4.53) has another reg-

ularization term for P , namely ‖P‖F , instead of the orthogonality constraint, it

becomes a nuclear-norm regularized optimization problem due to the alternative

form of the nuclear-norm [87, 22], ‖S‖∗ = minS=PX
1
2(‖P‖2F + ‖X‖2F ), when the

rank of S is smaller than min(m,n).

Due to the difficulty of solving the problem (4.53) directly, we introduce an

auxiliary variable D and solve the following problem instead.

min
P,X,D

||W � (Y −D)||1 +
λ

2
||X||2F

s.t. P TP = Ir, D = PX.

(4.54)

To solve (4.54), we utilize the augmented Lagrangian framework which converts
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the constrained optimization problem into the following unconstrained optimiza-

tion problem:

L(P,X,D,Λ, β) = ||W � (Y −D)||1 +
λ

2
||X||2F

+ tr(ΛT (D − PX)) +
β

2
||D − PX||2F ,

(4.55)

such that P TP = Ir, where Λ ∈ Rm×n is a Lagrange multiplier and β > 0

is a small penalty parameter. We apply the alternating minimization approach

iteratively to minimize the augmented Lagrangian as follows:

P = arg min
P
L(P,X,D,Λ, β) s.t. P TP = Ir

X = arg min
X
L(P,X,D,Λ, β)

D = arg min
D
L(P,X,D,Λ, β)

Λ = Λ + β(D − PX).

(4.56)

Algorithm

To solve for P , we fix the other variables and solve the following optimization

problem:

P = arg min
P
L(P,X,D,Λ, β)

= arg min
P

tr(ΛT (D − PX)) +
β

2
||D − PX||2F

= arg min
P

β

2
||D − PX + β−1Λ||2F , s.t. P TP = Ir.

(4.57)

This optimization problem is the well-known orthogonal Procrustes problem [88].

The orthogonal Procrustes problem finds an orthogonal matrix Ω which mini-

mizes ||A−BΩ||F . A solution to the problem can be found by singular value de-

composition (SVD) over BTA, i.e., if UΣV T = SVD(BTA), then Ω = UV T [88].

Therefore, we can solve for orthogonal matrix P using SVD over (D+β−1Λ)XT .
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Hence, if

UΣV T = SVD((D + β−1Λ)XT ), (4.58)

then the solution to (4.57) becomes P = UV T . Note that SVD is used for an

m × r matrix in (4.58), whereas RPCA performs a single SVD operation on an

m × n matrix and Regl1-ALM [49] performs two SVD operations on m × r and

r×n matrices at each iteration. The computational complexity is O(m2r) for the

proposed method, O(min(m,n) max(m,n)2) for RPCA, and O(m2r + n2r) for

Regl1-ALM at each iteration. Hence, RPCA and Regl1-ALM require more com-

putational efforts than the proposed method. The computational complexity of

pure l1 minimization methods such as ALADM [11] and l1-ARG [21], which do not

have a regularization term, is O(mnr) from least squares operations performed at

each iteration. When m > r, pure l1 minimization methods are faster than meth-

ods using regularization. However, methods using regularization usually perform

better than pure l1 minimization methods in terms of the reconstruction error as

demonstrated in Section 4.2.3.

For X, we solve the following optimization problem:

X = arg min
X
L(P,X,D,Λ, β)

= arg min
X

λ

2
||X||2F + tr(ΛT (D − PX)) +

β

2
||D − PX||2F .

(4.59)

The problem (4.59) is a least-square problem and, thanks to the orthogonality

property of P , we obtain the following simple solution:

X =
1

λ+ β
P T (Λ + βD). (4.60)

For fixed P , X, and Λ, we have the following optimization problem for finding
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D:

D = arg min
D
||W � (Y −D)||1 +

λ

2
||X||2F

+ tr(ΛT (D − PX)) +
β

2
||D − PX||2F

= arg min
D
||W � (Y −D)||1 +

β

2
||D − PX + β−1Λ||2F ,

(4.61)

and the solution can be computed using the shrinkage (soft-thresholding) operator

S(·, ·) [43, 35, 49]:
W �D ←W �

(
Y − S

(
Y − PX +

Λ

β
,

1

β

))
W �D ←W �

(
PX − Λ

β

)
,

(4.62)

where S(x, τ) = sgn(x) max(|x| − τ, 0) for a variable x and a threshold τ and

W ∈ Rm×n is a complementary matrix of W whose element wij is 0 if yij is

known, and is 1 if yij is unknown.

Finally, we update the Lagrange multiplier Λ as follows:

Λ = Λ + β(D − PX). (4.63)

Based on the previous analysis, we can derive a robust orthogonal matrix fac-

torization (ROMF) algorithm and it is summarized in Algorithm 5. Note that

we can slightly change the algorithm by inserting an inner loop similar to RPCA

methods [43], such that we solve for P , X, and D iteratively until they converge in

the inner loop, to find a solution elaborately. In the algorithm, we have assumed

a normalized observation matrix. Hence, the output matrices P and X can be

obtained by rescaling them using the scaling factor. We have found empirically

that the algorithm is not sensitive to the choice of initial values. For all results

shown in Section 4.2.3, the initial values are all set to zero matrices.

For a real-world application whose elements have nonnegative values, we en-
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Algorithm 5 Robust orthogonal matrix factorization (ROMF)

1: Input: Y ∈ Rm×n, r, ρ, β = β0
‖Y ‖∞ , βmax = 1010, and λ = 10−3

2: Output: P ∈ Rm×r, X ∈ Rr×n

3: Initialization: P,X,D,Λ are all zeros

4: Normalization: Y ← Y/||Y ||∞

5: while not converged do

6: Update P using (4.58)

7: Update X using (4.60)

8: Update D using (4.62)

9: Update the Lagrange multiplier Λ using (4.63)

10: β = min(ρβ, βmax)

11: Check the convergence condition (4.65)

12: end while

13: Re-scale P and X

force a lower bound for matrix D at each iteration as follows7:
Dij = 0 if Dij ≤ 0,

Dij = Dij if Dij > 0.

(4.64)

Based on this technique, we obtain better performance empirically when approx-

imating a nonnegative matrix.

In our algorithm, we set the stopping criterion as follows:

||D(t) − P (t)X(t)||1
||Y ||1

< θ, (4.65)

7Note that the proposed method is not exactly the same as the nonnegative matrix factor-

ization (NMF) methods since NMF enforces the nonnegative constraint for P and X instead of

D. But, we borrow the concept from NMF, such that the proposed method can be applied to

find a nonnegative low-rank representation.
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where t is the number of iterations and θ is a small positive number. Since it is

enough for the algorithm to achieve a nearly stationary point when the difference

between the terminating cost of adjacent iterations becomes small, we set the

stopping condition as θ = 10−5. Here, we compute the whole elements of D

including elements corresponding to the unknown entries.

To the best of our knowledge, there is no solid convergence proof for the

nonconvex problem (4.53). Shen et al. [11] showed that a nonconvex problem

based on a bilinear multiplication under the l1-norm can achieve a local op-

timality using the KKT optimality conditions. But, it is difficult to show the

convergence of the proposed algorithm due to its nonconvex cost function and

the orthogonality constraint. Although it is difficult to guarantee the conver-

gence to a local minimum, an empirical evidence suggests that the proposed

algorithm has a strong convergence behavior. Figure 4.6 shows cost values of

the proposed method at each iteration for three examples (500 × 500, 1000 ×

1000, and 2000 × 2000) described in Section 4.2.3. We have scaled cost values as

(||W�(Y −PX)||1+ λ
2 ||X||

2
F )/||W�Y ||1 in order to display three cases under the

same scale. As shown in the figure, the cost value of proposed method (ROMF)

decreases fast and converges to a stationary point in a small number of iterations.

4.2.2 Rank estimation for ROMF (ROMF-RE)

Although low-rank matrix approximation based on the fixed-rank factorization

is suitable for problems with known ranks, such as structure from motion prob-

lems, there are problems for which the target rank is not available. A good rank

estimation is essential for low-rank matrix factorization for problems whose rank

is unknown. But, there are few methods considering this issue. Cabral et al. [22]

suggested a rank continuation strategy, but it is time consuming task because it
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Figure 4.6: Scaled cost values at each iteration of the proposed algorithm for

three examples (500 × 500, 1000 × 1000, 2000 × 2000).

performs an additional SVD operation at each iteration, which results in much

higher complexity than its fixed-rank optimization algorithm. In this section, we

describe a rank estimation extension of the proposed method to handle prob-

lems with unknown ranks from the algorithm described in Section 4.2.3 without

additional increase in its computational complexity.

Suppose that r0 is an initial rank which is relatively large compared with the

exact rank r? (r0 > r?) . From the initial rank r0, we solve the orthogonal

Procrustes problem using singular value decomposition (SVD) in the proposed

algorithm and check the singular values of diagonal matrix Σ. Note that we do not

need additional methods or time consuming computations to estimate the rank

information in the algorithm. We can detect the largest drop between adjacent

singular values from SVD and this gives a rank estimate such that the largest

difference is larger than a minimum threshold θmin as follows:

diff(SVs) = |σi − σj | ≥ θmin, (4.66)
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where i and j are the adjacent indexes satisfying the largest drop. It should be

clear that if the algorithm converges to a well-conditioned low-rank solution, then

SVD will eventually give a correct answer provided that a proper thresholding

value is used [11]. The overall procedure of the rank estimation based robust

orthogonal matrix factorization algorithm (ROMF-RE) is described as Algorithm

6.

Algorithm 6 ROMF-RE

1: Input: Y ∈ Rm×n, ρ, β = β0
‖Y ‖∞ , βmax, and λ = 10−3

2: Output: P ∈ Rm×r∗ , X ∈ Rr∗×n with output rank r∗

3: Initialization: P,X,D,Λ are all zeros; initial rank r0

4: Normalization: Y ← Y/||Y ||∞

5: while not converged do

6: Update P,X,D using (4.58), (4.60), (4.62), respectively

7: if # of iterations > θc then

8: Find the most reduced point between singular values satisfying diff(SVs)

≥ θmin

9: Reduced rank: r′

10: Update P = P1:r′ and X = X1:r′

11: end if

12: Update the Lagrange multiplier Λ using (4.63)

13: β = min(ρβ, βmax)

14: Check the convergence condition (4.65)

15: end while

16: Re-scale P and X with final rank r∗

We used the threshold θmin as 10% of the next singular value, i.e., 1
10σj , satisfy-

ing the largest drop in our experiments. While the RPCA methods find the rank
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using the soft-thresholding [43], the proposed rank estimation technique finds the

rank using a simple thresholding based on singular values obtained from SVD.

Since we estimate the rank after a small number of iterations θc, the rank estima-

tion step does not increase the total running time of the algorithm significantly.

We verify that this simple technique is sufficient to obtain exact solutions in

Section 4.2.3 and compare our approach to RPCA.

4.2.3 Experimental results

We evaluated the performance of the proposed method, ROMF, by experimenting

with various real-world problems: giraffe [74] and shark [13] sequences for non-

rigid motion estimation, the MovieLens dataset [41] for collaborative filtering

(CF), and Hall [35], PETS2009 [89] , and Wallflower [90] datasets for background

modeling. We compared the proposed algorithm to the state-of-the-art l1-norm

based low-rank matrix approximation methods, ALADM8 [11], Regl1-ALM9 [49],

Unifying [22], l1-ARGA, and l1-ARGD [21]. All algorithms listed above can han-

dle missing data and give better performance for practical applications than rank

estimation based methods [43, 35], in terms of the reconstruction error and execu-

tion time [11, 49]. We also compared ROMF-RE to the rank estimation methods,

i.e., IALM, EALM10 [43, 35], and ROSL [12] for synthetic and background mod-

eling examples in the presence of outliers. We also compared with l1-ALP [10] for

non-rigid motion estimation problems, APG11 [41] for CF tasks, and nonnegative

matrix factorization (NMF)12 [91] for background modeling problems.

We set the parameters of the proposed method as ρ = 1.3 and β0 = 0.5 for

8http://lmafit.blogs.rice.edu/
9https://sites.google.com/site/yinqiangzheng/

10http://perception.csl.illinois.edu/matrix-rank/sample_code.html/
11http://perception.csl.illinois.edu/matrix-rank/sample_code.html/
12http://www.csie.ntu.edu.tw/~cjlin/nmf/
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synthetic and background modeling problems and ρ = 1.1 and β0 = 2× 10−2 for

non-rigid motion estimation and CF problems. The trace-norm regularizer λ of

Regl1-ALM [49] was set to 10 with ρ = 1.05, which gave the best performance

on average in the experiments, unless noted otherwise. The maximum number of

inner loops of Regl1-ALM was set to 100 as stated in [49]. We set the parameters

of Unifying [22] to have the best performance according to problems. We set the

parameters of ALADM, l1-ARGA, and l1-ARGD as described in [11] and [21],

respectively, and initial values for l1-ALP are chosen randomly.

Synthetic data

First, we applied the proposed method to synthetic examples with outliers and

missing data, which is a matrix completion problem. We generated an m × r

matrix B and an r × n matrix C whose elements are random samples from

the Gaussian distribution with zero mean and unit variance. We also generated

an m × n noise matrix N using the Gaussian distribution with zero mean and

variance of 0.01. Letting Y0 = BC+N , we constructed an observation matrix Y by

replacing 20% of randomly selected entries of 20% of randomly selected columns in

Y0 by outliers, which were uniformly distributed in the range of [−40, 40]. We also

randomly selected 20% of elements of Y as missing. We generated five test sets:

1, 000× 1, 000, 2, 000× 2, 000, 5, 000× 5, 000, 8, 000× 8, 000, and 10, 000× 10, 000.

We set the rank of each test data matrix as r = dmin(m,n) × 0.08e. For Regl1-

ALM, we set ρ = 1.2 for synthetic problems. In the experiment, the average

reconstruction error ESyn is calculated as

ESyn =
1

n
||Mgt −M lr||1, (4.67)

where n is the number of samples, Mgt = BC is the ground truth, and M lr is

the low-rank matrix approximated by the applied algorithm.
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Table 4.9: Average performance for synthetic problems in the presence of outliers

and missing data.

m=n=1,000 m=n=2,000 m=n=5,000 m=n=8,000 m=n=10,000

Algorithm ESyn Time ESyn Time ESyn Time ESyn Time ESyn Time

ROMF 4.71 2.619 9.54 12.28 23.98 100.78 37.88 313.78 47.54 560.05

Unifying 4.75 6.363 9.50 30.31 23.77 256.20 37.98 815.89 47.54 1403.56

l1-ARGA 9.70 11.28 19.01 44.56 47.41 294.76 75.56 919.68 92.76 1592.3

l1-ARGD 5.34 3.296 10.10 12.50 25.75 106.44 41.25 290.83 50.46 548.46

Regl1-ALM 7.53 52.04 14.66 261.79 42.75 2300.5 107.95 7869.4 193.83 13753.9

ALADM 8.80 1.417 16.10 7.03 44.62 54.48 66.74 174.05 82.16 303.69

The average reconstruction errors and execution times (in seconds) are shown

in Table 4.9. We could not evaluate l1-ALP for this experiment because of its

heavy execution time. In the table, the proposed method, ROMF, gives the best

performance in terms of reconstruction errors and execution times. Although

ALADM requires a shorter execution time compared to the proposed method, it

performs very poorly in terms of the reconstruction error. The proposed method

is superior to other methods, especially for large-scale problems. l1-ARGD shows

slightly lower performance than the proposed method with respect to both the

reconstruction error and execution time. Unifying gives similar reconstruction

results to the proposed method, but it takes more computation time than that of

the proposed method. In the experiment, Regl1-ALM takes about 34 times longer

on average than the proposed method and it gives poor performance for the case

with size 10, 000× 10, 000, hence, it is not suitable for a large-scale problem.

In order to validate the performance of the proposed method under different

settings of parameters β13 and ρ, we performed an experiment for a 1,000×1,000

synthetic matrix with some outliers similar to the previous experiment. We com-

13Note that we used values of β directly from the range of [10−2, 0.7], without dividing it by

‖Y ‖∞, for fair comparison in this experiment.
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Figure 4.7: Reconstruction results according to variations of two parameters (ρ

and β) for three methods (ROMF, ALADM [11], and Unifying [22]).

pared with two other methods, ALADM [11] and Unifying [22], which are based

on the ALM framework and showed good performance in the previous examples.

Figure 4.7 shows the reconstruction results with respect to various values of β

and ρ. All methods find a good solution when β is between 0.3 and 0.5. Overall,

the proposed method shows better results than the compared methods on average

at different values of β and ρ. Especially, it finds the best solution even when β

is lower than 0.3. It shows that the proposed method is less sensitive to changes

in parameters than other methods.

We also applied the proposed method to synthetic examples in the presence of

outliers without missing data to compare with the rank minimization methods,

IALM and EALM [43, 35], including five fixed-rank approximation methods listed

above. We generated Y0 as before and constructed an observation matrix Y by

replacing 20% of randomly selected entries of 20% of randomly selected columns

in Y0 by outliers, which were uniformly distributed in the range of [−20, 20]. We
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generated six test sets with sizes same as the previous example and set the rank

of each data matrix as before. All entries are known and all entries of the weight

matrix W are one. We set the global parameter for IALM and EALM as described

in [35].

Figure 4.8 shows average reconstruction errors and execution times (in seconds)

of different algorithms. Similar to the case with outliers and missing entries, the

proposed method outperforms the other methods with respect to the reconstruc-

tion error in all cases. We could not evaluate the IALM and EALM for large

scale experiments since they require much longer computation times. Although

Regl1-ALM shows the similar performance compared with the proposed method,

it takes a longer computation time to get a good solution and shows poor per-

formance for large-scale problems. Similar to the previous examples as shown

in Table 4.9, Unifying finds the best solution along with ROMF but requires a

longer computation time than that of ROMF. The computing time of l1-ARGD

and ALADM are faster than ROMF, but they give poorer performance than

ROMF.

Non-rigid motion estimation

Non-rigid motion estimation [46, 13, 47] in the presence of missing data from

image sequences can be considered as a low-rank approximation problem us-

ing fixed-rank matrix factorization. In this problem, the proposed robust matrix

factorization method based on the l1-norm can be applied to restore 2D tracks

contaminated by outliers and missing data. We conducted two experiments using

the well-known benchmark datasets: giraffe [74] and shark [13] sequences. The

giraffe sequence14 consists of 166 tracked points in 120 frames. The data size

14http://www.robots.ox.ac.uk/~abm/
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Figure 4.8: Average performances for synthetic problems in the presence of cor-

ruptions. (a) Average reconstruction errors with random outliers for various data

sizes. (b) Average execution times for various data sizes.
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is 240 × 166 and 30.24% of entries are missing. To demonstrate the robustness

and efficiency of the proposed method, we replaced 5% of the randomly selected

points in a frame by outliers in the range of [−50, 50], whereas the data points

are in the range of [127, 523]. In other experiments, we constructed the data by

replacing 10% and 15% of points in a frame by outliers, respectively. The number

of shape bases was set to two, which gave a matrix of rank 6 = 2 × 3 (for x, y,

and z coordinates). For non-rigid motion estimation problems, we computed the

mean absolute error (MAE) over the observed entries as

ESFM =
||W � (Mgt −M lr)||1∑

i,jWij
. (4.68)

The result for the giraffe sequence in the presence of various outlier levels (0% ∼

15%) is shown in Table 4.10. The table also includes the case when no outliers

are added. As shown in the table, ROMF gives the best performance regardless

of the outlier ratio with fast running times. Although ALADM shows a similar

reconstruction error to the proposed method when there is no outlier, the dif-

ference between them gets larger when the outlier ratio increases. Regl1-ALM

gives competitive performance compared to ROMF when there are many out-

liers, but it requires a longer computation time. l1-ARGA and l1-ARGD shows

a higher reconstruction error than the proposed method. l1-ALP requires the

longest execution time and returns a poor reconstruction result when the outlier

ratio increases.

We also performed the non-rigid motion estimation problem using the shark

sequence [13] which consists of 91 tracked points for each non-rigid shark shape

in 240 frames. In this data, we examine how robust the proposed method is for

various missing ratios in the presence of outliers. We replaced 5% of the points

in each frame by outliers in the range of [−1000, 1000], whereas the data points

were located in the range of [−105, 105]. Likewise, we replaced 10% and 15% of
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Table 4.10: Reconstruction results for the giraffe sequence in the presence of

additional outliers.

no outliers 5% outliers 10% outliers 15% outliers

Algorithm ESFM Time ESFM Time ESFM Time ESFM Time

ROMF 0.294 0.092 0.397 0.098 0.596 0.104 1.442 0.101

Unifying 0.302 0.088 0.463 0.089 1.116 0.098 2.001 0.097

l1-ARGA 0.638 3.05 0.697 2.239 0.780 1.450 1.345 1.449

l1-ARGD 0.491 0.603 0.531 0.611 1.461 0.671 3.214 0.691

Regl1-ALM 0.606 21.78 0.653 19.301 0.673 18.517 0.808 18.517

ALADM 0.387 0.064 1.379 0.060 3.199 0.061 7.702 0.061

the points in each frame by outliers. We set 10% of tracked points as missing in

each frame. The number of shape basis for each coordinate was set to two, thus

it can be formulated as a rank-6 approximation problem.

Average reconstruction errors at various outlier ratios by different methods are

shown in Figure 4.9. As shown in the figure, the proposed method gives good per-

formance compared to other algorithms, except l1-ARGA. In this case, gradient

based methods using the l1-norm find good solutions. Although l1-ARGA gives

excellent performance than the proposed method in the presence of outliers, its

performance is worse than the proposed method when there are fewer outliers.

Unifying finds a suboptimal solution compared to the proposed method on aver-

age in this problem. Although Regl1-ALM and ALADM give good reconstruction

results when the number of missing data points is small, its performance gets

worse as the missing data ratio increases. It is interesting to notice that Regl1-

ALM sometimes finds a solution whose rank is five for this rank-6 problem. This

is due to the fact that Regl1-ALM minimizes the nuclear-norm of PX, making the

method unsuitable for fixed-rank approximation problems. The execution times

of the methods are 0.039 sec for the proposed method, 0.026 sec for Unifying,
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Figure 4.9: Average reconstruction errors at various missing ratios for the shark

sequence by different algorithms.

0.528 sec for l1-ARGA, 0.073 sec for l1-ARGD, 1.866 sec for Regl1-ALM, and

0.074 sec for ALADM, respectively, for the case with 20% missing data. For an-

other experiment, we replaced 10% of the points in each frame by outliers and

set from 0% to 60% of tracked points as missing in each frame. The reconstruc-

tion results for the 5-th frame are shown in Figure 4.10. From the figure, we can

observe excellent reconstruction results by the proposed method against missing

data and outliers compared to the other approaches.

Collaborative filtering

We conducted two collaborative filtering (CF) problems. Low-rank matrix fac-

torization is a common tool for CF problems and has shown successful results

[1, 41]. We used two popular recommendation system datasets, MovieLens100K

and MovieLens1M15. MovieLens100K consists of 100,000 observation ratings from

15http://www.grouplens.org/node/73
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Figure 4.10: Some reconstruction results from the Shark sequence by different

methods. Each row shows the result of each method. From top to bottom: the

proposed method, Unifying [22], l1-ARGA [21], l1-ARGD [21], Regl1-ALM [49],

and ALADM [11]. Each column represents the result according to the different

missing ratio.

943 users for 1,682 movies, hence, the data size is 943 × 1, 682 and has 6.3%

sparsity. Ratings are integer-valued ranging from one to five, and no ratings are

missing. MovieLens1M consists of one million ratings from 6,040 users for 3,952

movies which leads to an observation matrix of size 6, 040 × 3, 952 with 4.2%

sparsity. We did not experiment the largest dataset, MovieLens10M, whose size

is 71, 567 × 10, 674, due to the memory limitation of the PC used in the experi-
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Table 4.11: Reconstruction results for two CF problems.

MovieLens100K MovieLens1M

Algorithm ECF Time (sec) ECF Time (sec)

ROMF 0.1702 6.848 0.1587 96.47

l1-ARGA 0.1797 45.035 0.1637 674.74

l1-ARGD 0.1709 20.468 0.1596 264.05

Regl1-ALM 0.1738 261.44 0.1591 3952.49

ALADM 0.1861 1.507 0.1843 20.90

APG 0.1921 4.375 0.1997 98.049

ment.

Given the observation data, we split the data into training and test datasets

by randomly selecting 90% as a training set and remaining 10% as a test set. In

this experiment, we used the normalized mean absolute error (NMAE):

ECF =
ESFM

dmax − dmin
, (4.69)

where dmax and dmin are the upper and lower bound of ratings to measure the

performance. We set the number of inner loops of Regl1-ALM to 10 because of

the time limitation.

Table 4.11 shows the estimation results of the proposed method compared to

other methods: l1-ARGA [21], l1-ARGD [21], Regl1-ALM [49], ALADM [11], and

APG [41]. We set the rank r to three for MovieLens100K and five for Movie-

Lens1M. In the table, the proposed method, ROMF, gives the best estimation

results with shorter execution times for both datasets. Although ALADM is about

four times faster than ROMF, it shows worse estimation results than ROMF in

all experiments while Regl1-ALM takes a very long time to obtain a solution. l1-

ARGD gives the similar reconstruction results compared to the proposed method,

but it takes a longer computation time than the proposed method. APG shows

the worst results among the methods tried in this experiment. This result is sim-
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ilar to the results reported in [41], which reports 0.193 for MovieLens100K and

0.194 for MovieLens1M, using randomly chosen subsamples.

Background modeling

Modeling background from a video sequence is an important step to separate

foreground objects from background and applied to many applications, includ-

ing video surveillance, traffic monitoring, and abnormal behavior detection [92].

A background modeling task can be considered as a low-rank matrix approxi-

mation problem [41, 35]. We used three benchmark video datasets: Hall16 [35],

PETS200917 [89], and Wallflower18 [90] datasets. The Wallflower dataset is used

to compare different methods quantitatively since it provides the ground-truth

data as well.

The Hall dataset is a sequence of 200 frames taken in a hall of a business build-

ing. The frame size is 176 × 144 and the whole data size is 25,344 × 200. We con-

verted color images into gray-scale images and performed the proposed method

compared with other fixed-rank matrix approximation methods: l1-ARGD [21],

NMF [91], Regl1-ALM [49], and ALADM [11]. The rank r of the fixed-rank ap-

proximation methods was set to 3. Figure 4.11 shows the background modeling

results of the methods for two selected frames. From the figure, the proposed

method successfully decomposes into background and foreground images, while

some of other methods (NMF, Regl1-ALM, and ALADM) shows afterimages in

the estimated background image (see the second column of Figure 4.11). l1-ARGD

and Unifying shows good separation results which are comparable to ROMF.

16http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html/
17http://http://www.cvg.rdg.ac.uk/PETS2009/a.html/
18http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.

htm/
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Figure 4.11: Background modeling results of the proposed method, l1-ARGD,

Unifying, NMF, Regl1-ALM, and ALADM (Hall dataset). Each algorithm de-

composes the original image into background and foreground images.

We also compared the proposed method with the rank estimation methods

(IALM, EALM [43], and ROSL [12]). In this experiment, the proposed method

used the rank estimation technique, ROMF-RE, described in Section 4.2.2. We

set the initial rank r0 to three times of r in this problem. We set the parameter

of IALM, EALM, and ROSL as described in [35]. Figure 4.12 shows the back-

ground modeling results of the rank estimation methods. All methods separated

foreground from background in all cases. However, ROSL sometimes finds a sub-
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Figure 4.12: Background modeling results of ROMF, IALM, EALM, and ROSL

(Hall dataset). Each algorithm decomposes the original image into background

and foreground images.

optimal solution as shown in the first frame in Figure 4.12. In common with rank

minimization methods, the proposed method using rank estimation technique has

successfully found good solutions.

The PETS2009 dataset is a sequence of 221 frames taken in a school. Unlike

the previous experiment, we used the color image of the PETS2009 dataset as it

is. The frame size is 576 × 768 and the stacked data size is 442,368 × 221 for each

channel. In this case, the proposed method with a rank estimation is compared

to two selected rank estimation methods (IALM and ROSL). Figure 4.13 shows

the separation results. As shown in the figure, IALM fails to separate background

and foreground correctly while the proposed method separates background and

foreground exactly. ROSL seems to find a background image very well, but it fail

to find a foreground image as shown in the figure.
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Figure 4.13: Background modeling results of ROMF, IALM, and ROSL

(PETS2009 dataset). Each algorithm decomposes the original image into back-

ground and foreground images.

For the Wallflower dataset, we used the Bootstrapping sequence which consists

of several minutes of an overhead view of a cafeteria [90]. The sequence has no

separate data for background modeling [90] and more complex than other se-

quences in the Wallflower dataset. We selected first 300 frames as an observation.

The 300th frame comes with a foreground ground-truth image and this frame

is used to compute the background modeling performance of each algorithm in

terms of precision and recall. Figure 4.14 shows an example of the 300th frame

image with its corresponding ground-truth mask. The frame size is 160×120 and

the whole dataset is 19,200×300. We converted images into gray-scale images

and added a mean-zero unit variance Gaussian noise to 25% pixels which are

selected randomly. The rank of factorization methods was set to 2. For quantita-

tive comparison, pixel-wise thresholding and mathematical morphology (closing)

were performed for foreground images extracted from each method. The final

foreground mask after post-processing was used to compute the precision and
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Figure 4.14: An image from the Bootstrapping sequence and its ground truth

mask.

recall as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (4.70)

where TP is the number of correctly estimated foreground pixels, FP is the

number of background pixels that are wrongly estimated as foreground, and FN

is the number of foreground pixels that are wrongly estimated as background.

Figure 4.15 shows precision-recall curves of different methods, including two pro-

posed methods, for the Bootstrapping sequence. The proposed method, ROMF,

outperforms other methods especially when the precision is lower than 0.85. Al-

though ROMF with rank estimation, ROMF-RE, shows a moderate improvement

when precision is low, it shows good performance on average. The l1-norm based

approaches (l1-ARGD, ALADM, and Regl1-ALM) show poor performance.

The required computation times of all methods for three datasets are shown in

Table 4.12. For the PETS2009 dataset, we compared execution times using a sin-

gle channel. For Hall and Bootstrapping datasets, we compared execution times

for gray-scale images. The proposed method shows the second fastest computa-

tion time on average except NMF, which is an l2-norm base approach. In addition,

ROMF-RE requires a longer computation time than ROMF since it needs addi-
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Figure 4.15: Precision-recall curves of different methods for the Bootstrapping

dataset.

tional operations, but the difference is relatively small. Although ALADM gives

the fastest computation time of all l1-norm base methods, it sometimes fails to

provide good approximations compared to other methods.

4.3 Structured Low-Rank Representation

19The previous algorithms in this chapter generally solve an unstructured matrix

with a column- or row-wise low-rank assumption. However, what if an observa-

19This section is based on the paper appeared in IEEE International Conference on Robotics

and Automation: “Structured Low-Rank Matrix Approximation in Gaussian Process Regression

for Autonomous Robot Navigation” [93].
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Table 4.12: Comparison of execution times (sec) of all methods for background

modeling.

Algorithm Hall (25,344×200) PETS2009 (442,368×221) Bootstrapping (19,200×300)

ROMF 7.019 133.02 5.536

ROMF-RE 9.250 230.80 7.433

l1-ARGD 6.442 147.78 25.354

Unifying 38.487 622.66 24.669

NMF 1.891 81.45 1.039

IALM 18.791 298.92 27.342

EALM 468.960 21354.31 1950.97

ROSL 10.316 193.10 5.954

Regl1-ALM 161.720 3348.83 208.28

ALADM 4.780 86.76 3.219

tion matrix or a problem at interest is structured situation unlike the previous

cases? In this section, we address a general matrix approximation problem where

an observation is structured condition or a kernel matrix. We first discuss a ker-

nel subspace learning problem as a basic problem. Then, we propose a novel

factorization-based robust structured kernel subspace learning with low-rank as-

sumption. We apply the proposed learning algorithm to Gaussian process regres-

sion (GPR) which is a important method based on a kernel matrix. The proposed

method based GPR, named FactGP, is applied to various regression and motion

prediction problems in simulation to demonstrate its robustness against outliers.

4.3.1 Kernel subspace learning

To reduce the computational cost of inverting the kernel matrix Λ in (2.15),

a number of approximation methods have been proposed, including Incomplete

Cholesky Factorization (ICF) [94] and the Nyström method [95]. In this section,

we consider low-rank kernel matrix approximation to invoke robustness in the

presence of noises or outliers, which is also known as kernel principal component
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analysis [96]. It has been attracted much attention for a wide range of problems

in order to efficiently process a large quantity of data and to discover a hidden

low-dimensional structure based on the Euclidean distance (l2-norm).

The main idea behind the kernel-based approximation method is that, by using

a kernel function, the original linear operations of principal component analysis

(PCA) are performed in a high-dimensional Hilbert space [96]. Performing linear

PCA in a high-dimensional space has an effect of performing nonlinear PCA

in the original input space [96]. Hence, we can apply low-rank kernel matrix

approximation to reduce the computation load of Λ in (2.15) to speed up the

kernel machine.

Suppose that a nonlinear function Φ : Rnx → X is a mapping from the input

space Rnx with dimension nx to a high-dimensional feature space X. Then, for

centered data x1, . . . ,xn, the covariance matrix in X is

C =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T

and the eigenvector v with nonzero eigenvalue of C can be represented as v =∑n
i=1 βiΦ(xi). The coefficients β = [β1 · · ·βn]T can be found by solving the fol-

lowing eigenvalue problem [96]:

Kβ = nλβ, (4.71)

where K is a kernel matrix such that [K]ij = 〈Φ(xi),Φ(xj)〉. It follows that

principle components in X can be extracted using top r largest eigenvectors, vk

for k = 1, . . . , r, over the entire eigenvectors of K based on their corresponding

eigenvalues which are computed using coefficients found from (4.71) with a proper

normalization. Hence, we can effectively represent a kernel matrix using a subset

of eigenvectors with r largest eigenvalues.
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Given the eigenvalue decomposition ofK = RΣRT , where Σ = diag(λ1, · · · , λn)

is a diagonal matrix of eigenvalues of K, such that λ1 ≥ · · · ≥ λn, we can ap-

proximate the inverse of K as follows:

K−1 = (RΣRT )−1 = RΣ−1RT ≈ R̃R̃T , (4.72)

where R̃ = RrΣ
− 1

2
r . Here, Rr ∈ Rn×r collects the first r vectors from R and

Σr = diag(λ1, · · · , λr) ∈ Rr×r is a diagonal matrix of r largest eigenvalues. Hence,

we can reformulate (2.15) by treating Λ as K in (4.72) as

y∗ = kT∗ Λy ≈ kT∗ R̃R̃Ty = k̃T∗ ỹ, (4.73)

where k̃T∗ = kT∗ R̃ is a kernel vector which is projected into the orthogonal feature

space R̃ and ỹ = R̃Ty is a projected output vector into R̃. This means that the

low-dimensional approximation of a kernel matrix can be applied to Gaussian

process regression problems by using k̃∗ and ỹ which are projected on R̃, and

the inverse of a kernel matrix becomes an identity matrix which represents the

independent relationship between basis vectors. Hence, (4.73) can be another

representation of y∗ in the dimensionally reduced orthogonal feature space R̃.

Figure 4.16 shows the concept of the proposed method using low-rank kernel

matrix approximation.

In addition, Λ can be approximated by a conventional low-rank approxima-

tion method which transforms data into a low-dimensional subspace which max-

imizes the variance of the given data based on the Euclidean distance (l2-norm).

However, the method is sensitive to outliers because the l2-norm can sometimes

amplify the negative effects of such data. Therefore, l2-norm based low-rank ap-

proximation methods may find projections which are far from the desired solution

due to the corruptions. As an alternative, various methods based on the l1-norm

have been proposed recently and it is known that l1-norm based methods find
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Figure 4.16: A graphical illustration of low-rank kernel matrix approximation.

We can perform the prediction step of Gaussian process regression in the dimen-

sionality reduced feature space.

a sparse solution, which are more robust against outliers [10, 25, 21]. Recently,

Kim et al. [97] approximated a kernel matrix using l1-norm based kernel matrix

factorization for robust autoregressive Gaussian process motion model:

min
U,V

J(U, V ) = ‖K − UV ‖1, (4.74)

where K ∈ Rn×n, U ∈ Rn×r, and V ∈ Rr×n are the kernel, projection, and

coefficient matrices, respectively. Here, we want to find a low-rank representation

UV of K with sparse approximation errors, such that the effects of outliers can

be reduced. However, the optimization technique in [97] may not be proper when

approximating a kernel matrix since the low-rank representation is a bilinear

multiplication and thus may not satisfy the positive semi-definiteness of a kernel

matrix.
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4.3.2 Structured kernel subspace learning in GPR

In this section, we first propose a structured kernel subspace method for approx-

imating a kernel matrix by making sure that the approximated matrix is positive

semi-definite. Then, we describe the overall framework using Gaussian process

regression for modeling motion.

Problem Formulation

For robustness of the proposed method in the presence of erroneous data, we

use robust measures in a cost function. Instead of methods based on the l2-

norm, the proposed method is based on the recent advances in nuclear-norm and

l1-norm minimization, which is also called robust principal component analysis

(RPCA) [35], to reduce the effect of outliers with an automatic rank search.20

Hence, we approximate a kernel matrix using a nuclear-norm regularized l1-norm

minimization problem for robust approximation.

We formulate the problem of nuclear-norm regularized l1-norm minimization

as shown below:

min
P,M

‖K − PMP T ‖1 + λ‖PMP T ‖∗, (4.75)

subject to positive semi-definite matrix M , where K ∈ Rn×n is a kernel or sym-

metric positive semi-definite matrix and P ∈ Rn×r and M ∈ Rr×r are optimiza-

tion variables. ‖ · ‖∗ denotes the nuclear-norm or trace-norm, and λ > 0 is a

regularization parameter. In the cost function, we use the nuclear-norm regular-

20Note that the original RPCA solves the nuclear-norm based optimization problem by iter-

ative thresholding over singular values obtained from singular value decomposition of a mea-

surement matrix, which leads to the automatic rank search. But, the proposed framework fixes

the rank of the target matrix PMPT . Nonetheless, it has an effect of reducing the rank of the

target matrix further from the pre-determined rank.
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izer to minimize the rank of PMP T , an approximation of K, to our desired one by

adjusting the parameter λ since the exact rank is not known. The nuclear-norm

has been used as a convex surrogate for the rank in many rank minimization

problems [98, 35]. This problem is non-convex and its solution can be obtained

using the augmented Lagrangian framework [35].

To reduce the computational complexity and make the convergence faster, it

is reasonable to enforce an orthogonality constraint to the basis matrix P by

shrinking the solution space of P . Based on these observations, we reformulate

the low-rank matrix approximation problem as follows:

min
P,M

‖K − PMP T ‖1 + λ‖M‖∗

s.t. P TP = Ir, M � 0,

(4.76)

where Ir is an r × r identity matrix and M is a positive semi-definite matrix.

By enforcing the orthogonal constraint on P , we can compute only small matrix

M instead of PMP T when computing the nuclear-norm. Figure 4.17 shows an

overview of the proposed structured low-rank matrix approximation method. Due

to the difficulty of solving the problem (4.76) directly, we introduce two auxiliary

variables, D and M̂ , and solve the following problem:

min
P,M,D,M̂

‖K −D‖1 + λ‖M‖∗

s.t. D = PM̂P T , M̂ = M,P TP = Ir,M � 0.

(4.77)

The augmented Lagrangian framework [35] is used to solve (4.77) by converting

the constrained optimization problem into the following unconstrained problem:

L(K,P,M,D, M̂) = ‖K −D‖1 + λ‖M‖∗

+ tr
(

ΛT1 (D − PM̂P T )
)

+ tr
(

ΛT2 (M̂ −M)
)

+
β

2

(
‖D − PM̂P T ‖2F + ‖M̂ −M‖2F

)
,

(4.78)
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Figure 4.17: A graphical illustration of the proposed method. A kernel matrix K

can be approximated by multiplication of P , M , and P T . We can predict future

motions of moving objects using AR-GP based on the rank reduced kernel matrix.

subject to the constraints P TP = Ir and M � 0, where Λ1,Λ2 ∈ Rn×n are

Lagrange multipliers and β > 0 is a small penalty parameter. We apply the

alternating minimization approach iteratively, which estimates one variable while

other variables are held fixed. Each step of the proposed algorithm is described

in the following section.

Algorithm

To solve for M , we fix the other variables and solve the following optimization

problem:

M+ = arg min
M

λ

β
‖M‖∗ +

1

2

∥∥∥∥M̂ −M +
Λ2

β

∥∥∥∥2

F

,

= arg min
M

λ

β
‖M‖∗ +

1

2
‖M −A‖2F , s.t. M � 0,

(4.79)

where A = M̂ − Λ2
β . If A is not a symmetric matrix, we make it a symmetric

matrix by A ← A+AT

2 and find M+. Then, this problem can be solved using
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eigenvalue thresholding (EVT) [99] and its solution is

M+ = Qdiag

[
max

(
γ − λ

β
, 0

)]
QT , (4.80)

where Q and Γ are matrices, which contain eigenvectors and eigenvalues, respec-

tively, from the eigenvalue decomposition of A, i.e., A = QΓQT and Γ = diag(γ).

For D, we solve the following problem:

D+ = arg min
D
‖K −D‖1 + tr

(
ΛT1 (D − PM̂P T )

)
+
β

2
‖D − PM̂P T ‖2F ,

= arg min
D
‖K −D‖1 +

β

2

∥∥∥∥D − PM̂P T +
Λ1

β

∥∥∥∥2

F

,

(4.81)

and the solution can be computed using the shrinkage (soft-thresholding) operator

[35]:

D+ ← K − S
(
K − PM̂P T +

Λ1

β
,

1

β

)
, (4.82)

where S(x, τ) = sgn(x) ·max(|x| − τ, 0) for a variable x.

With other variables fixed, we have the following optimization problem for

finding P :

P+ = arg min
P

tr
(

ΛT1 (D − PM̂P T )
)

+
β

2
‖D − PM̂P T ‖2F ,

= arg min
P

β

2

∥∥∥∥D +
Λ1

β
− PM̂P T

∥∥∥∥2

F

,

(4.83)

subject to P TP = Ir. The above problem is a least square problem with an

orthogonality constraint. Let R = D+ Λ1
β and L = PM̂ , then L can be represented

by L = R(P T )+ = R(P T )T = RP , where (P T )+ is the pseudo-inverse of the

matrix P T . Therefore, from [100], we can obtain the orthogonal matrix P using

the QR factorization of L.
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To update M̂ , we consider the following equation:

M̂+ = arg min
M̂

tr
(

ΛT1 (D − PM̂P T )
)

+ tr
(

ΛT2 (M̂ −M)
)

+
β

2

(
‖D − PM̂P T ‖2F + ‖M̂ −M‖2F

)
,

(4.84)

and its solution is computed by taking a derivative as

M̂+ =
1

2

(
P TDP +

1

β
P TΛ1P +M − 1

β
Λ2

)
. (4.85)

Finally, we update the Lagrange multipliers Λ1 and Λ2 as follows:

Λ1 ← Λ1 + β(D − PM̂P T ),

Λ2 ← Λ2 + β(M̂ −M).

(4.86)

The proposed structured kernel subspace learning algorithm is summarized in

Algorithm 7. Since it is a symmetric positive semi-definite matrix factorization

algorithm, it is named as FactSPSD. In the algorithm, we have assumed a nor-

malized observation matrix. Hence, the output matrices are obtained by rescaling

them using the scaling factor. The alternating minimization order of optimization

variables can be different, but we have empirically found that the order given in

Algorithm 7 shows better results than other orders. We set the initial values to

all zero matrices since the algorithm is not sensitive to the choice of initial val-

ues. We set the parameters of the algorithm as λ = 10−3, β = 10−5, and ρ = 2.

The number of inner iterations of the algorithm (lines 5–10) was set to 10 since

it is enough to converge to a local solution. The stopping criterion (line 13 of

Algorithm 1) is chosen as

‖D − PM̂P T ‖1 < ε or ‖M̂ −M‖1 < ε, (4.87)

and ε = 10−5, which shows good results in our experiments. Although it is difficult

to guarantee the convergence to a local optimal solution, an empirical evidence
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Algorithm 7 FactSPSD(K, r, λ, β, ρ)

1: Input: K ∈ Rn×n, rank r, λ, β, and ρ

2: Output: P ∈ Rn×r and M ∈ Rr×r

3: Initialization: M = P = D = M̂ = 0 and βmax = 1010

4: while not converged do

5: while not converged do

6: Update M by (4.80)

7: Update P ← QR(RP ) where R = D + Λ1
β

8: Update M̂ by (4.85)

9: Update D by (4.82)

10: end while

11: Update the Lagrange multipliers Λ1 and Λ2 by (4.86)

12: Update β = min(ρβ, βmax)

13: Check the convergence condition

14: end while

suggests that the proposed algorithm has a strong convergence behavior and

converges with about 30 iterations of the outer loop.

Based on the structured low-rank approximation of a kernel matrix, we can

derive a robust motion model using Gaussian process regression and it is shown in

Algorithm 8. The algorithm is named as FactGPM since it is based on factorization-

based low-rank kernel matrix approximation applied to Gaussian process regres-

sion. In Algorithm 8, we perform the standard PCA to the resulted low-rank

kernel matrix L (line 7), to remove the inverse operation as in (4.4), reducing

the computational complexity from O(n3) to O(rn2). We precompute the kernel

matrix and its principal components in lines 4–8, and test a new input x∗ given

the principal components R in lines 10–11.

124



Chapter 4. Robust Fixed Low-Rank Representations

Algorithm 8 FactGPM
1: Input: X,y, rank r, and x∗

2: Output: y∗

3: // Training

4: Compute Λ = K + σ2
wI

5: Perform kernel subspace learning:

6: [P,M ] = FactSPSD(Λ, r, λ, β, ρ)

7: L← PMP T

8: Compute R and Σ by performing PCA to L

9: // Testing

10: Compute k∗ = k(x∗, X)

11: Compute y∗ by (4.4)

4.3.3 Experimental results

In this section, we evaluate the performance of the proposed method, FactGPM ,

by experimenting with various datasets and comparing with other well-known

Gaussian process regression methods (SPGP21 [101], PITC [102], GPLasso22 [94],

and PCGP-l1 [97]) along with the standard GP. In our experiments, we used the

radial basis kernel function for all GP methods and hyperparameters are learned

using a conjugate gradient method [66]. The prediction or regression accuracy is

measured by the root mean squared error (RMSE).

Regression problems

First, we tested the proposed structured low-rank matrix approximation method

on a synthetic regression problem. We compared FactGPM to a sparse GP (PITC

21Available at http://www.gatsby.ucl.ac.uk/~snelson/.
22Available at https://www.cs.purdue.edu/homes/alanqi/softwares/softwares.htm.
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[102]) and the full GP [66] to observe how different methods perform in the

presence of corruptions.

Figure 4.18 shows the results from the regression problem with two outlier lev-

els: no outliers and 20% outliers. We also compared the low-rank approximation

methods, FactGPM and PITC, at two different ranks23 (20% and 40% of the size

of the kernel matrix). When there are no outliers, the full GP exactly fits the

reference field but FactGPM and PITC show smooth lines with 20% low-rank

components as shown in Figure 4.18(a). However, the low-rank approximation

methods try to fit the reference field with the larger rank (40%) as shown in Fig-

ure 4.18(b). However, PITC still does not fit the reference very well as it misses

some samples. The proposed method shows its competitiveness compared with

the other GP methods in this regression problem. When we add outliers to ran-

domly selected 20% of data as shown in Figure 4.18(c) and Figure 4.18(d), the

full GP and PITC try to fit outliers, showing large fluctuations. But FactGPM

is less affected by outliers, showing its robustness against outliers. From this ex-

periment, we can see a clear benefit of the proposed low-dimensional learning

method to a regression problem when the training set contains outliers.

We also tested the proposed method using real-world datasets, Pumadyn-8nm

and Kin-8nm24 [94]. Pumadyn-8nm is a dataset which consists of puma forward

dynamics of eight inputs and Kin-8nm consists of the forward kinematics of an

eight-link robot arm. For each dataset, we randomly collected 1,000 training and

800 test samples. To verify the robustness of the proposed method under the

23While PITC is a sparse GPR method, we treat it as a low-rank approximation method since

the rank can be considered as a generalization of sparsity for two-dimensional data.
24Available at http://www.cs.toronto.edu/~delve/methods/mars3.6-bag-1/mars3.

6-bag-1.html. Both datasets are frequently used to measure the performance of different

Gaussian process regression methods.
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Figure 4.18: Simulation results on a synthetic example with and without outliers.

FactGPM and PITC use kernel matrices whose ranks are either 20% or 40% of

the size of the original kernel matrix. (a) No outliers with 20% low-rank. (b) No

outliers with 40% low-rank. (c) 20% outliers with 20% low-rank. (c) 20% outliers

with 40% low-rank.
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Figure 4.19: Regression results of the proposed method compared with other GP

methods for two benchmark datasets: (a) Pumadyn-8nm, (b) Kin-8nm.

existence of various outliers, we added 30% outliers which are randomly selected

from [-25, 25], whereas data values are usually in the range of [-2, 2]. The simu-

lation results of the proposed method compared with other sparse GPR methods

(SPGP [101], PITC [102], and GPLasso [94]) for various basis ratios (from 10%

to 50%) are shown in Figure 4.19. As shown in Figure 4.19(a), the proposed

method gives the lowest error among the methods regardless of the basis condi-

tions. Especially, it shows better performance than the full GP, whereas sparse

GPR methods show higher error than the full GP for some cases when the basis

ratio is small. In Figure 4.19(b), the proposed method also gives lower errors than

other sparse GPR methods.

Motion prediction of human trajectories

For the motion prediction experiment, we collected trajectories of moving pedes-

trians using a Pioneer 3DX differential drive mobile robot and a Microsoft Kinect
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(a) (b) (c)

Figure 4.20: (a) A Pioneer 3DX mobile robot with two Kinect cameras and a

notebook. (b) Snapshots from an experiment in a human-robot environment.

First column: a third-person view. Second column: the egocentric view of a robot.

(c) Collected trajectories from Kinect. We show a few trajectories in thick lines

for better visualization.

camera,25 which is mounted on top of the robot as shown in Figure 4.20(a). All

algorithms are written in MATLAB with the mex-compiled ARIA package26 on

a notebook with a 2.5 GHz quad-core CPU and 8 GB RAM. The position of a

pedestrian is detected using the skeleton grab API for Kinect.

We performed experiments in our laboratory to predict the future position of a

person. To model the future positions of a pedestrian, our algorithm is applied to

autoregressive Gaussian process (AR-GP) motion model [67]. Let Dt ∈ R2 be the

position of a moving human at time t. The current velocity, ∆Dt = Dt −Dt−1,

25For the motion prediction experiment, we collected human trajectories using one Microsoft

Kinect camera and the experimental results are shown in Figure 4.21. But, for other experiments,

we used two Kinect cameras to increase the field of view of the robot.
26Available at http://robots.mobilerobots.com/wiki/ARIA.
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Figure 4.21: Motion prediction simulation results using a Kinect camera based

human trajectories: (a) Various basis ratio with 30 percent outliers. (b) Various

outlier ratio with 30 percent basis vectors.

is modeled in AR-GP as follows [67], with an appropriate time scaling:

∆Dt = f(Dt−1, Dt−2, · · · , Dt−p)

∼ GPf (Dt−1, Dt−2, · · · , Dt−p).

(4.88)

Hence, the AR-GP motion model can find the position of a pedestrian at time

t based on p recent positions of the pedestrian with this nonlinear model of an

autoregressive process under the Gaussian process framework.

Figure 4.20(b) shows snapshots from the third-person view and the egocentric

view from a robot. We collected a diverse set of trajectories of pedestrians and

obstacles, which are in the field of view of a robot as shown in Figure 4.20(c).

To make a training set from the collected trajectories, we uniformly sampled

positions to have about ten samples in a trajectory when a trajectory has many

detected positions. From a trajectory which has n positions, we obtain n− p+ 1

input samples where p is the order of an autoregressive motion model, i.e., the

number of past positions. One can model it as a Hankel matrix by shifting one
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point in a trajectory.

We compared the proposed method, FactGPM , with the state-of-the-art ap-

proaches (PCGP-l1 [97], GPLasso [94], and PITC [102]). We divided the collected

trajectories into training and test sets with autoregressive order p = 3. Using the

dataset, we experimented for two cases: (1) various rank (basis) conditions with a

fixed outlier ratio and (2) various outlier conditions with a fixed rank. We added

outliers to randomly selected positions of collected trajectories from [−10, 10],

whereas the datasets are in the range of [−5, 5]. Figure 4.21 shows prediction

errors by tested algorithms for two cases. As shown in Figure 4.21(a), the pro-

posed FactGPM shows the best results compared to other methods in all cases.

PCGP-l1 gives the second best results regardless of the basis ratios. We can inter-

pret that the proposed algorithm approximates the positive semi-definite (PSD)

matrix better than PCGP-l1, since the proposed algorithm can guarantee the

positive semi-definiteness, whereas PCGP-l1 cannot. The RMSE error results for

a fixed rank (r/n × 100 = 30%) under various outlier conditions are shown in

Figure 4.21(b). As shown in the figure, the proposed method gives the best results

regardless of outlier conditions. From two figures, we can see that the proposed

method shows the robustness against outliers, by recovering from measurement

noises and erroneous trajectories. Figure 4.22 shows some snapshots from the mo-

tion prediction experiment using two Microsoft Kinect cameras (field of view of

about 110◦) in our laboratory. The robot performed the nearly exact prediction

of the future positions of pedestrians in real-time.
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4.4 Summary

In this chapter, we have proposed several low-rank representation from unstruc-

tured matrix approximation to structured approximation. We have first proposed

two novel gradient-based methods, l1-ARGA and l1-ARGD, using the alternat-

ing rectified gradient method. For the dual method l1-ARGD, we have proved the

convergence of the algorithm to the subspace-wise local minimum using the global

convergence theorem. We have shown the superiority of the proposed methods

compared to existing algorithms for large-scale problems.

To overcome the previous unregularized algorithms, we have also proposed a

method, ROMF, for efficient fixed-rank factorization with the Frobenius-norm

regularizer and orthogonality constraint. ROMF is constructed under the aug-

mented Lagrangian framework and can address the rank uncertainty issue by

a rank estimation strategy for practical real-world problems. The experimental

results have shown that ROMF outperforms other existing methods including

l1-ARG methods in terms of the approximation error and running time.

Lastly, we have presented a novel optimization formulation for a structured

matrix which is generally symmetric positive semi-definite matrix and finds low-

rank kernel subspace by minimizing a nuclear-norm regularized l1-norm objec-

tive function. The proposed method is applied to various regression and motion

prediction problems in real-world environments. The experimental results have

shown the efficiency and robustness of the proposed method against outliers and

measurement errors.
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Chapter 5

Robust Lower-Rank Subspace

Representations

1In this chapter, our goal is to develop a robust and stable algorithm for find-

ing subspace structures of grossly corrupted data. For this objective, we propose

elastic-net subspace representation based on elastic-net regularization of singular

values of data. The elastic-net method embraces the benefits of both lasso and

ridge regression methods [104, 105, 106, 103], such as automatic variable selec-

tion, continuous shrinkage and thresholding, and selection of groups of correlated

variables. We show that the propose framework allows more stable and efficient

algorithms for subspace representation in the presence of corruptions or missing

entries, due to the strong convexity enforced by the elastic-net regularization.

It is worthwhile to note that while both the proposed method and our main

competitor, lasso-based method [22], use an alternative definition of the nuclear-

1This chapter is based on the following papers:

“Elastic-Net Regularization of Singular Values for Robust Subspace Learning,”, CVPR [19],

“Robust Elastic-Net Subspace Representation”, IEEE TIP [103].
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norm regularizer in order to speed up the algorithms, there are clear differences.

First, the proposed framework is more general than [22] for rank-related problems,

since it can further shrink the singular values under the fixed-rank constraint by

introducing strong convex regularizer, whereas [22] does not perform shrinkage as

it simply employs the alternative variation of the nuclear-norm regularizer, which

makes [22] unstable in the presence of corruptions and produces incorrect results

(see Figure 5.1 for an example). Second, it is possible for the proposed method to

conduct automatic rank estimation by shrinking and suppressing singular values

from the maximum user-defined rank based on the elastic-net regularization of

singular values, whereas it is difficult to conduct elaborate rank estimation using

[22], making it less applicable in practice.

Based on the proposed elastic-net subspace representation framework, we pro-

pose two algorithms: FactEN and ClustEN. FactEN solves a low-rank subspace

learning problem, where data lie in a single low-dimensional subspace, for rank-

specific problems [13, 14, 12]. It is a holistic approach to deal with both bilinear

factorization and rank minimization using elastic-net regularization. ClustEN is a

joint optimization algorithm to solve a general problem, in which data are drawn

from a union of subspaces. It jointly solves subspace clustering and subspace

learning. The advantages of the elastic-net subspace representation algorithms

compared to the state-of-the-art subspace representation algorithms are demon-

strated in an extensive set of experiments.

5.1 Elastic-Net Subspace Representation

The methods described in the previous section solve various instances of subspace

representation problems. Given an observation matrix Y = [y1, ...,yn] ∈ Rm×n,

where samples are drawn from a single subspace or a union of multiple subspaces,
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the goal of subspace representation is to find the underlying subspace structure

of an observation data.

In this chapter, we propose a new approach to solve various subspace repre-

sentation problems using elastic-net regularization. The general framework of our

proposal, where data samples are assumed to be drawn from a union of multi-

ple subspaces, can be formulated as the following optimization problem under

noisy scenarios to learn a dictionary or clean matrix D, an error matrix E, and

a subspace representation matrix C, simultaneously:

min
D,E,C

fW (E) + λΩEN (D,C), s.t. D,E,C ∈ CEN , (5.1)

where fW (E) = ‖W �E‖1 is a weighted l1-norm loss function to handle outliers,

occlusions, and missing entries, and W is a weighting matrix, whose element wij

is 1 if yij is known, and 0 if yij is unknown. When there are no missing entries,

we can also solve the problem by setting the values of all elements of W to one.

ΩEN (D,C) and CEN are defined as

ΩEN (D,C) = ‖D‖∗ + α‖D‖2F + β‖C‖1, (5.2)

CEN = {D,C,E | Y = D + E,D = DC,diag(C) = 0}.

Here, ΩEN consists of the elastic-net regularization over singular values of D

and a subspace representation matrix C to represent the subspace membership

by sparse representation, and CEN is used to enforce the low-rank and noise

matrices separation from the observation matrix Y and self-expressiveness of D.

� is the component-wise multiplication or the Hadamard product.

From the subspace representation problem (5.1), we can consider an important

special case, in which data samples are drawn from a single subspace with fixed

basis vectors (or fixed-rank) by constraining C = I, where I is the identity matrix.
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Then, (5.1) can be reduced to the following problem:

min
D,E

fW (E) + λΩEN (D), s.t. D,E ∈ CEN , (5.3)

where ΩEN (D) = ‖D‖∗+α‖D‖2F and CEN = {D,E | Y = D+E, rank(D) = r}. In

this problem, we enforce the rank of D to r. A fixed-rank approximation problem

appears frequently in rank-related applications, such as background modeling

[12], structure from motion [13], and photometric stereo [14]. The detailed analysis

of this problem (5.3) will be the focus of the next section.

In order to compare with other subspace representation algorithms, we can

consider the following general form:

min
V

floss(V ) + λΩreg(V ), s.t. V ∈ C, (5.4)

where floss, Ωreg, and C are a loss function, regularization function, and constraint

set, respectively. V is a set of optimization variables. By substituting terms in

(5.4), we can represent different problems, such as low-rank matrix factorization

[10], sparse and low-rank matrix separation [35], and subspace clustering [15],

to name a few. For example, with the following substitutions in (5.4), we have

RPCA [35].

floss = ‖E‖1,Ωreg = ‖D‖∗, C = {D,E | Y = D + E}, (5.5)

where Y is an observation matrix and D and E are optimization variables. Table

5.1 shows the comparison of well-known subspace learning and clustering prob-

lems including the proposed subspace representation algorithms according to the

loss function, regularizer, and constraint set. The main difference between the

proposed algorithms and existing methods is that ours are based on singular

value analysis using the elastic-net regularization to estimate exact singular val-

ues with their corresponding singular vectors and reconstruct a clean low-rank

matrix from a corrupted observation.
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In the subsequent sections, we will give detailed analysis for the proposed al-

gorithms, formulated in (5.1) and (5.3).

5.2 Robust Elastic-Net Subspace Learning

5.2.1 Problem formulation

In this section, we first address a low-rank and sparse matrices separation problem

[35, 22], considering missing entries in an observation matrix, based on convex

envelopes of rank and sparsity functions as follows:

min
D

f1(D) + λΩreg, s.t. D ∈ C0, (5.6)

where f1(D) = ‖W � (Y −D)‖1 and Ωreg = ‖D‖∗. Here, C0 = ∅. ‖ · ‖1 and ‖ · ‖∗

denote the entry-wise l1-norm and the nuclear-norm, which are convex relaxation2

of the l0-norm and the rank function, respectively. Note that the regularization

term in (5.6), ‖D‖∗, can be interpreted as a sum of singular values,
∑r

i |σi|,

where σi is the ith singular value of a low-rank matrix D and r is the rank of

D. The nuclear-norm based subproblem in (5.6) can be solved by singular value

thresholding [108], which has both thresholding and shrinkage effect over singular

values of D.

Here, we would like to note that the problem (5.6) can find a suboptimal

solution where the rank of the target matrix is pre-defined as a constant, such

as structure from motion [13], background modeling [12], and photometric stereo

[14]. Furthermore, there is an issue in regard to the computational complexity

due to the SVD operation performed at each iteration to solve a nuclear-norm

2Since a problem based on the l0-norm or rank function is NP-hard, a convex surrogate of

the function is used in practice.
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based cost function. In order to address these issues efficiently, one can consider

the following property of the nuclear-norm [87]:

Lemma 2 ([87]). For any matrix D ∈ Rm×n, the following holds:

‖D‖∗ = min
P,X

1

2

(
‖P‖2F + ‖X‖2F

)
s.t. D = PX. (5.7)

If the rank of D is r ≤ min(m,n), then the minimum solution above is attained

at a factor decomposition D = Pm×rXr×n.

Using Lemma 2, we make an equivalent form of (5.6) as follows:

min
P,X,D

f1(D) +
λ

2

(
‖P‖2F + ‖X‖2F

)
, s.t. D ∈ C, (5.8)

where C = {D,P,X | D = PX}. However, by using the lemma, we have lost the

effect of shrinkage since the singular value thresholding operation is no longer

needed. Even though we have lost the effect of thresholding, the effect remains

in the problem by fixing the rank to r. Moreover, (5.8) is a lasso-based approach

which has weak convexity and, hence, can make an iterative minimization routine

unstable when highly corrupted data are presented. To improve the stability of the

algorithm and give the shrinkage and thresholding effects on the singular values

of D, we introduce a strong convex regularizer for the original cost function (5.6)3

using the l2-norm penalty of singular values:

min
D

f1(D) + λΩEN (D), s.t. D ∈ C, (5.9)

where ΩEN (D) = ‖D‖∗ + α
2 ‖D‖

2
F . Although (5.9) is slightly modified from

(5.3), they are equivalent. Using the fact that ‖D‖∗ =
∑

i |σi| and ‖D‖2F =

3Here, we first give an equivalent form of the original problem (5.6), for a while, instead of

(5.8), to analyze the problem from a theoretical perspective.
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tr(V ΣUTUΣV T ) = tr(Σ2) =
∑

i |σi|2, where D = UΣV T is SVD of D, we have

the following equivalent form to (5.9):

min
D

f1(D) + Jλ1,λ2(Σ), (5.10)

where

Jλ1,λ2(Σ) , λ1

r∑
i

|σi|+
λ2

2

r∑
i

|σi|2, (5.11)

λ1 = λ, and λ2 = αλ.

In (5.11), we have elastic-net regularization of singular values of D, which has

shown its superiority compared to lasso [34] in many applications [104, 106, 105].

It is capable of stabilizing a lasso-type method due to its strong convexity, owing

to the Frobenius norm [104, 106, 109]. By incorporating with Lemma 2, we have

the following equivalent formulation of (5.9):

min
P,X,D

f1(D) +
λ1

2

(
‖P‖2F + ‖X‖2F

)
+
λ2

2
‖D‖2F , (5.12)

and it has both a thresholding effect over singular values from the alternative

definition of Lemma 24 and a shrinkage effect from the l2 regularizer to make a

parsimonious and stable model. In summary, we can achieve both thresholding

and shrinkage effects without performing SVD by introducing a strong convex

regularizer, called elastic-net, to accelerate the computation speed and stably

solve problems.

Note that, without these regularization terms, the problem (5.11) can be solved

using the augmented Lagrangian alternating direction method (ALADM) [11].

There is another approach using a nuclear-norm regularized l1-norm cost function

[49]. It is extended using the alternative definition of the nuclear-norm given in

4Actually, it also gives a hard thresholding effect due to the matrix factorization by the

pre-defined rank.
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Lemma 2 (Unifying5) [22], which does not contain the smoothness term given

in (5.12). However, these methods can find a suboptimal solution since these

alternating minimization based approaches with weak convexity may lead to a

poor solution in the presence of highly corrupted data (see Section 5.4.1). Figure

5.1 shows results of the proposed method compared to Unifying [22], a lasso-based

method, and ground-truth on a simple example (100 × 100) with 20% outliers.

The rank of the ground-truth is five. From the figure, the proposed method gives

a stable result against outliers and eliminates noises by suppressing the singular

values, whereas Unifying finds relatively inaccurate and larger singular values

and shows a poor reconstruction result compared to the proposed method and

the ground-truth.

In general, the problem (5.12) with the low-rank constraint D = PX is a non-

convex and non-smooth problem, making it difficult to find a solution efficiently

and exactly. To solve the problem efficiently, a common strategy is to use an alter-

nating minimization approach which solves for one variable while other variables

are fixed [10]. Hence, we give an equivalent formulation of (5.11) by introducing

an auxiliary variable D̂ and solve the following problem instead.

min
P,X,D,D̂

f1(D̂)+
λ1

2

(
‖P‖2F + ‖X‖2F

)
+
λ2

2
‖D‖2F

s.t. D = PX, D̂ = D.

(5.13)

To solve (5.13), we utilize the augmented Lagrangian framework which converts

(5.13) into an unconstrained problem with Lagrange multipliers Λ1,Λ2 ∈ Rm×n.

5We call the method in [22] as Unifying for simplicity.

143



Chapter 5. Robust Lower-Rank Subspace Representations

(a
)

(b
)

(c
)

F
ig

u
re

5.
1:

E
va

lu
at

io
n

of
th

e
p

ro
p

o
se

d
su

b
sp

ac
e

le
ar

n
in

g
m

et
h

o
d

(F
ac

tE
N

)
an

d
a

la
ss

o-
b

as
ed

m
et

h
o
d

(U
n

if
y
in

g
[2

2]
)

fo
r

a
to

y
ex

am
p

le
.

(a
)

D
at

a
m

at
ri

ce
s

an
d

co
rr

es
p

on
d

in
g

10
la

rg
es

t
si

n
gu

la
r

va
lu

es
fr

om
th

e
gr

ou
n

d
tr

u
th

an
d

n
oi

sy

o
b

se
rv

at
io

n
ar

e
sh

ow
n

in
tw

o
le

ft
co

lu
m

n
s.

R
ec

ov
er

ed
m

at
ri

ce
s

an
d

co
rr

es
p

on
d

in
g

10
la

rg
es

t
si

n
gu

la
r

va
lu

es
b
y

U
n

if
y
in

g

a
n

d
F

ac
tE

N
ar

e
sh

ow
n

in
tw

o
ri

g
h
t

co
lu

m
n

s.
(b

)
O

rd
er

ed
si

n
gu

la
r

va
lu

es
re

co
ve

re
d

b
y

tw
o

al
go

ri
th

m
s

ag
ai

n
st

tr
u

e

si
n

gu
la

r
va

lu
es

.
(c

)
C

a
n

on
ic

al
co

rr
el

at
io

n
s

b
et

w
ee

n
si

n
gu

la
r

ve
ct

or
s

fr
om

ap
p

li
ed

al
go

ri
th

m
s

an
d

tr
u

e
si

n
gu

la
r

ve
ct

or
s.

144



Chapter 5. Robust Lower-Rank Subspace Representations

5.2.2 Algorithm: FactEN

Algorithm

Based on the previous formulation, we develop a method based on the augmented

Lagrangian framework and solve it using an alternating minimization technique

[11]. To solve for P , we fix the other variables and solve the following optimization

problem:

P+ = arg min
P

λ1‖P‖2F + β‖D − PX +
Λ1

β
‖2F , (5.14)

where β > 0 is a small penalty parameter. This optimization problem is a least

square problem and the solution is

P+ = (Λ1 + βD)XT (λ1I + βXXT )−1, (5.15)

where I denotes an identity matrix. Similar to (5.14), X and D can be solved as

follows:

X+ = (λ1I + βP TP )−1P T (Λ1 + βD), (5.16)

D+ =
βPX + βD̂ + Λ2 − Λ1

λ2 + 2β
. (5.17)

We obtain the following equation to solve for D̂,

D̂ = arg min
D̂

f1(D̂) + tr
(

ΛT2 (D̂ −D)
)

+
β

2
‖D̂ −D‖2F , (5.18)

and the solution can be computed using the absolute value thresholding operator

[43, 35, 49]: 
W � D̂+ = W �

(
Y − S

(
Y −D +

Λ2

β
,

1

β

))
,

W � D̂+ = W �
(
D − Λ2

β

)
,

(5.19)
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Algorithm 9 FactEN by ALM for optimizing (5.13)

1: Input: Y ∈ Rm×n, r, β, ρ, and λ1, λ2 = 10−3

2: while not converged do

3: while not converged do

4: Update P,X,D, D̂, respectively

5: end while

6: Update the Lagrange multipliers Λ1,Λ2 using (5.20)

7: β = min(ρβ, βmax)

8: end while

9: Output: P ∈ Rm×r, X ∈ Rr×n, and D ∈ Rm×n

where S(x, τ) = sgn(x) max(|x| − τ, 0) for a variable x and W ∈ Rm×n is a

complementary matrix of W whose element wij is 0 if yij is known, and is 1 if

yij is unknown.

Finally, we update the Lagrange multipliers as

Λ1+ = Λ1 + β(D − PX), Λ2+ = Λ2 + β(D̂ −D). (5.20)

Based on the previous analysis, we derive a robust elastic-net regularized low-

rank matrix factorization algorithm and it is summarized in Algorithm 9. Since

the algorithm is constructed based on elastic-net regularization and solved using

a matrix factorization approach, the proposed method is named as FactEN. In

the algorithm, we have assumed a normalized observation matrix. Thus, the out-

put matrices P and X can be later re-scaled based on initial scaling factor. We

initialize the optimization variables with the Gaussian distribution N (0, 10−3).6

The computational complexity of the inner loop (line 4 in Algorithm 9) is

6Note that we have empirically found that our algorithm is not sensitive to initial values and

finds similar solutions with different initial values.
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O(mnr) for the proposed method, where m, n, and r denote dimensionality, sam-

ple size, and rank, respectively, which is the same as those of Unifying [22] and

ALADM [11]. Since IALM [43] and Regl1-ALM [49] perform an SVD operation at

every iteration, their computational complexities are O(min(m,n) max(m,n)2)

and O(rmax(m,n)2), respectively, requiring more computational efforts than

FactEN. In the algorithm, we can choose βmax by following several works [43, 49]

(e.g., 1020) as a real-valued choice of β for the positive infinite number or very

high upper bound. However, since our algorithm converges within a small number

of iterations (see Figure 5.2), the exact value does not influence the performance

of the proposed method.

Note that the proposed method can be easily extended to speed up the algo-

rithm with linear complexity at each iteration by sampling sub-matrices from a

measurement matrix as described in [12].

Convergence analysis of FactEN

In this section, we analyze the convergence property of the proposed method. Al-

though it is difficult to guarantee its convergence to a local minimum, an empirical

evidence suggests that the proposed algorithm has a strong convergence behavior

(see Figure 5.2). Nevertheless, we provide a proof of weak convergence of FactEN

by showing that under mild conditions any limit point of the iteration sequence

generated by the algorithm is a stationary point that satisfies the Karush-Kuhn-

Tucker (KKT) conditions [110]. The KKT conditions are first order conditions to

be an optimal solution in constrained optimization problems. It is worth proving

that any converging point satisfies the KKT conditions because they are necessary

conditions to be a local optimal solution and give the minimum guarantee about

the convergence behavior of an algorithm when it is nonconvex and thus difficult
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to show the complete convergence. This result provides an assurance about the

behavior of the proposed algorithm.

We rewrite the cost function of FactEN by assuming the fully-observed data

model of (5.13), i.e., Wij = 1 for all i, j, as follows:

min
P,X,D,D̂

f2(D̂) +
λ1

2

(
‖P‖2F + ‖X‖2F

)
+ λ2‖D‖2F

s.t. D = PX, D̂ = D.

(5.21)

where f2(D̂) = ‖Y − D̂‖1. However, a similar result can be derived for the

partially-observed data model.

Let us assume that the proposed algorithm reaches a stationary point. The

KKT conditions for (5.21) are derived as follows:

D − PX = 0, D̂ −D = 0,
∂L
∂P

= λ1P − Λ1X
T = 0,

∂L
∂X

= λ1X − P TΛ1 = 0,
∂L
∂D

= λ2D + Λ1 − Λ2 = 0,

Λ2 ∈ −∂D̂(||Y − D̂||1).

(5.22)

Here, we can obtain the following equation from the the last relationship in (5.22):

Y−D +
Λ2

β
∈ Y −D − 1

β
∂
D̂

(||Y − D̂||1)

= Y − D̂ − 1

β
∂
D̂

(||Y − D̂||1) , Qβ(Y − D̂),

(5.23)

where scalar function Qβ(t) , t− 1
β∂|t| is applied element-wise to Y − D̂. From

[11], we can obtain the following relation:

Y − D̂ = Q−1
β

(
Y −D +

Λ2

β

)
≡ S

(
Y −D +

Λ2

β
,

1

β

)
, (5.24)

where S(x, τ) = sgn(x) max(|x| − τ, 0). Based on these conditions, we prove the

convergence to a point which satisfies the KKT conditions.
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Theorem 2. Let G , (P,X,D, D̂,Λ1,Λ2) and {Gj}∞j=1 be generated by FactEN.

Assume that {Gj}∞j=1 is bounded and limj→∞{Gj+1 −Gj} = 0. Then, any accu-

mulation point of {Gj}∞j=1 satisfies the KKT conditions. In particular, whenever

{Gj}∞j=1 converges, it converges to a KKT point.

Proof. See Appendix E

In our algorithm, we set the stopping criterion as

||D(t) − P (t)X(t)||1
||Y ||1

< θ, (5.25)

where t is the number of iterations and θ is a small positive number. Since it is

enough for the algorithm to achieve a nearly stationary point when the differ-

ence between the terminating cost of adjacent iterations becomes small, we set

the stopping condition as θ = 10−5 in our experiments in Section 5.4.1. Figure

5.2 shows scaled cost values7 of the proposed method at each iteration for four

examples from 500 × 500 to 3,000 × 3,000 with outliers as described in Section

5.4.1. Each point denotes a cost value at each iteration. As shown in the figure,

the cost value of FactEN decreases fast and converges to a stationary point in a

small number of iterations.

7We have scaled cost values as (f1(D̂) + λ1
2

(‖P‖2F + ‖X‖2F ) + λ2
2
‖D‖2F )/‖W � Y ‖1 in order

to display four cases under the same scale.
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Figure 5.2: Scaled cost values of the proposed algorithm at each iteration for

four synthetic examples. The termination of the cost value means the algorithm

reaches to a stationary point in the cost function, which gives an empirical jus-

tification, showing that the proposed algorithm converges to an accumulation

point.
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5.3 Joint Subspace Estimation and Clustering

5.3.1 Problem formulation

The subspace learning method described in the previous section only considers

a single subspace and cannot be applied to datasets, in which data samples are

drawn from a union of multiple subspaces. Hence, in this section, we consider the

general elastic-net subspace representation framework given in (5.1). Handling a

union of multiple subspaces is closely related to a subspace clustering problem

[15], where the goal is to estimate the structure of multiple subspaces by a method

based on a user-defined regularizer, such as the l1-norm for sparse representation

[16], the nuclear-norm for low-rank representation [4], and the Frobenius-norm

for least square regression [111]. While there are many algorithms to identify the

exact structure under noiseless scenarios [16, 4], it is still difficult to find the

precise structure under grossly corrupted scenarios. As a remedy of the issue, we

propose a new joint optimization framework handling both subspace learning and

clustering under the presence of corruptions.

The problem formulation of the unified framework for both subspace learning

and clustering in the presence of corruptions is as follows:

min
D,C

f1(D) + λΩEN (D,C), s.t. D,C ∈ CEN , (5.26)

where ΩEN (D,C) = ΩEN (D) + βΩC(C) and C ∈ Rn×n is a latent matrix to

reveal the structure of multiple subspaces. ΩC(C) = ‖C‖1 and β is a weighting

parameter. Here, CEN = {D,C | D = DC, diag(C) = 0}. The last constraint in

CEN , diag(C) = 0, is used to avoid a trivial solution, i.e., C = I, where I is the

identity matrix. The problem (5.26) can be reduced to the problem (5.9) when

we ignore C and enforce the rank constraint for D. In (5.26), we jointly learn the

outlier-reduced low-rank matrix D and the subspace representation matrix C. A
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similar approach to (5.26) is low-rank subspace clustering (LRSC) [107], which

pursues both subspace estimation and clustering in the presence of outliers.

Notice that we do not factorize the data matrix into basis and coefficient matri-

ces, unlike FactEN in Section 5.2, since the rank of a subspace clustering problem

is generally unknown or difficult to estimate reliably. Hence, we do not apply the

Lemma 2 to (5.26), which means that we do not obtain the computation advan-

tage for this problem. But, the effect of the elastic-net regularization is still valid

for subspace clustering since the elastic-net over singular values is used in the

joint optimization procedure to find a noise-reduced data stably in the presence

of corruptions.

Let us consider a case where all data are observable. But, we can easily extend

to a scenario with missing data. The equivalent problem of (5.26) for a non-

missing scenario with two auxiliary variables D̆ and J is as follows:

min
M,D,D̆,J,C

fc(M) + λ1‖D‖∗ +
λ2

2
‖D̆‖2F + λ3‖J‖1

s.t. D̆ = M,M = D̆C, J = C,D = D̆,diag(J) = 0,

(5.27)

where fc(M) = ‖Y −M‖1 and λ3 = βλ.

5.3.2 Algorithm: ClustEN

From the above formulation, we derive another method based on the augmented

Lagrangian framework with Lagrange multipliers Π1,Π2,Π3, and Π4. and solve

it using the alternating minimization approach of optimization variables as dis-

cussed in the previous subspace learning section.

To solve for M , we have the following problem:

M+ = min
M

fc(M)+

γ

2

(
‖D̆ −M +

Π1

γ
‖2F + ‖M − D̆C +

Π2

γ
‖2F
)
,

(5.28)
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where γ > 0 is a small penalty parameter and its solution is computed by an

absolute value shrinkage operator [43]:

M+ = Y − S
(
Y −K, 1

2γ

)
, (5.29)

where K = 1
2γ (γ(D̆ + D̆C) + Π1 + Π2) and S(x, τ) = sgn(x) max(|x| − τ, 0).

To find D, we have the following problem:

D+ = min
D

λ1‖D‖∗ +
γ

2

∥∥∥∥D − D̆ +
Π4

γ

∥∥∥∥2

F

, (5.30)

which can be solved by singular value shrinkage [43, 35]

D+ = UDSτ (SD)VD, (5.31)

where τ = λ1
γ and [UD, SD, VD] = svd

(
D̆ − Π4

γ

)
, where svd(·) is the singular

value decomposition (SVD) operator.

The update of C and D̆ are constructed by least square problems and their

solutions are

C+ = (D̆T D̆ + I)−1

(
D̆TM +

1

γ
D̆TΠ2 + J +

Π3

γ

)
, (5.32)

and

D̆+ =
(
γ(M +MCT +D)−Π1 + Π2C

T + Π4

)
Γ−1, (5.33)

respectively, where Γ = λ2I + 2γI + γCCT .

Lastly, the update of J is constructed as

J+ = Ĵ − diag(Ĵ), (5.34)

where J is computed as follows:

Ĵ = S(C − Π3

γ
,
λ3

γ
). (5.35)

153



Chapter 5. Robust Lower-Rank Subspace Representations

Algorithm 10 ClustEN by ALM for optimizing (5.27)

1: Input: Y ∈ Rm×n, γ, ρ, and λ1, λ2, and λ3

2: while not converged do

3: while not converged do

4: Update M,D,C, D̆, J , respectively

5: end while

6: Update the Lagrange multipliers Π1,Π2,Π3, and Π4

7: γ = min(ργ, γmax)

8: end while

9: Output: D ∈ Rm×n and C ∈ Rn×n

We also have the same update strategies of the Lagrange multipliers, Π1,Π2,Π3,

and Π4, as described in Section 5.2.

In conclusion, for the problem described in (5.27), we have derived a new al-

gorithm, named ClustEN, and it is described in Algorithm 10. In this algorithm,

we set the initial values of optimization variables to zero. We solve for the prob-

lem (5.27) with respect to the five optimization variables using the alternating

Lagrangian framework whose convergence properties are similar to those in [43].

While it is difficult to prove the convergence in general, there exist some guaran-

tees for ensuring the convergence with mild technical conditions when we optimize

three or more variables [43]. We set the stopping criterion of the algorithm to the

following:

‖M (t) −M (t−1)‖∞ < ε ∧ ‖C(t) − C(t−1)‖∞ < ε,

∧ ‖J (t) − J (t−1)‖∞ < ε,

(5.36)

where t is the number of iterations in the inner loop and ε is a small positive

number. Since it is enough to obtain a nearly stationary point of the optimization
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Algorithm 11 Subspace segmentation by ClustEN

1: Input: Y ∈ Rm×n, the number of subspaces k

2: Obtain C in (5.27) using Algorithm 10

3: Construct Z by performing post-processing [16] on C

4: Perform NCut on Z and segment data samples into k clusters

5: Output: cluster memberships of data samples

variables like FactEN, we set the stopping condition of the proposed method as

ε = 10−7 in all subspace clustering experiments.

The computational complexity of the inner loop is O(min(m,n) max(m,n)2)

for ClustEN, which is the same as SSC [16], LRSC [107], and LRR [4].8 Although

the proposed algorithm have more optimization variables than other methods,

the difference of running time among them are not significant (see section 5.4.2).

After finding the structure of multiple subspaces in the subspace representation

matrix, the next stage is to perform post-processing, which is used for most of

the subspace clustering algorithms and gives a definite effect on the clustering

performance. In our experiments, we use a post-processing technique described in

[16], which reduces the noise effect in a subspace representation matrix while pre-

serving the sparsity. Finally, we use the well-known spectral clustering algorithm,

Normalized Cuts (NCut) [52], to segment data samples to their respective sub-

spaces. The whole procedure of the subspace segmentation based on the proposed

method is summarized in Algorithm 11.

8Note that we compare the accelerated version of LRR described in [4] in this work.

155



Chapter 5. Robust Lower-Rank Subspace Representations

5.4 Experiments

We evaluated the performance of the proposed subspace learning method, FactEN,

by experimenting with various synthetic and real-world problems, such as non-

rigid motion estimation [46, 49], photometric stereo [14, 22], and background

modeling [12]. We compared FactEN to the state-of-the-art low-rank approxima-

tion methods, ALADM [11], Regl1-ALM [49], and Unifying [22], and rank esti-

mation methods, IALM [43] and ROSL [12]. We set the parameters of FactEN

as follows: ρ = 1.2 for all cases, except for Giraffe and Static Face datasets, in

which ρ = 1.05; and β0 = 0.5 for all cases, except for non-rigid motion estimation

problems, in which β0 = 10−2. Note that β = β0/‖Y ‖∞.

We also compared the another proposed method, ClustEN, with the state-of-

the-art subspace segmentation algorithms, SSC [16], LRR [4], LRSC [107], LSR

[111], and SMR [59], for well-known subspace clustering problems, such as mo-

tion segmentation [55], face clustering [4], and handwritten digits clustering [59].

For ClustEN, we focus on the comparison of methods for clustering accuracy and

running time. We set the parameters of ClustEN as follows: ρ = 1.2 for face clus-

tering, 1.7 for handwritten digit clustering, and 1.5 for motion segmentation; and

γ = 10−2 for face and handwritten digits clustering, 10−1 for motion segmenta-

tion, respectively. We report the setting of remaining parameters, λ = (λ1, λ2, λ3),

for each dataset in Section 5.4.1. Parameters of all compared algorithms are set as

reported in their papers and tuned to achieve the best performance for each task.

In this work, we used an inexact version of ALM [43] in the proposed algorithms

for all experiments, since the inexact version generally gives the comparable per-

formance with faster computation than exact ALM [43, 4].

156



Chapter 5. Robust Lower-Rank Subspace Representations

5.4.1 Subspace learning problems

Synthetic data

First, we applied the proposed method to synthetic examples. We generated six

test sets from 500×500 to 10, 000×10, 000 with Gaussian noises which were sam-

pled from N (0, 10−2). In the matrices, we added outliers for randomly selected

entries, which were uniformly distributed in the range of [−15, 15]. All entries of

the weight matrix W are one in this problem. We set the rank of each test data

matrix as r = dmin(m,n)× 0.01×κe. In the experiment, the average reconstruc-

tion error ESyn is calculated as ESyn = 1
n ||M

gt − M̂ ||1, where Mgt is the ground

truth and M̂ is the low-rank matrix approximated by the applied algorithm.

Figure 5.3 shows average performances on a synthetic example (500×500) with

various data ranks9 and various outliers ratios to verify the robustness under

various conditions. We did not perform IALM for experiments using different

outlier ratios, since it gives much poorer performance than compared methods.

Overall, the proposed method outperforms other methods with respect to the

reconstruction error for both scenarios. Regl1-ALM follows the proposed method

with slight error difference. Unifying gives similar performance to FactEN, but its

reconstruction error becomes higher as the data rank or outlier ratio increases.

IALM and ROSL show unsatisfactory results when data rank or outlier ratio is

large, restricting their applications in practice. From Figure 5.3(b), we can see

that the proposed method is robust to outliers regardless of the outlier ratio.

To verify the ability of the proposed method compared to Unifying with re-

spect to the rank and sparsity, we conducted an experiment for a 1,000×1,000

synthetic example. Figure 5.4 plots the fraction of correct recoveries at different

9Note that the data rank means the percentage of the true rank over the maximum possible

rank of the data matrix.
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Figure 5.3: Average performances on a synthetic example (500×500) with various

conditions. (a) Average reconstruction errors at different observation data rank

ratios (10% outliers). (b) Average reconstruction errors at different outlier ratios

(10% data rank).

rank and sparsity ratios. The region which is correctly recovered by the pro-

posed method appears to be broader than that of Unifying. From the figure, the

proposed method is more capable of handling corruptions than Unifying.

Figure 5.5(a) and 5.5(b) show average reconstruction errors and execution times

of different algorithms, respectively, for various matrix sizes with 8% fixed data

rank and 4% outliers which were uniformly distributed in the range of [−20, 20].

We could not evaluate IALM and Regl1-ALM for a large-scale problem (10, 000×

10, 000) because of their heavy computational complexity. The proposed method

outperforms the other methods with respect to the reconstruction error in all

cases. Although Regl1-ALM shows the similar performance compared with the

proposed method for small-scale datasets, it takes a longer computation time to

get a good solution and shows poor performance for large-scale problems. The

computing time of ALADM is faster than FactEN, but it performs poorer than

158



Chapter 5. Robust Lower-Rank Subspace Representations

Figure 5.4: Phase transition in rank and sparsity for a synthetic example

(1,000×1,000) using the proposed method and Unifying. Correct recovery (white

region) is achieved when a recovered low-rank matrix M̂ satisfies ‖Mgt −

M̂‖1/‖Mgt‖1 ≤ 5× 10−4.

FactEN.

To compare the proposed algorithm in realistic conditions, we changed the

outliers to block corruptions with missing entries in a synthetic example. For a

similarly constructed 300× 300 example, we added occlusions with various sizes

with 20% missing data. Figure 5.5(c) shows reconstruction errors of different

methods. As shown in the figure, the proposed method robustly reconstructs

corruptions while other methods except ALADM give poor reconstruction results

when there are large-sized block corruptions. It is interesting to note that Unifying

is not robust against heavy corruptions including missing data compared to the

proposed method.

Non-rigid motion estimation

We evaluated the proposed method for real-world problems, which are summa-

rized in Table 5.2. For these problems, we computed the mean absolute error
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Figure 5.5: Average performances for synthetic problems in the presence of cor-

ruptions. (a) Average reconstruction errors with random outliers for various data

sizes. (b) Average execution times for various data sizes. (c) Average reconstruc-

tion errors with various block corruption sizes and 20% missing for an example

of 300× 300 in size.
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Table 5.2: Summary of real-world problems with known rank r.

Datasets Size Rank r Missing

Giraffe [74] 240 × 167 6 30 %

Shark [13] 91 × 240 6 10 %

Static Face [74] 4,096 × 20 4 42 %

PETS 2009 [89] 110,592 × 221 2 0 %

(MAE) over the observed entries as

EReal =
||W � (Mgt − M̂)||1

‖W‖1
. (5.37)

First, we conducted a non-rigid motion estimation experiment using Giraffe

sequence [74]. The non-rigid motion estimation in the presence of missing data

from image sequences can be considered as a low-rank approximation problem. In

this problem, low-rank matrix factorization can be applied to restore 2D tracks

contaminated by outliers and missing data. To demonstrate the robustness of the

proposed method, we replaced 5% of the randomly selected points in a frame

by outliers in the range of [0, 100] whereas the data points are in the range of

[127, 523]. In this setting, we performed several experiments by changing outlier

ratio in the data.

The result for the Giraffe sequence in the presence of various outlier levels is

shown in Figure 5.6(a). The figure also includes the case when no outliers are

added. As shown in the figure, FactEN gives the best performance regardless

of the outlier ratio. Although Unifying gives similar reconstruction performance

when the outlier ratio is small, the performance gets worse as the outlier ratio

increases. Regl1-ALM and ALADM show worse performance compared to other

state-of-the-art methods. Figure 5.7 shows how the average reconstruction error
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Figure 5.6: Average performances on real-world problems (non-rigid motion es-

timation, photometric stereo) in the presence of outliers and missing data. (a)

Giraffe sequence. (b) Shark sequence. (c) Static face.

is affected by the choice of λ1 for FactEN and Unifying [22]. The proposed method

shows more stable results under different values of λ1 and λ2, whereas Unifying

is sensitive to the choice of λ1.

We also performed the motion estimation problem using the Shark sequence

[13]. In this data, we examine how robust the proposed method is for various

outlier ratios in the presence of missing data. We randomly dropped 10% of

points in each frame as missing data. We set from 0% to 15% of tracked points

162



Chapter 5. Robust Lower-Rank Subspace Representations

λ1

10-4 10-3 10-2 10-1

A
ve

ra
ge

 r
ec

on
st

ru
ct

io
n 

er
ro

r

0.36

0.38

0.4

0.42

0.44

0.46

0.48
FactEN(λ

2
:1e-1)

FactEN(λ
2
:1e-2)

FactEN(λ
2
:1e-3)

FactEN(λ
2
:1e-4)

FactEN(λ
2
:1e-5)

Unifying

Figure 5.7: Comparison between the proposed method and Unifying [22] at dif-

ferent values of λ1 for the Giraffe sequence. (·) denotes a value of λ2.

as outliers in each frame in the range of [−1000, 1000], whereas the data points

were located in the range of [−105, 105].

Average reconstruction errors at various outlier ratios by different methods

are shown in Figure 5.6(b). As shown in the figure, FactEN and Unifying both

give outstanding reconstruction results. However, the proposed method gives the

better reconstruction results than Unifying on average. Similar to the previous

example, Regl1-ALM and ALADM show the bad reconstruction performances

when there exist outliers. The reconstruction results of the three selected algo-

rithms, the proposed method, Unifying, and l1-ARGD, for selected three frames

in the presence of 15% outliers are shown in Figure 5.8. From the figure, we can

observe excellent reconstruction results by the proposed method against missing

data and outliers compared to the other approaches. Even though Unifying shows

the similar reconstruction, it sometimes fails to estimate the exact reconstruction
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Figure 5.8: Reconstruction results from the shark sequence by three methods:

FactEN, Unifying [22], and RegL1-ALM [49]. ′©′ means the ground truth and

′+′ means the reconstruction point.

point as shown in the figure.

Photometric stereo

Photometric stereo [14] is another well-studied problem to estimate the surface

normal of an object given multiple images of the object under different lighting

conditions. It can be shown that the observation matrix has rank at most 3 [14].

In this work, we used the Static Face sequence [22] for the problem which has

20 images consisting of 64 × 64 pixel per image. We examine how robust the

proposed method is for various outlier ratios in the presence of missing data. We

set from 0% to 15% of tracked points as outliers in each frame in the range of

[0, 100].

The overall results are represented in Figure 5.6(c). From the figure, the pro-
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posed method gives the obvious distinction compared to other methods regardless

of the outlier ratio. Following the proposed method, Unifying presents the second

best performance. Although ALADM shows the satisfactory performance when

there exist small elements corrupted by outliers or no outliers, the reconstruction

error gets larger as the outlier ratio increases. Regl1-ALM gives the vulnerability

for outliers in this problem.

Background subtraction

Modeling background from a video sequence is an important step to separate

foreground objects from background and applied to many applications, including

video surveillance, traffic monitoring, and abnormal behavior detection [92]. A

background modeling task can be considered as a low-rank matrix approximation

problem [35]. We have used a benchmark video dataset, PETS2009 [89], which

exists many walking people from a static overhead camera. For the task, we used

PETS2009 [89] which is a sequence of 221 frames. Since the original image frame

size is 576 × 768, which is very high dimensional, we rescaled each frame to 288

× 384 for computational tractability and thus the stacked data size is is 110,592

× 221. We performed the proposed method compared with the state-of-the-art

methods: Unifying [22] and ROSL [12]. We added 30% random noises in randomly

selected frames.

Figure 5.9 shows the background modeling results on two selected frames. As

shown in the figure, FactEN and Unifying correctly separated foreground from

background. The rank estimation method, ROSL, fails to find a good solution in

the presence of heavy corruptions. The computation times are 186.37 sec for the

proposed method, 497.46 sec for Unifying, and 145.93 sec for ROSL. Although

ROSL gives the slightly faster computation time than FactEN, it did not provide
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satisfying results.

In order to compare the algorithms quantitatively, we used the Bootstrapping

sequence [90]. The dataset has a foreground ground-truth image which is used

to compare the performance of algorithms in terms of precision and recall.10

We used the whole 300 frames, where each frame is 160 × 120, and converted

them into gray-scale images. In the dataset, we inserted uniform noises from

[0,1] for randomly selected 10% of entries. We extracted final foreground images

of different algorithms by performing pixel-wise thresholding with mathematical

morphology (closing). Two low-rank approximation algorithms, Regl1-ALM and

ALADM, were included in this experiment. Figure 5.10 represents the precision-

recall curve by varying the threshold level for final foreground images. From the

figure, the proposed method shows the higher performance compared to other

algorithms. While Regl1-ALM gives higher performance than FactEN when the

recall is low, it performs poorer than FactEN as we require higher recalls. In this

problem, Unifying gives the worst performance among the tested methods. The

running times of the compared methods are 11.9 sec for FactEN, 24.5 sec for

Unifying, 11.7 sec for ROSL, 211.4 sec for Regl1-ALM, and 3.1 sec for ALADM.

5.4.2 Subspace clustering problems

The proposed subspace clustering method, ClustEN, is compared in this section.

We evaluate the method along with other state-of-the-art algorithms for three

subspace clustering problems using the clustering accuracy and execution time.

The clustering accuracy is computed as 1
n

∑n
i=1 ϕ(pi,map(qi)), where n is the

10The precision and recall are computed as follows: Precision = TP/(TP+FP) and Recall

= TP/(TP+FN), where TP is the number of correctly estimated foreground pixels, FP is the

number of wrongly estimated background pixels, and FN is the number of wrongly estimated

foreground pixels.
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Figure 5.10: Precision-recall curve for the Bootstrapping sequence [90].

number of samples, pi and qi are the ground-truth and estimated cluster labels

from the tested method, respectively, ϕ(a, b) is the Kronecker delta function, and

map(·) is a mapping function to permute estimated labels to match with the

ground-truth labels, which is computed by the Kuhn-Munkres algorithm [77].

Motion segmentation

Motion segmentation [55] is the process of separating tracked points of moving

objects from a video sequence into their underlying independent subspaces. Since

trajectories associated with a rigid motion lie in a low-dimensional subspace, we

regard motion segmentation as a subspace clustering problem. We performed the

proposed subspace clustering method compared with the state-of-the-art algo-

rithms, SSC [16], LRR [4], LRSC [107], LSR [111], and SMR [59], for the well-

known benchmark dataset, Hopkins 155 [55]. Hopkins 155 dataset contains 155

video sequences along with features of two or three motions in all frames. Typical

examples of the Hopkins 155 dataset are described in Figure 5.11. Motivated from
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Figure 5.11: Typical examples in the Hopkins 155 dataset.

the work in [16], we computed four measures for the accuracies of 155 sequences:

mean, standard deviation (Std), minimum, and median values. The parameters

of the proposed algorithm are set to λ = (10−2, 10−1, 5× 10−3).

The experimental results of different methods are shown in Table 5.3. From

the table, the proposed method gives the state-of-the-art performance. Although

SMR shows better clustering accuracy than ClustEN, their performance gap is

insignificant. It is interesting to note that the proposed method is based on the

joint optimization using sparse representation similar to SSC [16], hence, SSC

can be considered as a baseline method of ours. In this respect, the proposed

method outperforms SSC with respect to all measures. Hence, we can see that

the subspace learning part in the proposed joint learning procedure can improve

clustering performance. LRSC, which has the similar strategy as ours, gives worse

performance than ours.

Face clustering

Face clustering [78] is a task to segment face images collected from multiple

subjects into their corresponding identities under various illumination conditions.

To evaluate the performance of the proposed method, we use the Extended Yale

B dataset [78], which contains 38 subjects each of which has 64 aligned frontal
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Table 5.3: Motion segmentation results (%) on the Hopkins 155 dataset.

Algorithms Mean Std Min Median

SSC 96.2 9.34 52.2 100

LRR 96.9 7.73 59.9 99.7

LRSC 96.5 8.08 60.3 99.5

LSR 95.9 10.2 52.1 99.6

SMR 97.7 6.7 58.2 100

ClustEN 97.4 7.19 57.6 100

face images under various illumination conditions. Following the works [16], we

evaluated different methods for five scenarios by collecting the first c subjects,

where c ∈ {2, 3, 5, 8, 10}. We created a dataset by reducing the dimension of each

image to 9c by PCA. Hence, we have a dataset, whose size is 9c × 64c, for each

scenario. We set the parameters of ClustEN to λ = (102, 50, 5× 10−2).

The clustering accuracies of different methods are shown in Figure 5.12. From

Figure 5.12(a), the proposed algorithm outperforms existing methods on average.

Even though SSC performs better than existing algorithms except ClustEN, it

degrades when the number of clusters is large. SMR shows good performance

for c = 10, but it gives unsatisfactory results on average compared to the pro-

posed method. LRR and LRSC show the similar clustering accuracies across the

scenarios. We also compared the proposed method with respect to the running

time. The running times of different methods for a scenario when the number of

subjects is 10, are 5.68 sec for SSC, 1.45 sec for LRR, 0.73 sec for LRSC, 0.16 sec

for LSR, 1.2 sec for SMR, and 7.13 sec for ClustEN, respectively. The proposed

method gives the competitive computing time compared to other methods, even

though it has many variables to learn in a joint optimization problem.
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Figure 5.12: Clustering accuracy (%) on the (a) Extended Yale B dataset and (b)

Yale-Caltech dataset.
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Figure 5.13: Examples from the Yale-Caltech dataset. First and second rows show

facial and non-facial (outlier) images, respectively.

To evaluate the robustness of the proposed algorithm, we created a dataset

motivated from the work in [4]. The dataset, which we call Yale-Caltech, consists

of the Extended Yale B dataset [78] and Caltech 101 dataset [112]. We collected

101 images from Caltech 101 dataset, where we randomly selected an image for

each class, and regarded them as outlying samples. The typical examples from

the Yale-Caltech dataset are shown in Figure 5.13. As described in the previous

experiment, we selected the first c subjects from the Extended Yale B dataset.

We made the dataset by blending Extended Yale B and Caltech data sets, each

of which has dimension of 9c by projecting it to a basis matrix extracted from the

Extended Yale B dataset using PCA. We compared our proposal with existing

methods, SSC [16], LRR [4], and LRSC [107], which address outliers. In the

dataset, we did not compare LSR and SMR since they cannot handle outliers.

We set the parameters of the proposed method to λ = (102, 50, 8× 10−2).

Figure 5.12(b) shows the clustering accuracy of the compared methods for

the Yale-Caltech dataset. Similar to the previous problem, the proposed method

gives the best performance outperforming existing algorithms. Whereas, LRSC,

which is another joint optimization method, performs poorer than the proposed

algorithm. Even if LRR can handle outlying samples due to its group sparsity
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regularizer, it dose not show satisfying results compared to the proposed algo-

rithm. Average accuracies of the methods are 8.25 for SSC, 2.78 for LRR, 0.98 for

LRSC, and 8.96 for ClustEN. As shown in Figure 5.12, the proposed algorithm

shows its excellent performance for problems with and without corruptions.

Handwritten digits clustering

The proposed algorithm was also applied to handwritten digits clustering prob-

lems using the USPS dataset [113], which consists of 9,298 16 × 16 grayscale

images. The number of classes is ten, which contains digits from 0 to 9. We

tested the proposed algorithm compared with existing methods for two scenar-

ios by selecting the first 500 and 1,000 samples, which contains image samples

from all classes, from the dataset. The parameters of ClustEN are as follows:

λ = (5× 102, 5× 102, 10−1).

Table 5.4 shows the segmentation accuracy (%) and running time (sec) of dif-

ferent algorithms. As shown in the table, the proposed algorithm, ClustEN, gives

the state-of-the-art performance on average for both scenarios. SMR gives the

comparable performance to the proposed method. Note that all algorithms, ex-

cept SMR and ClustEN, show unsatisfactory results when the number of samples

are large (n = 1, 000). Another joint optimization approach, LRSC, shows poor

performance for this problem. When it comes to the running time, the proposed

algorithm shows the decent running time, which is faster than SSC, and LRR.

Although LSR shows the fastest running time due to the closed-form solution,

its clustering accuracy is lower than that of ours.
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Table 5.4: Handwritten digit clustering results on the USPS dataset.

n=500 n=1,000

Algorithm Acc Time Acc Time

SSC 71 9.13 61.3 33.3

LRR 75.8 18.06 66 31.9

LRSC 47.8 4.03 50.3 9.49

LSR 72.2 0.19 66.2 0.86

SMR 73.4 0.94 74.8 8.75

ClustEN 76.0 3.34 73.4 12.7

5.5 Summary

Throughout this chapter, we have proposed a new subspace representation frame-

work based on elastic-net regularization of singular values. The introduced elastic-

net is shown to stabilize the proposed algorithms in the presence of heavy cor-

ruptions due to the strong convexity. The proposed algorithms can find a robust

solution more efficiently and is stable against missing data and outliers. Two al-

gorithms are developed under the proposed framework. FactEN is proposed to

robustly identify a low-rank matrix approximating the given data matrix. For

the general problem of subspace clustering and estimation, ClustEN is proposed.

The proposed algorithms have been applied to a number of applications for sub-

space learning and clustering, including non-rigid motion estimation, photomet-

ric stereo, and background modeling problems for subspace learning, and motion

segmentation, face clustering, and digit clustering for subspace clustering. The

experimental results show that the proposed algorithms outperform the state-of-

the-art methods in terms of the approximation error, clustering accuracy, and

execution time.
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Chapter 6

Robust Group Subspace

Representations

As mentioned in the previous chapter, subspace clustering assumes that a data

sample can be represented by other samples drawn from the same subspace. While

many recent studies are based on sparse or low-rank representation for robust-

ness, the grouping effect among similar samples has not been often considered

with sparse or low-rank representation. In this chapter, we introduce group sub-

space representation to handle highly correlated data samples. It is motivated

by the well-known regularizer introduced in Chapter 5,1 called elastic-net [104],

which has the grouping effect with variable selection. Based on the representation

using the elastic-net regularization, we propose two robust subspace clustering

algorithms: group sparse representation (GSR) and group low-rank representation

(GLR) which are based on sparse and low-rank representation, respectively. GSR

1While the elastic-net is introduced in Chapter 5 for the purpose of stabilizing the proposed

algorithm by regularizing singular values, we use the regularizer from a grouping perspective for

subspace segmentation by regularizing coefficient elements.
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is devised to reveal grouping effect in sparse representation due to the strictly

convexity of the proposed representation. While LRR has the grouping effect as

discussed earlier, GLR is proposed to overcome the non-strict convexity of LRR

and to demonstrate the effectiveness of the proposed group subspace representa-

tion over existing methods.

The main contributions of the proposed methods are summarized as follows.

First, the proposed group subspace representation generalizes sparse and low-rank

representation problems with strictly convexity promoting the subspace grouping

effect. It accelerates the grouping capability for both representations by captur-

ing the similarity among data samples collected from the same cluster, even in

the presence of noises or corruptions. We also show that our two proposals, GSR

and GLR, reveal a block-diagonal structure if subspaces are independent. In ad-

dition, we verify the grouping capability of our proposals when highly correlated

data are presented, theoretically and empirically. Lastly, the proposed methods

outperform the state-of-the-art methods, without introducing an additional com-

putational complexity from their baseline methods, on well-known benchmark

subspace clustering tasks, such as motion segmentation and face clustering with

and without corruptions.

6.1 Group Subspace Representation

The well-known subspace clustering approaches, SSC [53, 16] and LRR [54, 4],

work well for many problems, but they have limitations when performing a clus-

tering task as discussed in the previous section. In order to overcome the weak-

nesses, we introduce a generalized approach, named group subspace representa-

tion, to improve both methods. Motivated by the grouping effect discussed in

[104], we define:
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Definition 3 (Group subspace representation). Given a set of sample vectors

X = [x1, ...,xn] ∈ Rd×n, where samples are drawn from k subspaces. The task

of group subspace representation is to find a subspace representation matrix Z =

[z1, ...,zn] ∈ Rn×n, where ‖zi− zj‖ → 0 if ‖xi−xj‖ → 0,∀i 6= j, to segment the

samples according to the underlying subspaces they are drawn from.

From the definition, we can consider the following problem to find a subspace

representation matrix Z:

min
Z
‖Z‖s +

λ

2
‖Z‖2F , s.t. X = XZ, diag(Z) = 0, (6.1)

such that λ > 0. Here, ‖Z‖s can be the l1 norm for finding sparse representation of

Z or the nuclear norm for finding low-rank Z (with the last constraint, diag(Z) =

0, removed). This formulation promotes sparsity by the l1 norm or the nuclear

norm and enforces grouping effects on a subspace representation matrix Z from

the Frobenius norm regularizer over Z, which allows grouping of highly correlated

samples in X. This is due to the strict convexity property of the group subspace

representation in (6.1), unlike the sparse representation in (2.8) in Chapter 2,

which is non-strict convex. Furthermore, it shrinks the subspace representation

matrix to parsimonious one by the l1 norm of Z. The distinct difference between

strict and non-strict convexity can be seen from the following lemma [104]:

Lemma 3. In a linear regression model, x = Xz, where X = [x1, ...,xn] is a set

of sample vectors and z is a coefficient vector, assume that xi = xj, for some

i, j ∈ {1, ..., n}. (a) If we use the group subspace representation in (6.1), then

zi = zj. (b) If we use the sparse representation in (2.8), then zizj ≥ 0 and z∗ is
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another minimizer, where

z∗k =


zk if k 6= i and k 6= j,

(zi + zj) · (s) if k = i,

(zi + zj) · (1− s) if k = j,

for any s ∈ [0, 1].

The strict convexity guarantees the grouping effect in the ideal situation with

the same samples drawn from a cluster, whereas the sparse representation ap-

proach does not provide a unique solution because of its non-strict convexity. Al-

though Lemma 3 shows an ideal case where samples are exactly the same, we can

infer the weakness of the sparse representation in (2.8) from Lemma 3. Based on

the above analysis, we propose two methods: group sparse representation (GSR)

and group low-rank representation (GLR), which are based on the group subspace

representation defined in Definition 3. Figure 6.1 shows the clustering evaluation

of the proposed methods, GSR and GLR, and their corresponding baseline algo-

rithms, SSC and LRR, using a synthetic example with small corruptions. From

the figure, the proposed methods find the subspace structure better than the

baseline algorithms, which can fail to find the exact clusters when there are cor-

ruptions (see the second cluster). Our proposals accelerate the cluster grouping

which prevents an unnecessary segmentation within a cluster.2

Theorem 3. Suppose that the data sampling is sufficient and samples are drawn

from a union of k independent linear subspaces. Let us define a function f satis-

fying f(Z) = f(ZP ), for any permutation matrix P . Then, the optimal solution

Z∗ ∈ Rn×n to the problem (6.1) is block-diagonal.

2While an affinity matrix is not perfect block-diagonal, an application of spectral clustering

can provide a better segmentation result by cleaning up disturbances in the imperfect affinity

matrix [114].
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Proof. See Appendix F.1

Theorem 3 shows that the optimal solution of a linear combination of any

functions satisfying f(Z) = f(ZP ), for any permutation matrix P , such as the l1

norm, Frobenius norm, and nuclear norm, achieves the block-diagonal condition.

In the following subsections, we introduce two algorithms based on the group

subspace representation.

6.2 Group Sparse Representation (GSR)

6.2.1 GSR with noisy data

In practice, there exist noises in real data sets. Now, we modify the cost function

(6.1) to consider noises as follows:

min
Z

ξF (Z) + λ1‖Z‖1 +
λ2

2
‖Z‖2F , s.t. diag(Z) = 0, (6.2)

where ξF (Z) is the Frobenius norm loss function to reflect the Gaussian noises,

i.e., 1
2‖X −XZ‖

2
F , and λ1 and λ2 are weighting parameters. The problem (6.2),

which we name group sparse representation (GSR), is a method based on the

well-known elastic-net regularizer [104] with self-dictionary X. Elastic-net is a

generalization of ridge and Lasso regression methods with a grouping effect by

applying both the l1 norm and Frobenius norm regularization on Z [104]. Hence,

GSR can prevent the sparsest representation of Z by grouping clusters properly.

When there exist closely related samples drawn from the same cluster, GSR

encourages the subspace representation matrix Z to have the same membership

for the closely related samples, as stated by the following theorem [104]:

Theorem 4. Given a sample xk ∈ Rd, a dataset X ∈ Rd×n, and parameters

(λ1, λ2), and assume that X is normalized. Let z∗ ∈ Rn be the optimal solution
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to following problem:

min
z

1

2
‖xk −Xz‖22 + λ1‖z‖1 +

λ2

2
‖z‖2, (6.3)

where X = [x1, ...,xk−1,xk+1, ...,xn+1]. Supposed that zizj > 0, we have the

following relation:

µ(z∗i , z
∗
j ) ≤ 1

λ2

√
2(1− ρ), (6.4)

where µ(z∗i , z
∗
j ) = ‖z∗i − z∗j ‖2/‖xk‖2 and ρ = xTi xj is the sample correlation.

Proof. See Appendix F.2.

Theorem 4 says that when xi and xj are highly correlated up to a sign change

when negatively correlated, i.e., ρ ' 1 (ρ ' −1 if negatively correlated, then

consider −xj), the difference between the corresponding coefficients in z is almost

0, leading to the same subspace membership.

6.2.2 GSR with corrupted data

Now, we consider a problem where collected data are faced with unwanted cor-

ruptions, such as outliers and occlusion blocks. Since the problem (6.2) with the

Frobenius norm cannot handle the corruptions, a robust loss function, such as

the l1 norm, is a better choice to deal with corruptions

min
Z,E

‖Z‖1 +
λ1

2
‖Z‖2F + λ2ξ1(Z), s.t. diag(Z) = 0, (6.5)

where ξ1(Z) = ‖X −XZ‖1 is the element-wise l1 norm of X −XZ.

Optimization for solving (6.5)

The problem (6.5) can be solved by the alternating minimization approach under

the augmented Lagrangian framework. Let E be a corruption matrix, which is

181



Chapter 6. Robust Group Subspace Representations

modeled by X −XZ. Then we have the following Lagrangian:

L(Z,C,E) = ‖Z‖1 +
λ1

2
‖Z‖2F + λ2‖E‖1

+ tr(ΠT
1 (X −XC − E)) + tr(ΠT

2 (C − Z))

+
β

2
(‖X −XC − E‖2F + ‖C − Z‖2F ),

(6.6)

such that diag(Z) = 0, where C is an auxiliary variable for Z, and Π1 and Π2

are Lagrange multipliers and β is a penalty parameter. We have optimization

problems to update the variables Z, C, and E using the alternating direction

method of multipliers (ADMM) [115]. First, we solve Z by the following equation

Z = Ẑ − diag(Ẑ), (6.7)

where Ẑ is obtained by solving the following problem

Ẑ = min
Z
‖Z‖1 +

λ1

2
‖Z‖2F +

β

2

∥∥∥∥C − Z +
Π2

β

∥∥∥∥2

F

, (6.8)

and the solution of (6.8) can be computed by the absolute value shrinkage oper-

ator [43]:

Ẑ = S 1
λ1+β

(
1

λ1 + β
(βC + Π2)

)
, (6.9)

where Sν(x) = sgn(x) max(|x| − ν, 0) for a variable x.

For solving C and E, we have the following problems:

min
C

∥∥∥∥X −XC − E +
Π1

β

∥∥∥∥2

F

+

∥∥∥∥C − Z +
Π2

β

∥∥∥∥2

F

, (6.10)

min
E

λ2‖E‖1 +
β

2

∥∥∥∥X −XC − E +
Π1

β

∥∥∥∥2

F

, (6.11)

where (6.10) is a least-square problem whose solution is

C = ∆−1

(
XTX −XTE + Z +

XTΠ1

β
− Π2

β

)
(6.12)
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Algorithm 12 GSR or GLR for subspace clustering

1: Input: data matrix X ∈ Rd×n lying in a union of k linear subspaces

2: Solve an optimization problem of GSR or GLR to obtain a subspace repre-

sentation matrix Z

3: Form a similarity graph Z̆ from Z

4: Apply a clustering method to Z̆ in order to segment the data samples to k

clusters

5: Output: a similarity graph Z̆ and k clusters

with XTX + I = ∆ and (6.11) is computed in a closed form using the absolute

value shrinkage operator:

E = Sλ2
β

(
X −XC +

Π1

β

)
. (6.13)

Note that we have the same optimization strategy to that of [16], which solves

Z and E simultaneously using ADMM, whose convergence to the optimal solution

for two variables are guaranteed in [43]. In summary, we derive a group sparse

representation (GSR) algorithm, based on the group subspace representation dis-

cussed in Section 6.1, for robust subspace segmentation, which is described in

Algorithm 12. In the algorithm, we solve an optimization problem (6.2) or (6.5)

according to the case when there are noises or outliers, respectively. After find-

ing a subspace representation matrix Z from the optimization, we construct an

undirected similarity graph Z̆ as stated in [53]. Finally, we assign a cluster label

for each sample based on a clustering algorithm.
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6.3 Group Low-Rank Representation (GLR)

6.3.1 GLR with noisy or corrupted data

The proposed group subspace representation (6.1) can be applied to the nuclear

norm based subspace clustering problems, such as LRR [54] and LatLRR [116].

Like the sparse representation [53], the nuclear norm based clustering algorithms

can sometimes encourage the within-cluster segmentation due to their non-strict

convexity when there exist corruptions as shown in Figure 6.1. Hence, our group

subspace representation can help the nuclear norm based clustering methods to

improve the subspace grouping effect in a within-cluster. The new formulation to

consider the grouping capability is as follows (noiseless case):

min
Z
‖Z‖∗ +

λ

2
‖Z‖2F s.t. X = XZ. (6.14)

The problem (6.14), which we call group low-rank representation (GLR), also

satisfies the block-diagonal condition in Theorem 3. Based on results given in

[59], we can show the grouping effect of GLR as follows:

Theorem 5. The optimal solution of GLR has grouping effect, i.e., given a set of

data samples X = [x1, ...,xn] ∈ Rd×n and a subspace representation matrix Z ∈

Rn×n, a solution to the optimization problem of GLR using X, if ‖xi−xj‖ → 0,

then ‖zi − zj‖ → 0 for all i 6= j.

Proof. See Appendix F.3.

When data samples contain noises, i.e., X = XZ + E, where elements in E

have the independent and identically distributed Gaussian distribution, we can

easily make an optimization problem by inserting a loss function ξF (Z) to the

formulation instead of the equality constraint.
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Now, we consider a more realistic scenario when data have some corruptions.

As stated in Section 6.2, we introduce a loss function ξ1(Z) to the problem (6.14)

to have the following robust subspace clustering problem:

min
Z
ξ1(Z) + λ1‖Z‖∗ +

λ2

2
‖Z‖2F , (6.15)

where λ1 and λ2 are weighting parameters.

Optimization for solving (6.15)

The problem (6.15) can be solved by ADMM of the following problem with two

auxiliary variables:

min
Z,D,M

‖X −D‖1 + λ1‖Z‖∗ +
λ2

2
‖Z‖2F ,

s.t. D = XM, Z = M,

(6.16)

and its corresponding augmented Lagrangian is

L(Z,D,M) = ‖X −D‖1 + λ1‖Z‖∗ +
λ2

2
‖Z‖2F

+ tr(ΠT
1 (D −XM)) + tr(ΠT

2 (Z −M))

+
β

2

(
‖D −XM‖2F + ‖Z −M‖2F

)
,

(6.17)

where Π1 ∈ Rd×n and Π2 ∈ Rn×n are Lagrange multipliers and β > 0 is a small

penalty parameter. Then, we solve for each variable while other variables held

fixed.

First, we form the following optimization problem to solve for Z:

min
Z
λ1‖Z‖∗ +

λ2

2
‖Z‖2F +

β

2

∥∥∥∥Z −M +
Π2

β

∥∥∥∥2

F

, (6.18)

and the solution of (6.18) can be computed by the singular value shrinkage op-

eration [43] in a closed form as follows:

Z = U1Sτ (S1)V T
1 , (6.19)
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where τ = λ1
λ2+β and

[U1, S1, V1] = svd

(
1

λ2 + β
(βM −Π2)

)
, (6.20)

where svd is the singular value decomposition operator.

For finding D, we consider the following problem:

min
D
‖X −D‖1 +

β

2

∥∥∥∥D −XM +
Π1

β

∥∥∥∥2

F

, (6.21)

and it has a closed-form solution using the absolute value shrinkage operator:

D = X − S 1
β

(
X −XM +

Π1

β

)
. (6.22)

Lastly, the update of M is computed by the simple least squares

M = Γ−1(βXTD +XTΠ1 + βZ + Π2), (6.23)

where Γ = β(XTX + I).

The overall procedure is to update the optimization variables via the alternat-

ing minimization until convergence. After finding the output Z by solving the

problem (6.16), we build an undirected graph and apply a clustering algorithm

to obtain k clusters as stated in Algorithm 12. In the ADMM procedure, we set

β to an increasing sequence to a maximum point, i.e., βt+1 = min(ρβt, βmax),

following [43, 4]. It is interesting to note that the convergence behavior of GLR

can be ensured by [43], since we have two-step optimization procedure in every

iteration where Z and D are optimized independently when M is held fixed.

Hence, the convergence of ADMM with two blocks can be guaranteed by [43]. A

similar proof can be applied to the well-known previous work, LRR [4], where

two variables in LRR can be optimized independently and simultaneously while

another variable is fixed, even though they said that it is difficult to ensure the

convergence of ADMM with three or more blocks [4].
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6.4 Experimental Results

In this section, we evaluate the proposed methods, GSR and GLR, for various

subspace segmentation tasks such as synthetic problems, motion segmentation

[55, 16], and face clustering [78, 4]. In the experiments, we formulate the proposed

methods based on the l1 norm loss function, i.e., we solve GSR and GLR for

problems (6.5) and (6.15), respectively. We compare the proposed methods with

state-of-the-art subspace clustering methods: SSC [53, 16], LRR3 [54, 4], LRSC

[107], LatLRR [116], LSR [111], CASS [56], and SMR [59]. For the comparing

algorithms, we use the codes released by their authors. The parameters for each

method are tuned to have the best performance for each task. In experiments,

clustering accuracy and running time are used to evaluate the performance of

methods, where the clustering accuracy are calculated using the metric from [59].

Since k-means can give an unsatisfactory result when the number of clusters

is large as it can be biased to the initial condition [117, 118], we take another

approach described in [118], which avoids such problem, to segment data samples

into k clusters for all methods. Nonetheless, we also provide results using spectral

clustering (with k-means) in Table 6.2.

Synthetic Examples

First, we performed clustering experiments on synthetic examples. We generated

an example where the number of clusters and the number of samples were cho-

sen randomly in the range of [3, 10] and [30, 70], respectively. The dimension of

each sample is set to 50. For each cluster, we drew samples from a linear sub-

space which was generated by obtaining orthogonal basis vectors from Gaussian

3We used an accelerate version of LRR [4], which gives a speed-up over the original LRR

[54].
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Table 6.1: Average performance on synthetic problems over 100 independent runs.

From the first to the third row, we have the names of algorithms, clustering

accuracies (%), and running times (sec), respectively.

Algorithms SSC LRR LSR CASS SMR GSR GLR

Accuracy 83.31 86.55 84.78 85.68 86.60 89.05 91.61

Time 1.43 0.52 0.044 247.7 0.21 0.46 2.08

random vectors whose mean is zero and standard deviation is chosen randomly.

The number of basis vectors is randomly selected to be less than the half of the

number of samples. When generating a synthetic dataset, which consists of k

clusters, we added a noise matrix whose elements had the Gaussian distribution

with zero-mean and variance of 0.2. In this problem, we compared with SSC and

LRR, and methods addressing the grouping issue (LSR, CASS, and SMR) to

demonstrate the performance of the proposed group subspace representation.

The average clustering accuracy and running time over 100 different synthetic

examples are shown in Table 6.1. From the table, the proposed methods achieve

the best clustering accuracy with a competitive running time. GSR outperforms

SSC on both clustering performance and computing time. Although LSR is faster

than ours, the clustering performance is lower than those of GSR and GLR.

Since CASS gives a much longer running time than other methods (over 100

times longer) because of its expensive operation to solve the trace Lasso based

optimization problem, it is hard to be used for large-scale problems in practice.

SMR gives the best performance among the existing methods, but it gives lower

clustering accuracy than the proposed methods.

Figure 6.2 shows affinity matrices computed from different algorithms for an
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Figure 6.2: Clustering evaluation of the proposed methods and other state-of-

the-art methods, SSC, LRR, LSR, CASS, and SMR, for a synthetic example

with Gaussian noises. Figures show a ground truth affinity matrix and affinity

matrices computed from different algorithms. (·) denotes the clustering accuracy.

example where the number of clusters is 5 and the number of samples in each

subspace was chosen randomly in the range of [30, 70] with Gaussian noises. As

shown in the figure, the proposed two methods show the clear representations

over the affinity matrix with higher clustering accuracies than other methods,

whereas other methods represent somewhat noisy affinity matrices with poorer

performance than ours.

We also generated an example with the same setting to the previous example,

and added a corrupted matrix which consists of a square occlusion block whose

area is n2/10 and Gaussian noises. The optimization results from different algo-

rithms are shown in Figure 6.3. In the figure, most of the affinity matrices give

the noisy representation due to the corruption. Among the methods, our pro-
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Figure 6.3: Clustering evaluation of the proposed methods and other state-of-the-

art methods, SSC, LRR, LSR, CASS, and SMR, for a synthetic example with

corruptions. Figures show a ground truth affinity matrix and affinity matrices

computed from different algorithms. (·) denotes the clustering accuracy.

posals represent more clean results than the compared methods including their

baseline algorithms, SSC and LRR. Specifically, GLR improves LRR by prevent-

ing the inter-cluster grouping and outperforms other methods significantly by its

robust group subspace representation. CASS gives poor performance because it

did not capture the resemblance among similar samples in some subspaces under

the noisy scenario.

To verify the robustness of the proposed methods under the various of noise

conditions, we added various percentages of corrupted elements, from 0% to 100%,

to synthetic examples whose elements are drawn from a uniform distribution in

the range of [−1, 1]. In this experiment, we compared our proposals with the cor-

responding baseline methods, SSC and LRR, to investigate the robustness of the
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Figure 6.4: Average clustering performance on synthetic examples under various

noise ratios.

proposed subspace grouping. The average clustering performances of the methods

over 100 independent scenarios are shown in Figure 6.4. Note that even though

SSC gives much lower accuracy than LRR, GSR reduces the gap considerably

and even surpasses LRR when the corruption ratio is lower than about 35%. As

shown in the figure, we can see that the proposed grouping methods outperform

their baseline algorithms.

Motion Segmentation

Motion segmentation [55] is a task for clustering trajectories of rigidly moving

objects based on tracked points along the frames. Since all trajectories associated

with a single rigid motion lie in a low-dimensional subspace, it is considered as

a subspace clustering task over the point trajectories. We applied the proposed

methods to the well-known benchmark dataset, Hopkins 155 database4.

4http://www.vision.jhu.edu/data/hopkins155
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We compared the proposed methods with seven state-of-the-art subspace clus-

tering methods for evaluation, including LRSC [107] and LatLRR [116]. Table

6.2 describes the results of two measures (mean, standard deviation (Std)) over

segmentation accuracy of the methods for the Hopkins 155 dataset. We compared

the methods via two clustering methods, a method in [118] and spectral cluster-

ing [58], as discussed in the previous section. From the table, GSR outperforms

other methods including SSC with respect to the mean and standard deviation

of 155 motion segmentation tasks. GLR shows competitive results for both cases

and it also has a higher accuracy than LRR, which is the baseline algorithm of

GLR. LatLRR and SMR show better performance than GLR, but not as good as

GSR. LSR and CASS, which address the grouping issue, do not give satisfactory

results compared to the proposed methods. We can see that the proposed group

subspace representation method helps the baseline methods, SSC and LRR, sig-

nificantly. Note that GSR can have a denser membership representation than

SSC because of its subspace grouping, which can balance between sparse and

dense representation. Although LRR gives a dense representation by minimizing

a nuclear norm based optimization problem, our group representation using GLR

further enhances the clustering accuracy. Note that the two clustering methods

[118, 58], which are used after affinity matrices are found, give similar clustering

performance for most of the methods in this problem.

Face Clustering

Face clustering without outliers. Face clustering [78, 54] is a task for seg-

menting face images into their identities. We tested the proposed algorithms for

the face clustering task under unfavorable conditions. We used the Extended Yale

B [78], which consists of 38 subjects placed in order where each subject has about
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Table 6.2: Motion segmentation results (%) on the Hopkins 155 dataset.

Method in [118] Spectral clustering

Algorithms Mean Std Mean Std

SSC 96.42 8.99 96.46 9.11

LRR 96.59 7.67 96.53 8.04

LRSC 96.43 7.85 96.5 7.94

LatLRR 97.51 6.19 97.53 6.12

LSR 95.86 10.45 95.62 10.89

CASS 94.67 9.89 94.35 10.55

SMR 97.25 7.44 97.25 7.44

GSR 98.4 6.42 98.37 6.58

GLR 96.64 7.45 96.73 7.66

60 manually aligned frontal face images under illumination variations. Following

the experimental setting in [119, 120], we make 8 scenarios by taking the first

c subjects from the dataset, where c ∈ {2, 3, 5, 8, 10, 20, 30, 38} is the number of

subjects, to verify the clustering performance for various subjects. Similar to the

setup in [119], face images were projected into 9 × c-dimensional subspace by

PCA [9].

Table 6.3 shows the clustering accuracy with respect to the number of clusters.

The proposed methods, GSR and GLR, outperform other methods on average.

Especially, GSR gives much higher accuracy than others when the number of clus-

ters is larger than three. GLR gives the second best performance on average and

it outperforms other methods when c = 2. Following our proposals, LatLRR and

CASS perform better than others but their performance are unsatisfactory. LRR

and LRSC give similar clustering accuracy and lower than that of LatLRR on

average. LSR and SMR show the poor performance when the number of clusters
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is over 30. Although CASS gives the satisfactory results for small subject cases,

its performance gets worse when the number of subjects increases. SSC shows the

worst performance on average and especially it gives unsatisfactory results when

the number of clusters is large. From the table, we can see that the proposed

methods based on the group subspace representation work well for all cases and

show the superiority over the face clustering experiment without outliers, even

though their formulations are based on the l1 norm loss function.

Face clustering with outliers. To verify the robustness of the proposed

methods, we created a dataset, Yale-Caltech, which combines Extended Yale B

and Caltech-1015 [112], motivated by [4]. Unlike the dataset described in [4], we

randomly collected an image from each category of Caltech-101 as outliers. Hence,

we added 101 outlier images, which are converted into gray-scale images, to a

dataset consisting of the first c subjects. We resized both face and outlier images

to 20×20 to make all images have the same size and to reduce the computational

cost and memory requirement. We performed face clustering experiments for

c ∈ {10, 20, 30, 38} to investigate the clustering performance of the proposed

methods when the number of clusters is large.

Figure 6.5 shows the clustering performance of methods, SSC, LRR, LRSC,

LatLRR, GSR, and GSR, which can handle outliers. Even though LSR, CASS,

and SMR are not robust against non-Gaussian noises, we provide the results of

them in the following experiment. In this experiment, the clustering accuracy is

computed only for the facial images without the outlier images. The proposed

method, GSR, achieves the highest accuracy for all cases. SSC gives the com-

petitive results compared to the proposed methods. Although GLR gives less

5http://www.vision.caltech.edu/feifeili/Datasets.htm
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Figure 6.5: Face clustering results on the Yale-Caltech dataset.

accuracy than SSC and LatLRR, it outperforms LRR and LRSC on average.

Note that like the previous example, it is meaningful to compare our proposals,

GSR and GLR, with their baseline methods, SSC and LRR. In this perspective,

the proposed methods show a significant improvement. The running times of the

methods are 173.4 sec for SSC, 80.3 for LRR, 98.4 for LRSC, 108.2 for LatLRR,

182.7 for GSR, and 490.4 for GLR, for the case of c = 38.

For the Yale-Caltech dataset, we provide the experimental result for the case

when c = 10 for all compared methods including LSR, CASS, and SMR, as

mentioned before. Table 6.4 shows the clustering performance and running time

of different methods. Similar to the previous example, the proposed methods

give the best performance among the methods with competitive running time.

Three methods, LSR, CASS, and SMR, which cannot handle outliers, show poor

performance in this case. In addition, CASS shows an extremely long computation

time, making it infeasible for large-scale problems.
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Table 6.4: Face clustering accuracies (%) and running times (sec) on the Yale-

Caltech dataset. (# clusters: 10)

Algorithms SSC LRR LRSC LatLRR LSR CASS SMR GSR GLR

Accuracy 71.7 72.3 79.8 90.9 70.8 63.7 40.2 93.9 83.3

Time 16.8 25.8 7.87 43.8 0.51 15,680.3 2.55 18.3 12.3

6.5 Summary

In this chapter, we have proposed two subspace clustering algorithms, group

sparse representation (GSR) and group low-rank representation (GLR), using the

group subspace representation. The proposed methods simultaneously address

sparsity-based representation and the grouping issue by introducing a strong

convex regularizer, since a grouping capability is important for improving the

subspace clustering performance. Our proposals encourage the grouping effect by

capturing the resemblance among data samples drawn from the same subspace.

The proposed methods have been applied to various subspace clustering tasks,

such as synthetic problems, motion segmentation, and face clustering under the

existence of various noise and illumination conditions. Experimental results show

that our methods provide favorable performance compared to existing methods.
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Chapter 7

Scalable Low-Rank Subspace

Clustering

In this chapter, we address another important issue of the subspace clustering

task. While existing subspace clustering algorithms have been successfully applied

to various clustering problems, they are still challenges in terms of scalability and

an ability to handle out-of-samples. These methods compute an affinity matrix

using all observed samples in a batch mode. Hence, if an out-of-sample is intro-

duced, the affinity matrix has to be recomputed using all samples. Hence, they

are not scalable and their applications are limited. Furthermore, since most of

the methods are iterative approaches or need heavy complexity when construct-

ing an affinity matrix, they are not suitable for large-scale problems. There is an

additional factor to consider. After an affinity matrix is computed, there are two

remaining steps, post-processing and spectral clustering, whose time complexities

are also significantly high (in general, over cubic complexity).

To reduce the complexity everywhere in subspace clustering, in this chapter, we
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Chapter 7. Scalable Low-Rank Subspace Clustering

propose an end-to-end1 integrated pipeline for scalable subspace clustering. We

first introduce a scalable learning framework for subspace clustering which seeks

to find an affinity matrix incrementally without degrading the performance from

its baseline algorithm. The complexity of the introduced incremental learning

framework is further reduced by proposing summary representation based on the

motivation that a subspace can be well represented by sparse representative basis

vectors [121]. But there still remains post-processing2 and spectral clustering steps

before the final clustering result if obtained. These additional steps can sometimes

demand more computation than the affinity learning step. To reduce the complex-

ity of the overall algorithm, we propose an efficient integration of post-processing

and spectral clustering into the proposed scalable low-rank representation frame-

work, named scalable low-rank representation (SLR). It is interesting to note that

even our method is based on the l2-norm, the proposed summary representation

enforces the affinity matrix to be low-rank and has sparse connections due to

its selection strategy. To conclude, the proposed learning framework achieves not

only the competitive performance but also robustness to outliers, as well as the

fairly reduced time complexity. The main contributions of the proposed method

are as follows.

• The proposed method constructs an affinity matrix incrementally using the

summary representation, which gives an efficient and robust representation

of data with low complexity.

1We would like to note that the term “end-to-end” is used in this chapter to describe the fully

scalable framework in the entire process from the front-end to the back-end, even though the

meaning of recently used end-to-end pipelines in the deep learning literature is slightly different

from our intention.
2Since it has an impact on the clustering performance, many algorithms usually contain a

post-processing step.
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• More importantly, the proposed affinity learning strategy is integrated in

a complete pipeline of subspace clustering, including post-processing and

spectral clustering, to reduce the overall time complexity to linear in the

number of samples.

• The proposed method can be integrated with kernel methods for handling

challenging problems where data lie in nonlinear manifolds. Thus, the pro-

posed framework can address both linear and nonlinear clustering problems.

• The clustering accuracy of the proposed method is satisfactory with an

order-of-magnitude speed-up compared to the existing subspace clustering

algorithms on various benchmark tasks.

7.1 Incremental Affinity Representation

The goal of this work is to develop an efficient scalable algorithm for subspace

segmentation since many recently developed methods are not suitable for han-

dling streaming samples. To handle this issue, we develop a scalable method based

on least squares regression (LSR) [111]. LSR utilizes an l2-norm regularizer for

enforcing grouping effects among the samples of the same subspace, and it shows

the state-of-the-art performance on various datasets. The l2-norm regularizer in

LSR makes it highly efficient and adequate for incremental processing, but at

the same time, it can make the method vulnerable to outliers or ill-conditioned

subspaces. This disadvantage will be addressed by using the robust summary rep-

resentation later in this chapter. Before introducing the proposed method, we

present an incremental approach of LSR in this section, since the incremental

concept is used in the proposal in the next section. First, we reformulate the LSR
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problem under the noisy case without the diagonal constraint as follows [111]:

min
C
‖X −XC‖2F + λ‖C‖2F , (7.1)

where λ is a weighting parameter and its analytical solution is

C∗ = (XTX + λI)−1XTX. (7.2)

Here, I is the identity matrix. Although the solution consists of simple operations,

it is hard to process streaming data, because it involves an inverse operation whose

complexity is cubic in the number of samples. To compute the inverse operation

efficiently, we introduce an equivalent solution using the matrix inversion lemma

[88]:

A U

V D

−1

=

A−1 0

0 0

+

−A−1U

I


× (D − V A−1U)−1

[
−V A−1 I

]
,

(7.3)

where A and D are invertible and square matrices, and U and V are compatible

matrices so that dimensions of A and UDV are the same.

Now, let Xn−1 = [x1, ...,xn−1] ∈ Rd×(n−1) be a matrix whose samples are

collected until time n− 1, and xn ∈ Rd is a newly observed sample. Then we can

update the affinity matrix Cn ∈ Rn×n for all n samples as follows:

Cn = (XT
nXn + λIn)−1XT

nXn

=

XT
n−1Xn−1 + λIn−1 XT

n−1xn

xTnXn−1 xTnxn + λ

−1

·XT
nXn

=:

A U

V D

−1

·

Ă U

V D̆

 ,
(7.4)
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Algorithm 13 Incremental LSR (ILSR)

1: Input: streaming data Xn = [x1, ...,xn]

2: for i = 1, ..., n do

3: Solve the problem (7.5) for each sample xi

4: end for

5: Perform post-processing [4]

6: Apply spectral clustering [58] to C to obtain k clusters

where In denotes an n× n identity matrix, Ă = XT
n−1Xn−1 ∈ R(n−1)×(n−1), and

D̆ = xTnxn ∈ R. From (7.4), we have the complexity of O(nd) for the inverse oper-

ation when computing with the new sample xn. Likewise, the last term XT
nXn in

(7.4) is constructed incrementally. Using (7.3) and (7.4), we compute the solution

sequentially

Cn =

Cn−1 CU

0 0

+

−CU
1


× (D − V CU )−1

[
−V Cn−1 + V − V CU + D̆

]
,

(7.5)

where Cn−1 = A−1Ă and CU = A−1U . We can see that the incremental learning

of an affinity matrix in (7.5) is an incremental LSR (ILSR) approach, whose

algorithm is summarized in Algorithm 13. By obtaining the affinity matrix with

proper post-processing such as [4] to have more clear representation, we can find

cluster memberships using spectral clustering [58]. The computational complexity

for computing Cn in (7.5) is O(n2d), since we do not need to re-compute Cn−1.

Hence, the overall complexity of ILSR is O(n3d), which is higher than the batch

LSR method.
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7.2 End-to-End Scalable Subspace Clustering

7.2.1 Robust incremental summary representation

To reduce the unsatisfying complexity, we propose a new approach using the con-

cept of the widely used representative learning [121, 122]. The basic idea is derived

from the fact that a subspace can be efficiently constructed based on sparse rep-

resentative basis vectors, in other words, a sample in a subspace is represented

by linear combination of a small number of effective basis vectors constructing

the subspace. This goes along the lines of sparse representation in subspace clus-

tering [53], which reveals a data sample by other sparse essential samples. It is

interesting to note that though the proposed method is based on the l2-norm,

we can represent the features of SSC and LRR on the affinity matrix indirectly

by using a low-rank approximation matrix. From this motivation, we construct

a small-sized summary matrix which can represent most of samples instead of

constructing an overall affinity matrix, which we named summary representation

of the observed data.

The first step is to construct a summary affinity matrix, CS , sequentially based

on incoming samples. Assume that data samples are normalized. We can construct

the summary matrix using a small subset or summary set S of data matrix X as

follows:

CS = arg min
C
‖S − SC‖2F + λ‖C‖2F , (7.6)

where S = [xi]i∈Q is a matrix constructed by stacking xi, the i-th sample (or

column) of X, for all i ∈ Q. Q is defined as a set of indices where i is selected by

examining the correlation of xi and the previous samples indexed by the current

Q to ensure thatQ includes diverse samples. Note that this can be interpreted as a

sparse coding [34] or a vector quantization procedure, but our selection procedure
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does not involve a time-consuming task such as LASSO [34]. This is motivated by

[123, 63], viewing a sparse coding problem as a linear coding problem. However,

this strategy can be vulnerable to outliers due to the l2 error term. As a remedy

of the issue, we add a simple but powerful stochastic outlier detection step to the

procedure. The overall procedure is described below.

Let Si be a matrix consisting of samples used for a summary matrix until time

i. Then, xi is included in Si if it passes a thresholding test using the median of

the coded vector computed from the linear coding scheme, i.e., med(STi xi) ≤ θ,

where θ is a threshold which will affect the size of Si and med(·) is a median

operator. This step will maximize the diversity of Q. To eliminate the outlying

samples during the step, we can further check the correlation with a small set,

R̃i, randomly sampled from previously unselected samples Ri. If the correlation

between the current sample xi and the sampled set R̃i is low, i.e., med(R̃Ti xi) ≤

θ0, where θ0 is a minimum threshold value to detect outliers, we regard xi as an

outlier. We have found that this simple strategy is highly efficient and provides

excellent performance in several scenarios with outliers. (See section 7.3.1 for

more details.) By varying θ, we can control the size of the summary matrix and

the representation capability of the summary matrix. Hence, when i ∈ Q, we

update a new summary matrix CS as follows:

CS = (STi Si + λIi)
−1STi Si

=

STi−1Si−1 + λIi−1 STi−1xi

xTi Si−1 xTi xi + λ

−1

· STi Si.
(7.7)

Otherwise, we do not modify CS . The remaining samples are held and later used

to construct the overall affinity matrix in order to assign cluster memberships to

all samples.

Note on the summary representation. To check how the summary rep-
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Figure 7.2: Summary ratio and clustering accuracy according to the thresholding

θ for face clustering. (a) Summary ratio (%). (b) Clustering accuracy (%).

resentation works, we performed the proposed method on the Extended Yale B

dataset [78], where the number of clusters is 5 for a face clustering task. We

varied the value θ from 0.1 to 1. Figure 7.2 shows the summary ratio and its

corresponding clustering accuracy using the proposed method, which will be de-

scribed in Section 7.2.3, according to θ. From the figure, we can observe that the

summary ratio increases gradually when θ increases and the clustering accuracy

converges to a stationary point when θ is larger than 0.5 (summary ratio is larger

than 15%), which is not sensitive to the choice of θ once the accuracy reaches

at a stationary point. Selected summary samples (by varying θ) are represented

in Figure 7.3, which reveals that the proposed summary representation selects

diverse samples in every class by its sparse selection nature.

7.2.2 Efficient affinity construction

The next step is to develop an affinity matrix based on the summary matrix CS

and the remaining set R. Let the size of the summary matrix be r. Then, we
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Figure 7.3: Graphical representation of selected summary samples (represented

by 1) of the proposed method according to θ for face clustering (# cluster is 5).

Each class in the dataset has 64 samples and the samples are in general position.

(·) denotes the summary ratio for the corresponding threshold value.

form an aggregation matrix, CAgg ∈ Rn×r, which consists of a summary matrix,

CS ∈ Rr×r, and a latent matrix, CR ∈ Rr×(n−r), computed using the remaining

set R:

CAgg = [CS , CR]T s.t. CR = [ck]k/∈Q,∀k, (7.8)

where ck = (STS + λI)−1STxk is a latent vector with xk ∈ R. Now, we can

obtain an overall affinity matrix as C̃ = CAggCS
†
CAgg

T
, where A† is the pseudo-

inverse of a matrix A. Note that the subspace clustering based on the summary

representation using a small number of representative samples can be guaranteed

under mild conditions:

Theorem 6. Suppose that noiseless data samples are sufficiently collected from

a union of k independent linear subspaces and basis vectors constructing the sum-

mary matrix cover the remaining samples. Let us define a function f which satis-

fies f(C) = f(CP) for any permutation matrix P. Then, the problem (7.1) based

on the summary representation solves the subspace clustering problem exactly with

a block-diagonal structure of C̃.
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Proof. See Appendix G.1.

As mentioned earlier, however, we may consider another important step to

make a final affinity matrix, i.e., post-processing to reduce noisy representa-

tions of affinity matrices. Most of the subspace clustering methods utilize a post-

processing step to reduce the effect of noise before performing spectral clustering.

One of popular post-processing techniques is described in [4], which acts like a

singular value shrinkage [108] over a latent matrix by discarding low-impact sin-

gular values. In this post-processing step, the main computational cost is from

singular value decomposition (SVD), which has O(n3) complexity and thus is not

suitable for scalable learning. To reduce the complexity, instead of conducting

post-processing on C̃, we directly conduct SVD on the n× r rectangular matrix

CRec , CAggÛ , where Û , UΣ
1
2 ∈ Rr×r is computed from eigenvalue decom-

position (EVD) over CS
†

such that CS
†

= Û ÛT ,3 whose complexity is O(nr2),

and follow the steps stated in [4] (please see the paper for more details). Thus,

we can reconstruct an affinity matrix using outer product of Ũ , i.e., C̃ = Ũ ŨT ,

where Ũ ∈ Rn×r is the post-processed matrix made from CRec. Then, we obtain

the post-processed affinity matrix C̃pp where

[C̃pp]ij = [C̃ � C̃]ij = ([Ũ ŨT ]ij)
2, (7.9)

where � is the Hadamard product. In the next section, we explore for a scalable

algorithm giving an equivalent solution to (7.9) whose time complexity of the

entire task is linear in the number of samples.

3In practice, we first compute EVD over CS = UΣUT , and then perform inversion on Σ for

computational efficiency.
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7.2.3 An end-to-end scalable learning pipeline

Until now, we have discussed how to construct an overall affinity matrix effi-

ciently. But, in order to obtain the cluster membership, we need to perform spec-

tral clustering [58] after obtaining the affinity matrix with post-processing. It is

important to note here that constructing an overall affinity matrix based on the

thin rectangular matrix Ũ followed by conducting EVD to obtain a new skinny

rectangular matrix in spectral clustering is quite wasteful, since handling a full

affinity matrix involves heavy computational tasks. Specifically, it is important to

maintain a thin matrix structure taking the effect of EVD without constructing

a full affinity. to reduce the overall complexity to linear in the number of sam-

ples. To do so, we devise a unified framework by integrating the overall procedure

from constructing an aggregation matrix to spectral clustering, without building

an overall affinity matrix. As discussed before, we perform post-processing [4],

which involves element-wise square operation in (7.9), i.e., C̃pp = ([Ũ ŨT ]ij)
2,

to make a clear affinity and thus enhance the clustering performance. To con-

sider the effect of the element-wise square operation in a decomposed matrix, we

present a new matrix Ṽ using the following result:

Theorem 7. Suppose that C̃ = Ũ ŨT ∈ Rn×n with a matrix Ũ ∈ Rn×r. Then,

for a matrix Ṽ ∈ Rn×r2 satisfying [C̃pp]ij = ([Ũ ŨT ]ij)
2 = [Ṽ Ṽ T ]ij, the following

holds:

Ṽ = [(Ũ1 ⊗ Ũ1)T (Ũ2 ⊗ Ũ2)T · · · (Ũn ⊗ Ũn)T ]T , (7.10)

where Ũi is the i-th row of Ũ and ⊗ is the Kronecker product.

Proof. See Appendix G.2.

From Theorem 7, we have an efficient representation of a decomposed matrix

considering post-processing and it bridges among the tasks in subspace clustering
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for scalability. Now, we are ready to perform spectral clustering on small Ṽ instead

of performing on C̃pp. Here, we assume that we use Ṽ when n ≥ r2, which is

common for large-scale problems. In the spectral clustering step, we first compute

a degree matrix as D = diag(Ṽ (Ṽ T1)) ∈ Rn×n, which can be computed efficiently

with linear complexity. Based on D, a normalized Laplacian matrix L satisfies

the following relation:

L = I −D−
1
2 C̃ppD−

1
2 = I − D̆D̆T , (7.11)

where D̆ = D−
1
2 Ṽ is a decomposed Laplacian matrix. Let D̆ = UΣV T be SVD

of D̆, then, L = U(I − Σ2)UT . It is important to note here that the k largest

singular vectors of D̆ is the same as the k smallest eigenvector of L. Hence,

we can also reduce the complexity by directly conducting SVD on D̆, instead

of computing the square matrix L and then performing EVD over L, whose

complexity is O(n3), occupying the main complexity of spectral clustering. Then,

we perform k-means over the singular vectors to obtain the final segmentation

result. The overall procedure of the proposed method, named scalable low-rank

representation (SLR), is summarized in Algorithm 14. It is recommended that

the former approach described in 7.2.2 with spectral clustering can be used for

small-scale problems (n ≤ 1, 000, in general) and the solution proposed here is

used for large-scale problems.

Proposition 2. Suppose that we can observe clean data X, where rank(X) =

r∗ ≤ r. Then, SLR finds cluster memberships of samples exactly in O(n) time.

Proof sketch. SLR gives an equivalent solution to al clustering problem with (7.9)

followed by spectral clustering, where the block diagonal structure of (7.9) based

on the rank-r approximation using X is guaranteed based on Theorem 6 and

the work in [111]. Therefore, SLR solves the subspace clustering problem exactly
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Algorithm 14 Scalable low-rank representation (SLR)

1: Input: normalized streaming data Xn = [x1, ...,xn]

2: for i = 1, ..., n do

3: if med(STi xi) ≤ θ and θ0 ≤ med(R̃Ti xi) then

4: Si ← [Si,xi]

5: Update the summary matrix CS using Si

6: else if θ < med(STi xi) and θ0 < med(R̃Ti xi) then

7: Ri ← [Ri,xi]

8: else

9: Regard xi as an outlier

10: end if

11: end for

12: Construct CAgg = [CS , CR]T by (7.8)

13: Compute a post-processed matrix Ṽ by (7.10)

14: Compute D̆ = D−
1
2 Ṽ where D is a degree matrix

15: Apply k-means to the k largest singular vectors of D̆

with linear time complexity.

Complexity analysis. The computational complexity of the subspace clus-

tering algorithms depends on the following three main tasks: (1) construction of

an affinity matrix, (2) post-processing, and (3) spectral clustering. The proposed

framework, SLR along with SSSC [63] do not perform the conventional spectral

clustering step. Moreover, the proposed algorithm as well as LSR do not learn an

affinity matrix iteratively (that is, their solutions are computed in closed form).

The computational complexity of the proposed unified framework is O(nr4). This

takes the linear complexity over n if r is considered as a constant over various-
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size samples. In other words, if the number of samples dominates the summary

size, i.e., n � r, we can dramatically reduce the computational complexity (for

example, see Table 7.5). The computational complexity of SSSC to O(tq3 + nq2)

where t is the number of iterations and q is the in-sample size.4 Even though

the complexity of SSC-OMP [65] is O(ndk), where k is the size of the support

set used in OMP, it still suffers from the heavy computational complexity due to

the spectral clustering task. The memory complexity of the proposed framework

is O(nr2), whereas the memory complexity of existing methods is O(n2), except

SSSC, which has O(q2) complexity. The time and memory complexities of the

proposed method along with existing algorithms are summarized in Table 7.1.

7.2.4 Nonlinear extension for SLR

The proposed framework is applied to more challenging problems where samples

lie in a union of nonlinear manifolds, since conventional linear subspace clustering

methods are hard to apply for the nonlinear subspace structure. Fortunately, the

proposed framework is easy to extend to nonlinear subspace clustering as follows:

min
C
‖φ(X)− φ(X)C‖2F + λ‖C‖2F , (7.12)

where φ(·) : Rd → H is a nonlinear mapping function to a reproducing kernel

Hilbert space H. The optimal solution of the problem (7.12) is computed by using

the kernel trick:

Cn = (KXX + λI)−1KXX , (7.13)

where KXX ∈ Rn×n is a kernel matrix such that [KXX ]ij = 〈φ(xi), φ(xj)〉H =

κ(xi,xj). Note that the proposed summary representation with the unified scal-

4We have found that q is normally larger than r or similar to r2 to get the reasonable

performance for most problems in Section 4.1.1. Even worse, such a choice still shows unsatisfying

performance compared to the proposed method.
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able pipeline can be straight-forwardly applied to the kernelized formulation. In

this section, we consider two kernel functions: radial basis function (RBF) ker-

nel function, κ(x,y) = exp(−‖x − y‖2/2σ2), and polynomial kernel function,

κ(x,y) = (xTy + α)β, where σ, α, and β are parameters of the kernel functions.

7.3 Experimental Results

In this section, we apply the proposed method, SLR, to five datasets: synthetic

data, Hopkins 155 dataset [55] for motion segmentation, Extended Yale B dataset

[78] for face clustering, USPS dataset [113] for handwritten digits clustering, and

HARUS dataset [124] for action clustering. Selected examples of the datasets are

illustrated in Figure 7.4. We compare with well-known batch subspace cluster-

ing algorithms, SSC [16], LRR [4], and LSR [111], a nonlinear subspace cluster-

ing method, KSSC [125], and scalable methods, SSSC [63] and SSC-OMP [65],

and the incremental approach of LSR (ILSR) described in Section 7.1, with re-

spect to clustering accuracy and execution time. Furthermore, we compare with

two large-scale spectral clustering algorithms: a spectral clustering method us-

ing the Nyström method with orthogonalization (Nyström) [126, 127] and the

landmark-based spectral clustering method (LSC) [128] to demonstrate the pro-

posed method with spectral clustering algorithms.

The clustering accuracy is computed as follows:

Accuracy =
1

n

n∑
i=1

δ(pi,map(qi)), (7.14)

where pi and qi are the i-th true and obtained labels, respectively, δ(a, b) is the

Kronecker delta function, and map(·) is a mapping function to permute the ob-

tained labels to match with the true labels, which is computed by Kuhn-Munkres

algorithm [77]. In the experiments, we compute execution times of tested meth-
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(a) (b) (c)

Figure 7.4: Typical examples from three datasets. (a) Hopkins 155 dataset for

motion segmentation, (b) USPS dataset for handwritten digits clustering, and

(c) Extended Yale B dataset for face clustering.

ods for whole tasks in subspace clustering, unless stated otherwise. We use the

codes of compared methods provided by authors. For fair comparison, we set the

parameters of all tested methods to achieve the best performance, unless stated

otherwise.

7.3.1 Synthetic data

We first evaluated the performance of the proposed method compared with ILSR

and SSSC according to various summary ratios or in-sample ratios, in order to

verify the proposed summary representation. We generated an example which has

five clusters, where each cluster has 50 samples with dimension of 50 and added

Gaussian noises from N (0, 0.1). Figure 7.5 shows the average clustering accuracy

and execution time according to the summary ratio for 50 different examples. We

varied the summary and in-sample ratio from 5% to 95%. As shown in Figure

7.5(a), SLR outperforms SSSC for all cases. Furthermore, it gives higher accuracy

than ILSR when the summary ratio is larger than about 10%. One possible reason
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Figure 7.5: Performance comparison on a synthetic example according to sum-

mary ratio. The example size is 50 × 250 with 5 clusters where each cluster has

50 samples. (a) Clustering accuracy. (b) Execution time.

is that the summary representation has a denoising effect by discarding noisy or

meaningless samples as existing low-rank and sparse representation algorithms

do in noisy scenarios. For execution time, the proposed method is much faster

than SSSC and the difference gets larger when the summary ratio increases as

shown in Figure 7.5(b). From the figures, the proposed summary representation

shows its efficiency with excellent performance.

Then, we conducted our proposal, SLR, compared with ILSR and existing

algorithms, SSC [16], LRR [16], LSR [111], SSSC [63], and SSC-OMP [65], to

verify the efficiency of the proposed algorithms for large-size datasets when the

number of samples dominates the summary size. We tested the proposed method

on synthetic examples. We constructed a data matrix whose samples are randomly

collected from five linear subspaces, where the number of randomly chosen basis

vectors in each subspace is five. Then, we added a Gaussian noise matrix whose

elements are generated from N (0, 0.1). We set the summary size to 25 and the
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Table 7.2: Average clustering accuracy (%), execution time (sec), and speed-up

gain over each compared method for SLR on synthetic problems with a large

number of samples.

n=15,000 n=30,000

Method Accuracy Time Speed-up Accuracy Time Speed-up

SSC 94.0 >5.5h 7, 071× 95.3 >11.9h 11, 577×

LRR 96.6 3,279.1 1, 171× 99.2 8,617.2 2, 329×

LSR 97.5 3,706.8 1, 324× 99.5 7,420.1 2, 005×

SSSC 90.4 15.9 5.7× 92.8 43.2 11.7×

SSC-OMP 94.1 1,436.9 513× 96.1 5,479.7 1,481×

SLR 97.5 2.8 − 99.0 3.7 −

in-sample size of SSSC to 500 to get reasonable performance. The parameter λ

of the proposed method is set to 500. We performed the proposed method for

two scenarios, where n = 15, 000 and n = 30, 000. Table 7.2 shows the average

performance of different methods from 10 independent runs. From the table,

SLR gives the order-of-magnitude speed-up (roughly thousands of times faster for

n = 30, 000) over other methods including SSSC. SSSC is faster than other state-

of-the-art algorithms, but it is slower than SLR with relatively poor performance.

Even though SSC-OMP shows faster running time than SSC based on the basis

pursuit formulation, it still fairly slow compared to ours, making it less applicable

for large-scale problems.

In addition, we provide an experiment on robustness of the proposed summary

representation. We generated an example with 5 classes each of which has 50

samples with dimension of 100 and added Gaussian noises fromN (0, 10−2). In the
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Table 7.3: Performance comparison on synthetic problems with outliers.

Method SSC LRR LSR SSSC SLR

Accuracy (%) 96.6 91.6 94.9 51.5 99.7

Time (sec) 0.90 1.79 0.02 0.13 0.02

example, we replaces 10% randomly selected samples to outliers whose elements

are uniformly generated from [−25, 25]. We set the summary ratio to roughly

20% (θ = 0.45) and the minimum threshold θ0 to 0.13 for the example. Table 7.3

shows the average performance of the methods from 30 different examples and

Figure 7.6 illustrates the selected samples used for constructing the summary

matrix. From the results, we can observe that the proposed method is robust

against outliers by eliminating them and thus gives satisfactory performance.

7.3.2 Motion segmentation

Motion segmentation [55] is a task for clustering trajectories of rigidly moving

objects based on tracked points along the frames. We applied the proposed al-

gorithm to the Hopkins 155 database [55], which consists of 155 video sequences

where there exist two or three motions. We compared SLR with other methods in

terms of clustering performance and execution time for all sequences. Since this

task is a small-scale problem, we solve SLR based on the reconstruction approach

in (7.9), and we compute execution times of tested algorithm for the affinity con-

struction task. We set the summary ratio of SLR to about 25% and the in-sample

ratio of SSSC to 25%. We set the parameter λ of SLR to 5×10−4. In the dataset,

we use four measures over the clustering performance (mean, standard deviation

(Std.), minimum, and median) motivated by the work in [53]. The average results
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Sample Index
0 50 100 150 200 250

0

0.5

1

Figure 7.6: Selected samples (represented by 1) in the proposed summary rep-

resentation to construct the summary matrix for a synthetic example with 10%

outliers. A magenta circle indicates an outlier.

of the compared methods are shown in Table 7.4. From the table, we observe that

most of the algorithms give the similar performance except SSSC which gives un-

satisfactory performance for this problem. The execution time of SLR is much

faster than that of SSC and LRR and is relatively faster than that of SSSC and

ILSR. While LSR and SSC-OMP run slightly faster than SLR for this small-scale

dataset, SLR is much faster than LSR for larger datasets on average as shown in

other experiments.

7.3.3 Face clustering

We evaluated our proposal for face clustering on the Extended Yale B dataset

[78], which consists of 38 subjects and each subject has 64 frontal face images un-

der various illumination changes. In the dataset, we used the first c classes, where

c ∈ {3, 5, 8, 10} with samples of 64 for each class. Then, we reduced each image

to a 9c dimensional vector using PCA. Similar to the previous problem, this task

is also a small-scale problem. We solve SLR by the reconstruction approach with
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Table 7.4: Performance comparison with respect to clustering accuracy (%) and

execution time (sec) on the Hopkins 155 dataset for motion segmentation.

Method Mean Std. Min Median Time

SSC 96.46 9.1 52.8 100 1.36

LRR 96.53 8.0 58.2 99.7 1.03

LSR 95.96 10.4 52.1 99.8 0.04

SSSC 80.80 18.0 41.3 84.9 0.18

SSC-OMP 96.33 8.53 58.7 99.8 0.04

ILSR 95.96 10.4 52.1 99.8 0.30

SLR 95.98 8.7 61.9 100 0.06

the same summary ratio and execution time as described in the previous subsec-

tion. We set the parameter λ of SLR to 10−2. Figure 7.7 shows the clustering

accuracy of all methods at different numbers of clusters with average clustering

accuracy. The proposed method performs competitively compared to other meth-

ods on average as described in the results. SSC-OMP gives better performance

than ours when the number of clusters is small, its results drop sharply when

c ≥ 8. The performance of SSSC gets worse considerably than other algorithms

when the number of clusters increases for the in-sample ratio of 25%. Figure 7.8

shows the execution times of different methods for the case when c = 10. As

shown in Figure 7.8(a), ours shows satisfying execution time for this small-size

problem and comparable to SSC-OMP. In addition, we compared the proposed

method with the näıve algorithm, ILSR, with respect to the time as more sam-

ples are introduced sequentially. As shown in Figure 7.8(b), the proposed method

runs in real-time, whereas ILSR gets slower rapidly when the number of samples
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Figure 7.7: Clustering accuracy (%) on the Extended Yale B dataset.

increases.

7.3.4 Handwritten digits clustering

We tested the performance of the proposed method for clustering handwritten

digits. We used the USPS dataset [113], which consists of 9,298 gray-scale images

with 10 classes where each image is represented using a 16×16 matrix. In the

dataset, we selected the first 1,000, 3,000, 5,000, and 9,298 samples to verify

the performance of the methods with regard to the number of samples from

small-scale to large-scale. In addition, we augmented the dataset by duplicating

the dataset and shuffling samples in the augmented dataset (a total of 18,596

samples) to perform on a larger dataset. We set the summary size of SLR to

30 which results in Ṽ ∈ Rn×900 in (7.10) and the in-sample ratio of SSSC to

min(d0.1ne, 900) to get reasonable performance. We set λ = 3.

Table 7.5 shows the performance of different methods. The proposed algorithm

outperforms other methods on average in terms of clustering accuracy and exe-

cution time. It gives an accuracy of over 70% on average and is much faster than
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Figure 7.8: Execution time (sec) on the Extended Yale B dataset. Time was

computed when the number of clusters is 10. (a) Accumulated run time (log

scale). (b) Time at each iteration.

existing algorithms with an order-of-magnitude speed-up. Even though SSSC is

faster than existing algorithms, it performs poorer than others. Likewise, SSC-

OMP give poorer performance than the others in this problem, and even its

execution time increases sharply compared to the proposed method. Here, we

have found that the clustering accuracy of SSC decreases substantially when the

number of samples is 18,596 for a fixed parameter. The reason is that the spars-

est representation of SSC may not cover all samples in a subspace, leading to

fractions in a subspace. Whereas, our approach provides excellent performance

mainly due to its grouping effect with robust representation generated from sparse

and low-rank connections.

7.3.5 Action clustering

We also provide the experimental results on more challenging problem, action

clustering [124]. We evaluated the proposed method on the HARUS dataset
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[124], which consists of 10,299 samples over six action classes (walking, walk-

ing up/down-stairs, sitting, standing, laying). Since a sample in the dataset may

not be represented by a linear combination of other samples, we applied the

nonlinear extensions of the proposed algorithm: KSLR(P) and KSLR(G) using

polynomial kernel and RBF kernel functions, respectively, described in Section

7.2.4. We also tested kernel SSC (KSSC) [125], a recently proposed nonlinear

subspace clustering algorithm, and two spectral clustering algorithms, Nyström

[126, 127] and LSC [128]. We made three scenarios by selecting first 5,000 and

10,299 samples and augmenting additional scenario, where the number of samples

is 20,598. We set the summary and in-sample size to the same value stated in

the previous problem. The parameters of the kernel functions are set to σ = 1,

α = 0, and β = 5. We set λ = 103 for SLR and λ = 1 for KSLR.

Table 7.6 shows the clustering accuracy and execution time of the compared

algorithms for the action clustering tasks. From the table, the proposed linear

method, SLR, gives better performance than other methods except its nonlinear

extensions. Even, they perform better than KSSC for all scenarios. The nonlinear

extensions of the proposed method outperform the existing methods. Especially,

the extension based on the polynomial kernel function gives the best performance.

As for the execution time, existing subspace clustering methods are hundreds or

thousands times slower than the proposed method and also SSSC is 14 times

slower than SLR when n = 20, 598. Another scalable subspace clustering al-

gorithm, SSC-OMP, gives unsatisfying results for both clustering accuracy and

execution time (290× slower). Even if Nyström and LSC give the competitive

execution time, they perform poorer than the proposed method. From the table,

we can observe that the proposed framework is scalable, efficient, and can be used

for large-scale problems.
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7.4 Summary

In this chapter, we have proposed an end-to-end scalable learning algorithm for

large-scale subspace clustering based on the summary representation and an effi-

cient integrated pipeline with post-processing and spectral clustering. The sum-

mary representation accelerates learning of an affinity matrix efficiently and ro-

bustly with excellent performance and the efficient integration with post-processing

and spectral clustering achieves linear time complexity, making it suitable for

large-scale problems. The proposed framework has been applied to various prob-

lems with different scales and shown its excellent performance and efficiency for

large-scale problems.
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Chapter 8

Conclusion and Future Work

From recent advances in digital technology, demands for processing power of a

computing device have been highly increased. However, the advancement of pro-

cessing power does not follow the geometric growth of the amount of data, called

big data. What is more, the curse of dimensionality even makes an algorithm

difficult to handle such massive data, making it less applicable. Fortunately, we

can exploit key information from data by the blessing of dimensionality from the

concept of sparsity or low-rank-ness.

One of the efficient exploitation tools, sparse representation has been widely

used to select informative entries in a bunch of data. However, most of the suc-

cessful algorithms are based on the convex relaxed approach using the l1-norm,

which is only efficient for convex problems and can lose its significance when

conducting on inherently nonconvex problems. As a remedy of the weakness of

existing problems, we have presented a new nonconvex sparsity measure for many

nonconvex problems. The proposed measure embraces both l0- and l1-norms and

possesses slowly vanishing gradients to help drawing solutions of an optimization

algorithm to sparse points. Experiments on three important sparse representa-
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tion problems have verified that the proposed method performs favorably against

those of state-of-the-art algorithms.

Low-rank representation, another efficient exploitation tool, has been also very

popular method to reduce the dimension of data safely without much losing its

original information. But, the conventional algorithms are vulnerable to corrup-

tions and algorithms handling outliers are quite slow to get a reasonable solution,

making them not applicable for practical application in the presence of outliers.

To address the issue of robustness and efficiency, we have first proposed an effi-

cient algorithm based on the robust measure, the l1-norm, and solved it using the

alternating rectified gradient method, which finds a gradient to reach a stationary

point quickly. Then, we have presented a regularized formulation with an orthog-

onality constraint to cope with overfitting and running speed of an algorithm

and solved it under the augmented Lagrangian framework. It can handle a rank

uncertainty issue flexibly by a rank estimation strategy for practical real-world

problems. In addition, we have studied a structured matrix approximation prob-

lem which is used in a nonparametric Bayesian approach. Numerical experiments

have demonstrated the robustness and efficiency of the proposed algorithms for

several benchmark data sets.

The above low-rank representation methods assume that the rank of data is

fixed. In order to address the rank uncertainty issue with the fixed-rank prob-

lem, we have studied the well-known elastic-net regularizer which compromises

both ridge and lasso regressions and is used to analyze the rank of a matrix by

regularizing singular values. We have developed a robust and stable algorithm

with automatic rank estimation from the maximum rank defined by users. The

strong convexity from the regularizer alleviates the instability problem by shrink-

ing and correcting inaccurate singular values in the presence of unwanted noises.
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It is extended to a joint optimization problem to handle data lying in a union

of multiple subspaces based on the elastic-net regularization of singular values.

Experimental results on several benchmark problems have proved the superiority

of the proposed algorithm using the regularizer.

Motivated from the previous elastic-net regularizer, we have applied the reg-

ularizer to a subspace clustering task, where we regularize a coefficient matrix

which reveals a subspace structure for grouping effect among highly correlated

samples. Hence, we have proposed two robust group subspace clustering algo-

rithms by extending conventional sparse and low-rank representation algorithms

with explicit subspace grouping. We have shown that the proposed methods cap-

ture the similarities among data samples collected from the same subspace, the-

oretically and empirically. While the subspace clustering algorithms successfully

applied to a number of problems, they are still not applicable for large-scale

or streaming data due to their expensive computational cost. As a remedy for

the high computational requirement, we have presented an end-to-end solution

to reduce the complexity of all tasks in subspace clustering, by assuming the

low-rank-ness of data. The proposed algorithms have been applied to well-known

clustering tasks, outperforming other state-of-the-art algorithms.

For future work, more theoretical analysis of the proposed algorithms on the

convergence rate and error bound will be studied. Furthermore, we will apply

the concept of sparsity and low-rank-ness to other challenging applications to be

explored in computer vision and robotic fields. In addition, we will extend the

nonconvex sparsity measure to a 2D sparsity problem, that is, low-rank repre-

sentation problem, because the ideal rank function is nonconvex and most of the

low-rank matrix approximations are also nonconvex. Due to the unfavorable com-

putational complexities of the conventional methods including our proposals for
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the low-rank representation, we will explore scalable approaches to reduce both

time and memory complexities for a practical use. Lastly, following the recent

advances in deep learning, we will apply the sparse and low-rank representation

to deep learning architectures in order to represent the architectures concisely

with considerably low number of parameters.
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Appendix A

Derivations of the LRA

Problems

For the LRA problem, we apply SVG for modeling sparse errors, whose problem

formulation, termed LRA-SVG, is constructed as follows:

min
E,M

‖PΩX
(E)‖εSVG, s.t. E = X −M , rank(M) ≤ r. (A.1)

The augmented Lagrangian of (A.1) is constructed as

L(E,M ,Π) = ‖PΩX
(E)‖εSVG

+ 〈Π,E −X +M〉+
γ

2
‖E −X +M‖2F ,

(A.2)

such that rank(M) ≤ r. Based on (A.2), we obtain an algorithm based on the

following steps:

E+ ← min
E
‖PΩX

(E)‖εSVG +
γ

2
‖D +

Π

γ
‖2F , (A.3)

M̆ ← min
M

γ

2
‖D +

Π

γ
‖2F , (A.4)

M+ ← U rS 1
γ
[Σr]V

T
r , (A.5)

Π+ ← Π + γD, (A.6)
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where D , E −X +M , Π denotes the Lagrange multiplier, and γ is a positive

penalty parameter. For (A.5), we collect r largest singular values and their corre-

sponding singular vectors computed by the singular value decomposition (SVD)

on M̆ obtained from (A.4), i.e., [U ,Σ,V ] = svd(M̆). To solve for E, we consider

the following optimization problem for each element eij indexed by ΩX :

min
eij

|eij |
|eij |+ ε

+
γ

2
(eij − xij +mij +

πij
γ

)2 (A.7)

where xij , mij , and πij are the (i, j)th elements of X, M , and Π, respectively.

The solution of (A.7) can be found by an efficient computation for each element

separately as explained in Chapter 3. For another element ekl indexed by ΩX ,

where ΩX is a complementary support set of X, we obtain ekl ← xkl−mkl− πkl
γ .

For the tested algorithms based on the same ADMM framework, such as LRA-

L1, LRA-CapL1, and LRA-MCP, we simply switch the penalty function ‖ · ‖εSVG

in (A.1), (A.2), and (A.3) to a nonconvex penalty function and solve its corre-

sponding optimization problem. As an example, LRA-L1 compared in Chapter

3 considers the following optimization problem when solving E in the ADMM

framework:

E+ ← min
E
‖PΩX

(E)‖1 +
γ

2
‖D +

Π

γ
‖2F , (A.8)

and its solution is computed as follows:

E+ ← PΩX
(S 1

γ
(Y )) + PΩX

(Y ), (A.9)

where Y , X −M − Π
γ and Sγ(t) = sign(t) max(|t| − γ, 0) is the shrinkage

operator [43] for a scalar variable t. Other problems based on the nonconvex

penalty functions described in Chapter 3 to solve for E can be solved efficiently

by the work in [33].
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Proof of Lemma 1

The first two assumptions in Assumption 2 are similar to some of our criteria:

Symmetry and Monotonicity, respectively. Thus, it is straightforward to show the

symmetry of SVG. By taking a derivative of φλ for x > 0, φ′λ = λ
ε(1+ x

aε
)a+1 > 0,

we can check the nondecreasing nature on the nonnegative real-line. For the third

assumption, i.e., (φλ(x)
x )′ ≤ 0, we can verify based on the following relation for

x > 0:

(
φλ(x)

x
)′ ≤ 0 ⇔ xφ′λ(x)− φλ(x) ≤ 0. (B.1)

Let hλ(x) , xφ′λ(x) − φλ(x) which should be proved as a decreasing function.

If hλ(0) ≤ 0 and h′λ(x) ≤ 0, then hλ(x) ≤ 0 for x > 0. Since we have hλ(0) =

0 ·φ′λ(0)−φλ(0) = 0 and h′λ(x) = φ′λ(x) +xφ′′λ(x)−φ′λ(x) = xφ′′λ(x) < 0 from our

Smoothness criterion, hλ(x) ≤ 0 is satisfied for x > 0, and thus (φλ(x)
x )′ ≤ 0. For

the fourth assumption, we can easily check limx→0+ φ
′
λ(x) = λ

ε using the following

equation described in Chapter 3,

φλ=1(x) = 1− 1

(1 + x
aε)

a
, (B.2)
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for a > 0, thus we obtain L = 1
ε . For the last condition, we take another derivative:

ρ′′λ(x) =



− (a+ 1)λ

aε2
· 1

(1 + x
aε)

a+2
+ µ, if x > 0,

− (a+ 1)λ

aε2
+ µ, if x = 0,

− (a+ 1)λ

aε2
· 1

(1 + −x
aε )a+2

+ µ, if x < 0.

(B.3)

Since φ′′λ(x) has lower bound of − (a+1)λ
aε2

, it is true that there exists µ = (a+1)λ
aε2

> 0

satisfying the convexity of ρλ,µ(x).
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Proof of Proposition 1

Since the proposed measure, SVG, is one of our representative family, we show

by proving the properties in Proposition 1 for our family. We redefine the family

of curves, called SVGF, as follows:

‖x‖a,εSV GF , y(x) = 1− 1

(1 + |x|
aε )a

, (C.1)

where a and ε are parameters of the family as defined in Chapter 3. If a = 1, it

becomes the proposed measure.

Proposition 3. SVGF satisfies the following properties:

1. ‖x‖a,εSVGF ≤ ‖x‖0 ∀a, ε and ‖x‖a,εSVGF → ‖x‖0 if ε→ 0.

2. ε‖x‖a,εSVGF ≤ ‖x‖1 ∀a, ε and ε‖x‖a,εSVGF → ‖x‖1 if ε→∞.

Proof. Assume a and ε in ‖x‖a,εSV GF are positive. We simply show the proposition

for a scalar case, but its extension to a vector case is straightforward. It is easily

checked that y(x) = 0 if x = 0 and y(x) ≤ 1 if x 6= 0, thus we verify that SVGF

always lower than or equal to the l0-norm for all x regardless of ε. If ε goes to
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zero, 1

(1+
|x|
aε

)a
→ 0 when x 6= 0, then y(x) → 1 and the asymptotic convergence

to the l0-norm holds.

Note that both y(x) and the l1-norm are symmetric around zero and nonneg-

ative (with y(0) = 0). Then, εy(x) is lower than or equal to the l1-norm, since

εy′(x) = 1
(1+ x

aε
)a+1 ≤ 1 for all nonnegative x. This also holds for x < 0. Finally,

in order to show that εy(x) asymptotically converges to |x| if ε→∞, we use the

following relation:

lim
ε→∞

εy = lim
β→0

1

β
(1− 1

(1 + β|x|
a )a

) , lim
β→0

f(β)

g(β)
, (C.2)

where f(β) = 1− 1

(1+
β|x|
a

)a
and g(β) = β , 1

ε . Since limβ→0 f(β) = limβ→0 g(β) =

0, g′(β) = 1 6= 0, and limβ→0
f ′(β)
g′(β) exists, we have the following results by the

L’Hospital’s rule:

lim
β→0

f(β)

g(β)
= lim

β→0

f ′(β)

g′(β)
= lim

β→0

a |x|a (1 + β|x|
a )−a−1

1
= |x|, (C.3)

which completes the proof.
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Proof of Theorem 1

Theorem 1. l1-ARGD converges to a subspace-wise local minimum irrespective

of the initial point under the three conditions.

We will show that l1-ARGD satisfies these conditions in order to prove its global

convergence. We prove the conditions only for the case of updating X while P is

orthogonal, without loss of generality, and the condition for updating P can be

proved similarly.

Proposition 4. The sequence (Pk, Xk) produced by l1-ARGD is contained in a

compact set.

Proof. Since l1-ARGD is a descent algorithm, it only chooses a point that does not

increase the cost function, and always satisfies the relation ||Y −PkXk||1 ≤ ||Y ||1

for an appropriate choice of P0 and X0. Since Pk is orthogonal,

||Y ||21 ≥ ||Y − PkXk||21 ≥ ||Y − PkXk||2F

≥ (||Y ||F − ||PkXk||F )2 = (||Y ||F − ||Xk||F )2.

(D.1)
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From this, we obtain the following relation:

||Y ||F − ||Y ||1 ≤ ||Xk||F ≤ ||Y ||F + ||Y ||1. (D.2)

Therefore, Xk is contained in a bounded and closed set, i.e., a compact set.

Similarly, we can show Pk is contained in a compact set. Therefore, (Pk, Xk) is

contained in a compact set.

Condition 2 can also be proved as follows.

Proposition 5. J(Pk, Xk) is strictly decreasing for (Pk, Xk) that is not subspace-

wise local minimum.

Proof. If (P,X) is not a subspace-wise local minimum, ||Y − P (X + ∆X)||1 <

||Y − PX||1 for some ∆X. Since J(P,X) is a convex function for a fixed P , the

following relation is satisfied for any constant ν, 0 ≤ ν ≤ 1:

||Y − P (X + ν∆X)||1

≤ (1− ν)||Y − PX||1 + ν||Y − P (X + ∆X)||1.
(D.3)

Now we consider the following equation:

fη(X, 0)− fη(X, ν∆X)

= ||Y − PX||1 − ||Y − P (X + ν∆X)||1 −
ν2

2η
||∆X||2F

≥ ||Y − PX||1 − (1− ν)||Y − PX||1

− ν||Y − P (X + ∆X)||1 −
ν2

2η
||∆X||2F

= ν{||Y − PX||1 − ||Y − P (X + ∆X)||1} −
ν2

2η
||∆X||2F

= νa1 −
ν2

2
a2,

(D.4)

where a1 = ||Y −PX||1−||Y −P (X+∆X)||1 and a2 = 1
η ||∆X||

2
F . If 0 < ν < 2a1

a2
,

fη(X, 0)− fη(X, ν∆X) is larger than 0, which means that there exists ν∆X that
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satisfies fη(X, 0) > fη(X, ν∆X) ≥ fη(X,∆X
∗). Therefore, according to (4.44),

l1-ARGD will find a direction ∆X ′(= ν∆X) that satisfies

fη(X, 0)− fη(X,∆X ′) ≥ β(fη(X, 0)− fη(X,∆X∗)) > 0,

||Y − PX||1 > ||Y − P (X + ∆X ′)||1 +
1

2η
||∆X ′||2F ,

(D.5)

which is a strictly descending direction when (Pk, Xk) is not in the solution set.

Now, in order to prove the condition 3, we first show that ∆X∗ is a continuous

function w.r.t. X and η.

Proposition 6. If Xk → X and ηk → η, then ∆X∗k → ∆X
∗

= arg min∆X fη(X,∆X).

Proof. We first state some facts in order to prove the proposition. First, the

optimal sequence {∆X∗k} is obviously contained in a bounded and closed set, i.e.,

1

2ηk
||∆X∗k ||2F ≤ fηk(Xk,∆X

∗
k) ≤ fηk(Xk, 0)

= ||Y − PXk||1 ≤ ||Y ||1.
(D.6)

(This can also be deduced from the fact that the domain of Xk is compact.) Sec-

ond, ∆X∗k satisfies the relation fηk(Xk,∆X
∗
k) ≤ fηk(Xk,∆X) for any ∆X which

is the very definition of ∆X∗k . Third, fη(X,∆X) is a strictly convex function

w.r.t. ∆X for a given (X, η) because of the term 1
2η ||∆X||

2
F . Hence, fη(X,∆X)

has a unique optimal ∆X∗. Since {∆X∗k} is bounded, there must exist a conver-

gent subsequence {∆X∗kn}, i.e., ∆X∗kn → ∆X̆. Then, for any ∆X, we can obtain

the following relation:

fη(X,∆X̆) = lim
n→∞

fηkn (Xkn ,∆X
∗
kn)

≤ lim
n→∞

fηkn (Xkn ,∆X) = fη(X,∆X).

(D.7)
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The only ∆X̆ that satisfies the relation is ∆X
∗
. Thus, any convergent subsequence

of {∆X∗k} has the same limit ∆X
∗
. Since ∆X∗k is bounded and all the convergent

subsequences has the same limit, ∆X∗k converges to the limit ∆X
∗
.

Next, we define a function K(X, η,∆X) assuming that X is not a local mini-

mum:

K(X, η,∆X) ,
fη(X, 0)− fη(X,∆X)

fη(X, 0)− fη(X,∆X∗)
. (D.8)

Proposition 7. K(X, η,∆X) is continuous for non-local-minimum X.

Proof. K(X, η,∆X) is composed of fη(X, 0), fη(X,∆X), and fη(X,∆X
∗) with

subtraction and division operations. Also fη(X, 0) and fη(X,∆X) are continuous

functions w.r.t. X,∆X, and η (ηmin ≤ η ≤ ηmax), and so is fη(X,∆X
∗) by

Proposition 3. Moreover, fη(X, 0) > fη(X,∆X
∗) when X is not a local minimum.

Therefore K(X, η,∆X) is also continuous.

Now finally, we prove that l1-ARGD satisfies condition 3. Since l1-ARGD uses

an exact line-search, which is a closed mapping [83], we only need to prove that

the procedure for finding a descent direction is a closed mapping at a non-local

minimum. To do this, we define two point-to-set mappings G and H. ∆X ∈

G(X, η) determines the descending direction, and η′ ∈ H(η) determines η, where

η′ is the value of η in the next iteration. H(η) is defined as H(η) = [ηmin, ηmax]

(η′ is determined independently, regardless of η), and G(X, η) is defined as

G(X, η) = {∆X|fη(X, 0)− fη(X,∆X) ≥ β(fη(X, 0)− gη(V ))}.

IfX is not a local minimum, then this is the same asG(X, η) = {∆X|K(X, η,∆X) ≥

β}.

Proposition 8. Let Q be a point-to-set mapping defined as (∆X, η′) ∈ Q(X, η)

where ∆X ∈ G(X, η′) and η′ ∈ H(η). Then, Q is a closed mapping.
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Proof. Here, H is obviously a closed mapping and the domain of η is a bounded

set, hence Q(X, η), which is a composition of G and H, is a closed mapping

if G is a closed mapping. Since K is a continuous function w.r.t. (X, η,∆X),

K(X, η,∆X) = limk→∞K(Xk, ηk,∆Xk) ≥ β if Xk → X, ηk → η, and ∆Xk →

∆X. Therefore, G is a closed-mapping.

Q describes the behavior of finding the descent direction in l1-ARGD. The

proposed method is globally convergent by the proofs for the three conditions.
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Proof of Theorem 2

Theorem 2. Let G , (P,X,D, D̂,Λ1,Λ2) and {Gj}∞j=1 be generated by FactEN.

Assume that {Gj}∞j=1 is bounded and limj→∞{Gj+1 −Gj} = 0. Then, any accu-

mulation point of {Gj}∞j=1 satisfies the KKT conditions. In particular, whenever

{Gj}∞j=1 converges, it converges to a KKT point.

Proof. First, we get the Lagrange multipliers Λ1+,Λ2+ from (5.20)

Λ1+ = Λ1 + β(D − PX)

Λ2+ = Λ2 + β(D̂ −D),

(E.1)

where Λi+ is a next point of Λi in a sequence {Λji}∞j=1. If sequences of variables

{Λj1}∞j=1 and {Λj2}∞j=1 converge to a stationary point, i.e., (Λ1+ − Λ1) → 0 and

(Λ2+−Λ2)→ 0, then (D−PX)→ 0 and (D̂−D)→ 0, respectively. This satisfies

the first two conditions of the KKT conditions.

Second, from P+ derived in the algorithm, we get

P+ − P = (Λ1 + βD)XT (λ1I + βXXT )−1 − P, (E.2)

where I denotes an identity matrix and it can be rewritten by multiplying (λ1I+
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βXXT ) to both sides in (E.2) as

(P+ − P )(λ1I + βXXT )

= (Λ1 + βD)XT − P (λ1I + βXXT )

= Λ1X
T − λ1P + β(D − PX)XT .

(E.3)

From the first condition, we can derive Λ1X
T − λ1P → 0 when (P+ − P )→ 0.

Third, using X+ = (λ1I + βP TP )−1P T (Λ1 + βD) derived from the algorithm,

we can obtain the following:

(λ1I+βP TP )(X+ −X)

= P T (Λ1 + βD)− (λ1I + βP TP )X

= P TΛ1 − λ1X + βP T (D − PX).

(E.4)

If (X+ −X)→ 0, then (P TΛ1 − λ1X)→ 0 as well.

Likewise, we can get the following equation using D+ from the proposed algo-

rithm,

(λ2 + 2β)(D+ −D)

= β(PX + D̂)− Λ1 + Λ2 − λ2D − 2βD

= β(PX −D + D̂ −D)− Λ1 + Λ2 − λ2D.

(E.5)

Since PX −D and D̂−D converge to zero from the previous analysis, we obtain

Λ1 − Λ2 + λ2D = 0 whenever D+ −D → 0.

Lastly, from (5.24), we obtain the following equation:

D̂+ − D̂ = Y − S
(
Y −D +

Λ2

β
, β

)
−D. (E.6)

Since {Gj}∞j=1 is bounded by our assumption, {X+X
T
+}∞j=1 and {P T+P+}∞j=1 in

(E.3) and (E.5) are bounded. Hence, limj→∞(Gj+1 −Gj) = 0 implies that both

side of the above equations (E.3), (E.4), (E.5), and (E.6) tend to zero as j →∞.
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Therefore, the sequence {Gj}∞j=1 asymptotically satisfies the KKT condition for

(5.21):

D − PX → 0, D̂ −D → 0, λ1P − Λ1X
T → 0,

λ1X − P TΛ1 →0, λ2D + Λ1 − Λ2 → 0,

Y − D̂ − S
(
Y −D +

Λ2

β
,

1

β

)
→ 0.

(E.7)

This completes the proof.
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Appendix F

Proof of Theorems in

Chapter 6

F.1 Proof of Theorem 3

Theorem 3. Suppose that the data sampling is sufficient and samples are drawn

from a union of k independent linear subspaces. Let us define a function f satis-

fying f(Z) = f(ZP ), for any permutation matrix P . Then, the optimal solution

Z∗ ∈ Rn×n to the problem (6.1) is block-diagonal.

Proof. The proof is analogous to that of Theorem 2 in [111]. Nonetheless, we give

the proof for the sake of completion of Theorem 3. Assume that samples are in

general position, i.e., X = [X1, ..., Xk] ∈ Rd×n. Let Z∗ ∈ Rn×n be an optimal

to the problem (6.1) or (6.14) and let ZB ∈ Rn×n be a block-diagonal matrix,

whose (i, j)-th element has a value of Z∗ij if xi and xj lie in the same subspace,

otherwise 0. Let us define an off-block-diagonal matrix ZO = Z∗ − ZB ∈ Rn×n.

Now, suppose that [X]j = [XZ∗]j ∈ Sl where [A]j is the j-th column of A.

Then, we have [XZB]j ∈ Sl and [XZO]j ∈ ⊕i 6=lSi, where ⊕ is the direct sum. But,
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[XZ∗]j− [XZB]j = [XZO]j ∈ Sl. Hence, [XZO]j = 0 because of the independent

assumption among the subspaces. Thus, ZB is a feasible solution to (6.1) and

(6.14). Then, we use Lemma 3.1 in [54], which has the following relation:

‖Z∗‖∗ =

∥∥∥∥∥∥ A B

C D

∥∥∥∥∥∥
∗

≥

∥∥∥∥∥∥ A 0

0 D

∥∥∥∥∥∥
∗

= ‖ZB‖∗,

for any matrices B and C with compatible dimension, and this relation can also

apply other functions, such as ‖Z‖1 and ‖Z‖F . Since Z∗ is the optimal, i.e.,

‖Z∗‖∗ ≤ ‖ZB‖∗, we have ‖Z∗‖∗ = ‖ZB‖∗ meaning that Z∗ is block-diagonal.

Likewise, we have
∑

i λifi(Z
∗) =

∑
i λifi(Z

B), where fi can be a norm in (6.1)

or (6.14) and λi > 0.

F.2 Proof of Theorem 4

Theorem 4. Given a sample xk ∈ Rd, a dataset X ∈ Rd×n, and parameters

(λ1, λ2), and assume that X is normalized. Let z∗ ∈ Rn be the optimal solution

to following problem:

min
z

1

2
‖xk −Xz‖22 + λ1‖z‖1 +

λ2

2
‖z‖2, (F.1)

where X = [x1, ...,xk−1,xk+1, ...,xn+1]. Supposed that zizj > 0, we have the

following relation:

µ(z∗i , z
∗
j ) ≤ 1

λ2

√
2(1− ρ), (F.2)

where µ(z∗i , z
∗
j ) = ‖z∗i − z∗j ‖2/‖xk‖2 and ρ = xTi xj is the sample correlation.

The proof is based on Theorem 1 in [104]. Note that a similar result was re-

ported in [111], in which the l1-norm regularizer was absent. Nonetheless, we

provide the proof for the sake of completeness. The problem considered in The-

orem 2 is as follows:

min
z

1

2
‖xk −Xz‖22 + λ1‖z‖1 +

λ2

2
‖z‖2. (F.3)
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Proof. We first take a derivative of (F.3) with respect to zi and zj , respectively,

and replace z as z∗, then we have

−xTi (xk −Xz∗) + λ1 sgn(z∗i ) + λ2z
∗
i = 0, (F.4)

−xTj (xk −Xz∗) + λ1 sgn(z∗j ) + λ2z
∗
j = 0. (F.5)

By subtracting (F.4) from (F.5), we have

z∗i − z∗j =
1

λ2
(xTi − xTj )(xk −Xz∗) + c, (F.6)

where c = α(sgn(z∗i )− sgn(z∗j )) and α is a constant value. Since we assumed that

zizj > 0, it gives sgn(z∗i ) = sgn(z∗j ). Hence, the constant c in (F.6) disappears.

Since X is normalized, ‖xi − xj‖22 = 2(1− xTi xj). Finally, we have the following

relation:

‖z∗i − z∗j ‖2 =
1

λ2
‖xTi − xTj ‖2‖xk −Xz∗‖2,

=
1

λ2

√
2(1− ρ) · ‖xk −Xz∗‖2,

≤ 1

λ2

√
2(1− ρ) · ‖xk‖2,

(F.7)

Therefore, we have ‖z∗i − z∗j ‖2 ≤ 1
λ2

√
2(1− ρ) · ‖xk‖2, where ρ = xTi xj . In

a case where xi and xj are negatively correlated, we can consider −xj , then

‖z∗i − z∗j ‖2 ≤ 1
λ2

√
2(1 + ρ) · ‖xk‖2, where ρ = −xTi xj .

F.3 Proof of Theorem 5

Theorem 5. The optimal solution of GLR has grouping effect, i.e., given a set of

data samples X = [x1, ...,xn] ∈ Rd×n and a subspace representation matrix Z ∈

Rn×n, a solution to the optimization problem of GLR using X, if ‖xi−xj‖ → 0,

then ‖zi − zj‖ → 0 for all i 6= j.
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Before proving Theorem 3, we need to know the following enforced grouping

effect (EGE) conditions [59]. Here, we reduce the conditions by focusing on the

GLR problems.

Definition 4 (Enforced Grouping Effect conditions [59]). The enforced grouping

effect (EGE) conditions are as follows:

(1) f(Z) = ‖Z‖∗ is continuous with respect to Z.

(2) The following problem has a unique solution Z∗.

min
Z

1

2
‖X −XZ‖2F + f(Z). (F.8)

(3) f(Z) = f(ZP ), for all permutation matrix P .

Proof. From Proposition 1 in [59], if GLR satisfies all the EGE conditions in

Definition 4, the optimal solution Z∗ to the problem of GLR has grouping effect. It

is obvious that EGE conditions (1) and (3) are satisfied for GLR. Now, we need to

show that the uniqueness of the solution of GLR, where f(Z) = λ1‖Z‖∗+λ2
2 ‖Z‖

2
F .

Due to the Frobenius norm regularizer, the GLR problem is strong convex for

Z [104]. If λ2 = 0, it is reduced to the LRR problem [4]. Although the LRR

problem is not strong convex, the unique optimal solution of LRR was proved in

[59]. Hence, the problem of GLR has always a unique solution except the case

when λ1 = λ2 = 0, which is not a subspace clustering problem. This means that

GLR has the grouping effect.
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Proof of Theorems in

Chapter 7

G.1 Proof of Theorem 6

Theorem 6. Suppose that noiseless data samples are sufficiently collected from

a union of k independent linear subspaces and basis vectors constructing the sum-

mary matrix cover the remaining samples. Let us define a function f which satis-

fies f(C) = f(CP) for any permutation matrix P. Then, the problem (7.1) based

on the summary representation solves the subspace clustering problem exactly with

a block-diagonal structure of C̃.

Proof. The block-diagonal structure of ILSR described in Section 7.1 for a noise-

less case can be proved straight-forwardly since ILSR has an equivalent solution

to the following LSR problem [111]:

min
C
‖C‖F , s.t. X = XC, (G.1)

whose block-diagonal structure was proved in [111]. Likewise, the block-diagonal
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structure of the summary matrix CS with k block matrices can be easily proved

by reducing the ILSR problem to a problem with a subset S of dataset X used

in ILSR. Since we assumed that remaining samples can be represented by basis

vectors of the summary matrix, CR also has a block-diagonal structure with k

block matrices. Specifically, the rule of the summary representation is to collect

samples having low correlation with other samples to enlarge the diversity of a

summary matrix. Hence, if our basis vectors cover the true basis vectors rep-

resenting a subspace, we can represent the remaining samples. Suppose we can

permutate an aggregation matrix CAgg which consists of CS and CR. Then, the

aggregation matrix contains k nonzero block matrices. Since the Nyström-type

reconstruction involves a multiplication of three block matrices with matching

nonzero blocks, the final affinity matrix has the block-diagonal structure.

G.2 Proof of Theorem 7

Theorem 7. Suppose that C̃ = Ũ ŨT ∈ Rn×n with a matrix Ũ ∈ Rn×r. Then,

for a matrix Ṽ ∈ Rn×r2 satisfying C̃pp = ([Ũ ŨT ]ij)
2 = C̃ � C̃ = Ṽ Ṽ T , where �

is the Hadamard product, the following holds:

Ṽ = [Ũ1 ⊗ Ũ1; Ũ2 ⊗ Ũ2; ...; Ũr ⊗ Ũr], (G.2)

where Ũi is the i-th row of Ũ and ⊗ is the Kronecker product.

Proof. Let, M = diag(vec(In)) where In is the n× n identity matrix and diag(·)

and vec(·) are the diagonal and vectorization operators, respectively. Then, we

have the following relation:

C̃ � C̃ = M̂T ((Ũ ŨT )⊗ (Ũ ŨT ))M̂

= M̂T (Ũ ⊗ Ũ)(Ũ ⊗ Ũ)T M̂ = Ṽ Ṽ T ,

(G.3)
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where Ṽ = [(Ũ1⊗ Ũ1)T (Ũ2⊗ Ũ2)T · · · (Ũn⊗ Ũn)T ]T ∈ Rn×r2 and M̂ = [Mi]i∈H ∈

Rn2×n, where H = {k :
∑

jMjk 6= 0} and Mi is an i-th column vector of M , is a

matrix constructed by stacking n column vectors of M .
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초 록

저차원의 구조를 희소 (sparse) 또는 저계수 (low-rank) 표현을 기반으로 학

습하는 방법은 최근 많은 주목을 받아왔으며, 다양한 분야에서 널리 사용되고

있다. 그 중 희소 표현은 이미지나 동영상과 같은 규모가 큰 데이터를 적은 수의

대표적인 샘플들의 조합으로 표현 또는 압축시키는 것을 목표로 하며, 이러한

접근의 2차원 확장이 저계수 표현법이다. 앞선 표현법들의 성공적인 적용의 이

면에는희소및저계수표현을효과적으로학습하기위한많은노력및연구들이

있었다. 하지만, 현실적인 문제에서 많은 데이터들을 다루거나 아웃라이어나 미

싱 (missing) 데이터와 같은 원치 않는 노이즈들이 있는 상황에서 앞서 언급한

방법들은 여전히 효과적이지 못한 단점이 있다. 또한, 최근 연구들은 노이즈에

강인한 방법을 제안하기는 하지만, 많은 계산 복잡도를 요구하게 되어 현실적인

사용에 제한이 되기도 한다. 따라서 본 논문에서는 노이즈가 있는 상황에서 강

인한 표현을 하면서 계산의 복잡도에 있어서도 많은 이점이 있는 데이터 표현

방법들을 제안하는 것을 목표로 한다.

우선 희소 표현에 대해서는 대부분의 알고리즘들이 오리지널 문제인 l0-norm

기반의 문제를 풀기가 어렵기 때문에 이를 convex한 l1-norm으로 근사하여 문

제를 풀게 된다. 하지만, 시스템 자체가 nonconvex한 문제들에 대해서는 convex

l1-norm은효과적이지못한선택이될수있기때문에,이러한 l0-norm과 l1-norm

의장점을모두가질수있는새로운measure를제안하며,이는 gradient가천천히

없어지는 형태를 가지기 때문에 최적화 관점에서도 매우 적절하다.

저계수 표현에 대해서는 노이즈에 강인한 학습을 위해서 l1-norm 기반의 목

적함수를 디자인 할 수 있으며, 이는 기존의 방법들에서는 효과적인 학습이 되

지 않았기 때문에 빠른 학습을 위해 gradient 기반의 알고리즘을 본 논문에서

제안하였고, gradient의 방향이 최대한 빨리 최적 해에 도달할 수 있도록 학습하

는 방법에 대해 연구를 진행하였다. 이러한 문제를 조금 더 빠르고 안정적으로

학습하기 위해 gradient 기반이 아니라 최근의 최적화 문제에서 많은 발전을
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이룬 augmented Lagrangian 방법을 이용하여 명백한 smoothness regularizer와

orthogonality제약과함께더효율적인학습이가능하게하였다.앞선두방법은

노이즈에 강인하기는 하지만 적은 수의 노이즈에 한정적이며, 문제 자체의 rank

를고정시켜풀게되어현실적인문제에적합하지않은단점이있다.이를개선하

기 위해 elastic-net 기반으로 데이터의 singular 값을 적절히 교정하고 학습하여

유연한 rank의 예측이 가능하게 하였으며, 심각한 노이즈들이 들어왔을 때에도

효과적이고 안정적인 학습을 가능하게 하여, 최신 방법들에 비해 더욱 우수한

학습 결과를 얻을 수 있었다. 추가로, 저계수 표현을 유사 행렬과 같은 구조화된

데이터로 확장 또한 rank 최소화 방법을 기반으로 성공적인 연구를 수행하였다.

마지막으로,앞서언급한저계수표현법은데이터가하나의저차원 (subspace)

에있는경우를가정하여문제를해결하는데,여러저차원의조합으로구성된데

이터를다루기위해서본논문에서는저차원분류문제또한다루게된다.저차원

분류에서 가장 큰 문제는 점진적인 학습이 되지 않으며 계산 복잡도 또한 매우

크다는것이다.이러한알고리즘속도의향상을위해본논문에서는매우적은계

산량으로도 저계수 저차원 분류가 가능한 새로운 방법을 제안한다. 유사 행렬의

점진적인 학습이 가능함과 동시에 모든 저차원 분류 과정을 선형적인 복잡도에

서처리할수있는방법을제시함으로써기존방법들에비해매우빠른알고리즘

처리속도를 가지며, 분류 성능 또한 경쟁력 있는 결과를 얻었다.

앞선세가지큰문제들에대해서벤치마크데이터셋들과실제문제들을중심

으로 제안하는 방법들의 우수성을 확인하기 위한 실험들을 진행하였으며, 많은

실험 결과들을 통해 제안하는 방법들이 다른 최근에 제안된 방법들과 비교하

여 상당히 강인하고, 효과적이며, 현실적으로 적용 가능한 처리속도를 얻을 수

있음을 검증하였다.

주요어: 희소 표현, 저계수 표현, 저차원 공간 학습, 저차원 분류, 행렬 분해, 컴

퓨터 비전

학 번: 2013-30226
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