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Abstract

Learning a subspace structure based on sparse or low-rank representation has
gained much attention and has been widely used over the past decade in machine
learning, signal processing, computer vision, and robotic literatures to model a
wide range of natural phenomena. Sparse representation is a powerful tool for
high-dimensional data such as images, where the goal is to represent or compress
the cumbersome data using a few representative samples. Low-rank represen-
tation is a generalization of the sparse representation in 2D space. Behind the
successful outcomes, many efforts have been made for learning sparse or low-rank
representation efficiently. However, they are still inefficient for complex data struc-
tures and lack robustness under the existence of various noises including outliers
and missing data, because many existing algorithms relax the ideal optimization
problem to a tractable one without considering computational and memory com-
plexities. Thus, it is important to use a good representation algorithm which is
efficiently solvable and robust against unwanted corruptions. In this dissertation,
our main goal is to learn algorithms with both robustness and efficiency under
noisy environments.

As for sparse representation, most of the optimization problems are relaxed
to convex ones based on surrogate measures, such as the /1-norm, to resolve the
computational intractability and high noise sensitivity of the original sparse rep-
resentation problem based on the [p-norm. However, if the system at interest,
other than the sparsity measure, is inherently nonconvex, then using a convex
sparsity measure may not be the best choice for the problems. From this per-
spective, we propose desirable criteria to be a good nonconvex sparsity measure
and suggest a corresponding family of measure. The proposed family of measures

allows a simple measure, which enables efficient computation and embraces the



benefits of both [p- and [1-norms, and most importantly, its gradient vanishes

slowly unlike the lg-norm, which is suitable from an optimization perspective.

For low-rank representation, we first present an efficient /;-norm based low-
rank matrix approximation algorithm using the proposed alternating rectified
gradient methods to solve an /;-norm minimization problem, since conventional
algorithms are very slow to solve the [;-norm based alternating minimization
problem. The proposed methods try to find an optimal direction with a proper
constraint which limits the search domain to avoid the difficulty that arises from
the ambiguity in representing the two optimization variables. It is extended to an
algorithm with an explicit smoothness regularizer and an orthogonality constraint

for better efficiency and solve it under the augmented Lagrangian framework.

To give more stable solution with flexible rank estimation in the presence of
heavy corruptions, we present a new solution based on the elastic-net regular-
ization of singular values, which allows a faster algorithm than existing rank
minimization methods without any heavy operations and is more stable than the
state-of-the-art low-rank approximation algorithms due to its strong convexity.
As a result, the proposed method leads to a holistic approach which enables both
rank minimization and bilinear factorization. Moreover, as an extension to the
previous methods performing on an unstructured matrix, we apply recent ad-
vances in rank minimization to a structured matrix for robust kernel subspace

estimation under noisy scenarios.

Lastly, but not least, we extend a low-rank approximation problem, which
assumes a single subspace, to a problem which lies in a union of multiple sub-
spaces, which is closely related to subspace clustering. While many recent studies
are based on sparse or low-rank representation, the grouping effect among similar

samples has not been often considered with the sparse or low-rank representa-



tion. Thus, we propose a robust group subspace clustering algorithms based on
sparse and low-rank representation with explicit subspace grouping. To resolve
the fundamental issue on computational complexity of existing subspace cluster-
ing algorithms, we suggest a full scalable low-rank subspace clustering approach,
which achieves linear complexity in the number of samples.

Extensive experimental results on various applications, including computer vi-
sion and robotics, using benchmark and real-world data sets verify that our sug-
gested solutions to the existing issues on sparse and low-rank representations are
considerably robust, effective, and practically applicable.

Keywords: Sparse representation, low-rank representation, subspace learning,

low-rank matrix factorization, subspace clustering, computer vision
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Chapter 1

Introduction

Over the past few years, we are facing a deluge of high-dimensional data, such as
images, videos, and texts, from recent advances in digital technology. While the
high quality data have improved the quality of life, handling or processing such
massive data is a daunting and time-consuming task, since the advancement of
processing power of a computing device does not follow the geometric growth of
the amount of data. The term ”big data” emerges recently from this perspective
(see Figure 1.1! for more details) and obviously it is difficult to address the huge
data by conventional processing tools. Therefore, many researchers are continu-
ously searching for a method to handle such data efficiently without losing critical
information in the data. To this end, a number of algorithms using the concept
of sparsity and low-rank-ness have been proposed to model the data efficiently in

the presence of naturally occurring noises [1, 2, 3, 4].

A fundamental approach using the concept of parsimony is sparse representa-

tion [3, 2, 5]. The basic task of the sparse representation is to select informative

!Source: Thomson Reuters, http://blog.thomsonreuters.com/index.php/big-data-graphic-of-

the-day
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Big data growth

Big data market is estimated to grow 45% annually to reach 525 billion by 2015
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Figure 1.1: Graphical illustration of growth of data and the amount of stored

data in the hottest industries in the world.

words in an overcomplete dictionary to fit target data. It is based on the lg-norm
and many algorithms proposed recently use the convex relaxation of the lp-norm,
i.e., l1-norm, to learn a sparse coefficient vector. The sparse representation can
be applied to various problems such as image denoising [3], dictionary learning

[6], face recognition [5], and image super-resolution [7], etc.

An extension to the sparse representation to a 2D space is low-rank represen-
tation which is also known as low-rank matrix approximation. This approach is
motivated by the fact that high-dimensional data can be well represented with
a fewer number of basis factors in practice (see Figure 1.2 [8]). For example,
in computer vision, most of the structure-from-motion methods are based on a

fixed low-rank problem and background subtraction with a static camera can be
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Figure 1.2: Visualization of the MNIST dataset. (A) The two dimensional codes
by taking the first two principal components extracted from PCA. (B) The two

dimensional codes found by low-dimensional learning using an autoencoder [8].

solved easily by a rank-1 problem with clean data or a rank-2 problem in the
presence of corruptions. The most popular algorithm to reduce the dimension
of data in high-dimensional space is the principal component analysis (PCA) [9]
and its variants for modeling the low-dimensional structures have been proposed
for a number of problems, such as data reconstruction [10], image denoising [11],
collaborative filtering [1], background modeling [12], structure from motion [13],
and photometric stereo [14], to name a few.

As a generalization of the low-rank approximation, which learns basis vectors to
construct a single subspace, we can consider data which lie in a union of multiple
subspaces. Finding the subspace structures of a complex space is closely related
to subspace clustering [15, 16, 4], which identifies subspace membership of each
data sample, where unknown multiple subspaces exist, by assuming that data

are self-expressive, i.e., a data point can be represented by linear combination
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(a) Sparse representation  (b) Low-rank representation (c) Subspace clustering [18]

Figure 1.3: Graphical illustration of three subspace representation methods ad-

dressed in this thesis.

of other points in the same subspace. Subspace clustering has been successfully
applied to a number of clustering problems, such as motion segmentation [15], face
clustering [4], and image segmentation [17]. Figure 1.3 illustrates data structures

of the three main problems addressed in the thesis.

1.1 Main Challenges

Behind the successful application of sparse and low-rank representation, there are
still challenges for the existing algorithms. In this section, we consider two main
challenges, robustness and efficiency, for three main tasks, sparse representation
[3, 2, 6], low-rank representation [1, 10, 19], and subspace clustering [15, 16, 4],

presented in this dissertation, which are summarized as follows:

e Efficient sparsity measure for inherently nonconvex problems.
For sparse representation, many algorithms use the relaxation of the original
sparse representation problem based on the lg-norm, i.e., the [1-norm, since

it is computationally tractable and easy to guarantee applied algorithms.

s A 21| &

o

TU



Chapter 1. Introduction

Although the relaxed approach successfully applied to many problems with
promising results, it is beneficial only when the relaxed problem indeed
becomes convex. To tell the truth, there are few sparse representation ap-
proaches to consider inherently nonconvex problems. Obviously, there are
many nonconvex problems we are faced with, such as matrix factorization
[20, 21], rank-constrained optimization [22, 19], and sparse coding jointly
optimized with dictionary learning [3, 2, 6]. Even though there are sev-
eral algorithms performed in a greedy manner to directly solve the lg-norm
[23, 24], they can fail to find a reasonable solution according to the quality
of a dictionary. There can be also a computational issue when the size of a

dictionary is large.

Robustness and computational efficiency for low-rank represen-
tation. Conventional low-rank approximation algorithms based on the
lo-norm is sensitive to outliers and missing entries, because the lo-norm can
sometimes amplify the negative effects of such data. This prevents recogni-
tion or machine learning systems from performing well. As an alternative,
many studies based on a robust function such as the [;-norm have been
conducted [10, 25] to overcome the weakness of the conventional algorithms
by assuming a non-Gaussian noise model. While the algorithms give robust
solutions in the presence of outliers, they are too computationally intensive,

making them not applicable in practice.

Recently, robust PCA (RPCA) methods have been emerged to solve the
non-Gaussian noise model based on the rank minimization strategy. While
the rank minimization methods have been utilized in many problems, they
still take heavy computational complexity due to the minimization strategy

of a relaxed version of the rank function, and even they are not suitable for
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fixed-rank problems posed in computer vision literature. In summary, there
is no clear winner for the low-rank representation problem satisfying both
robustness and computational efficiency under the existence of unwanted

corruptions.

¢ Robust representation and scalability for subspace clustering. Re-
cent subspace clustering algorithms [15, 16, 4] consider both noise model
and outlier model by switching the loss function in the formulation, but
they can only guarantee the correct recovery of a block diagonal structure
of subspaces only for clean data. Indeed, it is difficult to show the cor-
rectness of the algorithms under noisy scenarios. Furthermore, even though
notable results have been reported for existing algorithms, they are still
insufficient for achieving high clustering performance because of weak con-

nections among similar samples.

Another weakness of subspace clustering is heavy computational complex-
ities as in the previous problems. Most of the state-of-the-art algorithms
using sparsity or low-rank-ness take at least cubic complexity, which is prac-
tically unfavorable. There is additional factor to consider when we obtain
an affinity matrix from an optimization: post-processing and spectral clus-
tering steps whose time complexities are also significantly high (in general,

over cubic complexity).

1.2 Organization of the Dissertation

Chapter 2 introduces related works in this dissertation. As a simple vector case
of parsimonious modeling of data, we discuss sparse representation algorithms

which are based on two main family; greedy pursuit and basis pursuit algorithms.
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Then, we further discuss the 2D extension of the sparse representation, low-
rank representation, and two important problems; fixed-rank representation (or
low-rank matrix approximation) and automatic rank minimization (called robust
principal component analysis). To consider general scenarios where data come
from a union of multiple subspaces, we introduce the subspace clustering task and
its two popular methods; sparse subspace clustering and low-rank representation.
We also summarize the Gaussian process regression (GPR) which is used to model
complex behavior of moving objects or pedestrians, where low-rank structured

matrix approximation is considered in GPR for robustness.

In Chapter 3, we present a new sparsity measure, termed slowly vanishing gra-
dient (SVQG), for sparse representation in general nonconvex problems. We first
suggest that the difficulty of handling the [y-norm does not only come from the
nonconvexity but also from its gradient either being zero (for the most parts) or
not being well-defined. Accordingly, we analyze the space of approximate func-
tions for the lg-norm and the proposed measure, SVG. Locally, it follows the
l1-norm to reduce the chance of numerous local optima without losing the ability
of promoting parsimony. Globally, SVG follows the lp-norm to reduce penalty on
large-values, but it still possesses slowly vanishing gradients to help drawing the
solution of an optimization algorithm to sparse points. Moreover, we present an
efficient proximity operator for the measure. The proposed measure is applied to
various applications to demonstrate its adequacy. Experimental results confirm

that our proposal performs favorably against those of state-of-the-art algorithms.

Chapter 4 describes several low-rank representation algorithms. We first pro-
pose a low-rank matrix approximation method based on the /;-norm using the
proposed alternating rectified gradient approach (I1-ARG), which finds optimal

directions for faster convergence compared to existing algorithms. Then, we in-
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troduce an efficient Frobenius-norm regularizer to prevent the overfitting problem
which can arise from an alternative minimization algorithm and an orthogonality
constraint to reduce the solution space for further speed-up. The new approach,
called robust orthogonal matrix factorization (ROMF), is constructed under the
augmented Lagrangian framework. It is also extended to handle the rank uncer-
tainty issue by a rank estimation strategy for practical real-world problems. As
an extension to the low-rank representation, we present a robust kernel subspace
learning method based on recent advances in rank minimization in GPR to model

trajectories of pedestrians or moving objects.

In Chapter 5, we develop a robust and stable algorithm with rank estimation
for finding subspace structures of grossly corrupted data by proposing elastic-net
subspace representation based on elastic-net regularization of singular values of
data (FactEN). FactEN is a holistic approach which utilizes both nuclear-norm
minimization and bilinear factorization. The strong convexity of the proposed
regularizer alleviates the instability problem by shrinking and correcting inac-
curate singular values in the presence of unwanted noises. We demonstrate the
performance of the proposed methods in terms of the reconstruction error and
computational speed using well-known benchmark datasets including non-rigid
motion estimation, photometric stereo, and background modeling. Furthermore,
in order to address data which lie in a union of multiple subspaces, we extend
FactEN to a joint optimization algorithm which updates the data matrix cor-
rupted by noises and subspace representation matrix or affinity matrix based on
the noise-reduced data matrix by FactEN. Since we reduce unfavorable noises
from the low-rank representation task, we simply adapt the sparse subspace seg-

mentation task in the joint optimization framework.

In Chapter 6 and 7, we discuss algorithms on a subspace clustering task where
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data lie in a complex space composed of more than two different subspaces. Sim-
ilar to the previous problems, we first consider robustness of subspace clustering.
To this end, we consider grouping capability of the algorithms since the group-
ing effect among similar samples is very important when constructing an affinity
matrix but it has not been often considered with sparse or low-rank representa-
tion. Hence, we propose two robust group subspace representation algorithms by
extending sparse and low-rank representation with explicit subspace grouping.
We show that the proposed methods capture the similarities among data samples
collected from the same subspace, theoretically and empirically.

It is worthwhile to note that the previous algorithms with most of the state-
of-the-art methods are not applicable for large-scale or streaming data due to
their expensive computational cost. As a remedy for the high computational
requirement, we propose an end-to-end solution to reduce the complexity of all
tasks in subspace clustering, by assuming low-rank-ness of data samples. To the
best of our knowledge, this is the first attempt to propose an end-to-end solution
over all the tasks in subspace clustering to consider the scalability for large-
scale problems with linear time complexity in the number of samples. The above
mentioned algorithms are applied to various subspace clustering tasks, including
face clustering, motion segmentation, handwritten digits clustering, and action
clustering, to demonstrate the superiority of the methods.

Table 1.1 describes the three main problems and their characteristics which
will be discussed in detail throughout the dissertation. Table 1.2 summarizes our

proposals for every chapter and shows the comparison of them.
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Table 1.1: Overview of the main problems discussed in this dissertation. (-) de-
notes the representative function or algorithm in the literature. “General” means

that a wide range of conditions can be applied to the problem.

Sparse represent. Low-rank represent. | Subspace clustering
Sparsity 1D 2D 1D or 2D
Rank No rank Fixed or unknown Unknown
No. subspaces General Single Multiple
Data structure General General Structured
Convexity Convex/nonconvex | Convex/nonconvex | Convex/nonconvex
(Methods) (I1-norm/lp-norm) (RPCA/LRMA) (SSC,LRR/LRSC)
Challenges Nonconvexity Inefficiency, unstable Scalability
Chapter Ch.3 Ch4, 5 Ch.5, 6, 7

Table 1.2: The propose algorithms, represented by loss function fj,ss, regulariza-

tion €24, and constraint C. Here, £ £Y —Dand D £ PX.

Jioss Qreg C

Ch. 3 W © Ellp 1 X§ve -

W © El - -
Ch4 | |WoE| X2 PTP—1

Y — PMPT||, 1M, PTP=1,M >0

- W o El: 1Dl + el D[ rank(D) = r

W © El; |D[lx + || D% + BIIC|ly | D = DC,diag(C) =0
Ch. 6 1Y =Y Z|: 1Z]l1(or | Z]|+) +~11Z]1% diag(Z) =0
Ch. 7 1Y -YZ|r 1Z]1% -
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Chapter 2

Related Work

In this chapter, we first briefly summarize the two main approaches of this dis-
sertation: spare representation and low-rank representation. The low-rank repre-
sentation usually considers that data lie in a single subspace and it finds a basis
matrix whose columns span the subspace. As a general case where data lie in a
union of multiple subspaces, we also describe subspace clustering and its popular
algorithms. Finally, we also discuss on Gaussian process regression, which is used
to model unknown complex functions. With the introduction of the problems and
related studies, we describe fundamental and existing practical issues of them,

which will be addressed in the subsequent chapters.

2.1 Sparse Representation

Recently, sparse representation of signals has been one of the most successful
models in many fields including computer vision and signal processing. Sparse
representation has shown to be a powerful tool for high-dimensional data such
as images [3, 6], where the goal is to represent or compress cumbersome data

using a few representative samples. A simple sparse representation problem (for

11
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Dictionary

Input

EEEEE EN EEEE EE|

Sparse Coeflicient

Figure 2.1: Graphical illustration of a simple sparse representation problem.

a noiseless scenario) can be described as follows:
min ||alg, s.t. € = Da, (2.1)
[e

where ||a|lo = #{i : a; # 0, Vi} is the [p-norm, & € R™ is an observation data,
D € R"™*P is an overcomplete dictionary (m < p), and a € RP is the coefficient
vector to be estimated. Figure 2.1! illustrates the sparse representation problem,
where an input vector is represented by sparse linear combination of three selected
words in the dictionary. Typical applications of sparse representation include face
recognition [5], image restoration [26], and super-resolution [7], to name a few.
Behind the successful outcomes, many efforts have been made for learning
the sparse representation efficiently [24, 27, 3, 5, 28, 29, 30, 31, 32, 33], since
solving the sparse representation using the lp-norm has two main drawbacks:
(1) the computational intractability of a combinatorial search and (2) its noise
sensitivity due to the nature of the [y ball. One of the most popular algorithms
to estimate sparse signals is the orthogonal matching pursuit (OMP) [24], which
finds the best matching projection based on an overcomplete dictionary. However,

the greedy pursuit method can find a sub-optimal solution and even can fail to

!Source: http://ranger.uta.edu/~huang/R_Cervigram.htm
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find a reasonable solution. Even worse, there can be a computational issue when

the size of the dictionary is large.

There is little doubt that the recent popularity of the sparse representation is
attributed to the attempt that the lp-norm is relaxed to its convex counterpart,
i.e., the l;-norm [34]. In many cases, the use of the /;-norm turns the problem
into convex optimization, which can be efficiently solved with theoretical guar-
antees. Especially, some analyses showed that the [;-norm-based problems can
exactly recover the best sparse solution under certain conditions [6, 35], making
a strong justification for the use of the [{-norm. Accordingly, the [;-norm has
been extensively utilized in many problems under different forms, and many ef-
ficient methods, including the basis pursuit denoising (BPDN) methods such as
FISTA [36], have been proposed to solve /;-norm minimization problems. Even
for general problems, for which the exact recovery is not guaranteed, the convex

formulation using the [;-norm may provide an effective and tractable algorithm.

Obviously, the l;-norm relaxation is beneficial when the relaxed problem or
system indeed becomes convex. However, some problems are inherently nonconvex
and, for those problems, replacing the sparsity measure to a convex one does not
necessarily make the overall problem convex. Some well-known examples of such
problems are: matrix factorization [1], rank-constrained subspace learning [22],
and recently popularized deep learning [37]. For these problems, using the /;-norm
will not bear as much significance as the previous examples. In fact, for general
problems aside from some special (convex) cases mentioned above, the constant
slope of the l;-norm, which is also known as a biased penalty function? [28], can
over-penalize the values of nonzero elements unlike the lyp-norm and make the

solution deviate from the desired solution [28, 29, 32, 33]. This constant slope is

2Throughout this paper, we use the term penalty function and measure interchangeably.

13
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the one that makes the /;-norm a convex measure, which is not really necessary
for the nonconvex settings discussed here. Note that there is a tighter convex
approximation to the lp-norm [38], but it also has a constant gradient along each
direction.

As prior works, there have been attempts to use nonconvex smooth (or possibly
nonsmooth) approximations of the lp-norm [27, 39, 28, 29, 40, 30, 32]. We will
discuss the theoretical relevance and difference of the proposed measure compared

to the nonconvex measures in Section 3.2.2.

2.2 Low-Rank Representation

There are two major approaches to find the low-dimensional subspace structure
(low-rank representation) of data: low-rank matrix approximation (LRMA) [1,
10, 41, 42, 21, 19] and robust principal component analysis (RPCA) [43, 5, 41,
35, 44, 45, 12]. In this section, we briefly review the two approaches and consider

their limitations.

2.2.1 Low-rank matrix approximation

We briefly review a fixed-rank matrix factorization problem based on the [;-
norm and discuss its related work. The problem arises in a number of problems
in computer vision, pattern recognition, and machine learning to handle miss-
ing data, such as rigid and non-rigid motion estimation [46, 47], collaborative
filtering [1, 41, 42|, and background modeling [5, 48, 22|, to name a few. A mini-
mization problem based on the /;-norm can be regarded as a maximum likelihood
estimation problem under the Laplacian noise distribution [10, 21].

We first consider a problem for a vector y = [y1 42 ... ym]? by a multiplication

14
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of a vector € R and a scalar «, i.e.,
y=ax+4, (2.2)

where 6 is a noise vector whose elements have the independently and identically

distributed Laplacian distribution [21]. The probability model for (2.2) can be

written as
Y —ax
plule) ~ exp (12200 ) (2.3
where || - |1 denotes the [1-norm, and s > 0 is a scaling constant [10]. Maximizing

the log likelihood of the observed data is equivalent to minimizing the following
cost function for given a:

J(@) = |y — ax|. (2.4)

The problem (2.2) can be generalized to the problem of matrix approximation.

Let us consider the [; approximation of matrix Y such that
i PX)=|Y - PX .
min J(P, X) = || 1, (25)

where Y € R™*" P € R™*", and X € R"™" are the observation, projection,
and coefficient matrices, respectively. Here, r is a predefined parameter less than
min(m,n) and PX is a low-rank approximation of Y. Typical illustration of the
low-rank approximation problem is described in Figure 2.2. In addition, since it
is difficult to obtain observations for all entries of the observation matrix in prac-
tice, this problem can be considered as the following weighted low-rank matrix

approximation problem to consider unknown entries:
win W © (v = PX) (2.6)

where W is a weight or mask matrix, whose element wj; is 1 if ;; is known and 0
if y;; is unknown, and © is the component-wise multiplication or the Hadamard

product.
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# Samples

# Dim.
||
o

Target Y Low-rank D Error Y-D

Figure 2.2: Graphical illustration of a typical low-rank representation problem.
An observation matrix Y can be decomposed into a clean low-rank matrix D and
a noisy matrix £ 2 Y — D. In the problem, D can be factorized by two matrices

P and X, i.e., D = PX for fixed-rank representation.

Despite the robustness against outliers, the discussed /1-norm based methods
require a heavy computational load for finding a solution using linear or quadratic
programming [10], which requires a large number of iterations to obtain a reason-
able solution, making them applicable only for small-scale problems. To overcome
the computational complexity issue, methods based on an augmented Lagrangian
method (ALM) have been proposed [11, 22] and it solves the problem using an
alternating minimization technique, which minimizes the cost function with re-
spect to one target variable while other variables are held fixed. In addition, a
nuclear-norm regularized /;-norm minimization method (Regl;-ALM) has been
proposed to improve convergence by introducing an implicit rank constraint into
the cost function via the bilinear form of PX [49, 50]. However, it is difficult for a
matrix factorization method to find the global optimal solution because the con-
sidered problem is non-convex. Furthermore, when the rank of the data matrix

is unknown, the problem becomes more challenging.
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2.2.2 Robust principal component analysis

Low-rank matrix approximation finds a low-rank matrix representation of an
observation or data matrix, such that the difference between the estimated low-
rank matrix and the observation matrix is small. This problem is an attractive
topic with a great variety of applications. A well-known method for addressing
this issue is robust principal component analysis (RPCA) [43, 5, 41, 35, 44, 45, 12].
RPCA decomposes an observation matrix into a low-rank matrix and a sparse
matrix by solving the /;-norm regularized nuclear-norm minimization problem as

follows:

min[|Z|l + A|Ell, st Y =Z+E, (2.7)

where Z, E, and Y are low-rank, sparse error, and observation matrices, respec-
tively. Here, the nuclear-norm or trace-norm of a matrix is the sum of its singular
values, i.e., ||All« = >, 0:(A), where o;(A) are singular values of A. RPCA has
recently achieved many successful results in machine learning and computer vi-
sion, such as background modeling, corruption removal, and collaborative filtering
[5, 41, 35, 45]. However, RPCA may not be suitable for solving fixed-rank matrix
approximation problems for which the rank of the target matrix is known or can
be reliably estimated beforehand. It has been reported that RPCA can some-
times fail to find a (nearly) correct rank when there are many outliers [49, 21]. In
addition, since RPCA methods decompose an observation matrix into low-rank
and sparse matrices of the same size unlike factorization methods [49, 21|, the
computational load of RPCA for each iteration can be heavier. Moreover, since
RPCA is transductive, it cannot incorporate new data incrementally for online

computation [50, 51], making it less scalable.
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2.3 Subspace Clustering

Subspace clustering [15] segments data samples into their respective subspaces,

which is defined as follows:

Definition 1 (Subspace clustering). Given a set of samples X = [ X1, ..., Xi| =
(€1, ..., Tp]) € R drawn from a union of k subspaces {S;}F_,. Let X; be a
collection of n; samples drawn from the subspace S; and n = Zle n;. The task
of SC is to segment the samples according to the respective subspaces they are

drawn from.

While previously proposed clustering techniques, such as spectral clustering
[52], are generally based on a given distance measure, subspace clustering finds
cluster memberships of data points using a linear combination of other data points
(or a linear combination of basis vectors in a dictionary or observation matrix)
with the assumption that data are self-expressive. There are two main tasks to
achieve subspace clustering. We first compute an affinity matrix to represent mul-
tiple subspaces and then apply clustering algorithms, such as Normalized Cuts
[52], to the affinity matrix to identify subspace memberships of data samples.
Most of subspace clustering algorithms are focused on finding a good affinity ma-
trix. Two popular algorithms of subspace clustering is sparse subspace clustering
(SSC) [53, 16] and low-rank representation (LRR) [54, 4]. Typical applications
of subspace clustering include motion segmentation [55], face clustering [54], and

digit clustering [56]. Figure 2.3 shows a subspace clustering example.

2.3.1 Sparse subspace clustering

The basic idea of SSC [53, 16] is to find a sparse representation of a sample using

a linear combination of other samples in the same cluster by assuming that the
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(b)

Figure 2.3: Motion segmentation example for subspace clustering [57]. (a) Two
motions, each forming one subspace. (b) Affinity matrix obtained by the subspace
clustering method in [57]. Clustering results are obtained by performing spectral

clustering [52] to the obtained affinity matrix.

observation data can be represented by itself. The basic problem of SSC without

noises is formulated as follows:
mZinHZHl, st. X =XZ, diag(Z) =0, (2.8)

where Z is a subspace representation matrix or a latent matrix to identify clusters
in data and ||Z]; is the l;-norm of Z, which is the entry-wise sum of absolute
values in Z. Since the subspace representation matrix is unbalanced, an affinity
matrix of an undirected graph is built as Z = (|Z| + |Z7|)/2, where |Z| is an
element-wise absolute value operator. Finally, by performing spectral clustering,
such as Normalized Cuts [52] and NJW [58], we can segment observed samples
into k£ clusters. Although SSC works well in practice, it can seek to find the
sparsest representation. Hence, it may divide samples in the same cluster into
different clusters. Thus, it lacks the capability of capturing the similarity between

samples which are drawn from the same cluster.
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2.3.2 Low-rank subspace clustering

LRR [54, 4] is a subspace clustering method which seeks to find the lowest rank
subspace representation matrix. By relaxing the rank function to the nuclear
norm, which is the sum of singular values of a matrix, the LRR problem is con-
structed as follows:

mZinHZH*, st. X =XZ, (2.9)

and the problem (2.9) has a closed-form solution [4]. LRR is similar to the well-
known low-rank approximation algorithm, robust PCA (RPCA) [35], in that they
use a rank minimization approach to find a low-rank solution. Since RPCA does
not have a self-expressive system unlike LRR, it cannot perform a clustering
task. Therefore, we can see that LRR is a general form which addresses both
subspace learning and clustering. Notice that, unlike SSC, LRR is based on a
dense representation by enforcing the low-rank property to the representation

matrix and has the grouping effect as discussed in [59].

2.3.3 Scalable subspace clustering

While the above mentioned methods have been successfully applied to difficult
clustering problems, there are still challenges in terms of scalability and an ability
to handle out-of-samples. These methods compute an affinity matrix using all ob-
served samples in a batch mode, which are iterative or computationally intensive
approaches.

To address these limitations, three types of methods have been proposed re-
cently: fast [60, 61], distributed [62], and scalable learning [63, 64, 65]. First, two
speed-up approaches for solving subspace clustering were proposed [60, 61]. Even
though they run faster than existing baseline algorithms, they still have iterative

procedures with high computation at each iteration and only consider the affinity
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learning step. The goal of [62] is to reduce the computation complexity using dis-
tributed learning for large-scale problems. It utilizes a divide-factor-combine tech-
nique for an LRR problem, which solves LRR for small matrices in a distributed
manner and combines resulting small affinity matrices to form an overall affinity
matrix. However, its clustering performance depends on the number of partitions
and each partition must have an enough number of samples for each cluster to
achieve a reasonable performance since LRR assumes that there are enough sam-
ples for each cluster [54]. Another type of approaches is a scalable method for
handling out-of-sample data, named scalable SSC (SSSC) [63]. It first performs
SSC for in-sample data (or a selected small number of samples) and classifies
out-of-sample data using the learned subspaces. It assumes that in-sample data
are collected from all subspaces to represent out-of-sample data. However, since
SSSC assigns the cluster membership using linear classification without spectral
clustering, the performance of SSSC can be degraded. Recently, another scalable
subspace clustering algorithm, SSC-OMP [64, 65] has been proposed to speed-up
SSC. But, it only focuses on reducing complexity when constructing an affinity
matrix without considering post-processing and spectral clustering steps, which
have heavy computational complexity. Thus, scalability of this approach is still

limited in practice.

2.4 Gaussian Process Regression

A Gaussian process (GP) is a collection of random variables which has a joint
Gaussian distribution and is specified by its mean function m(z) and covariance

function k(x,x’) [66]. A Gaussian process f(x) is expressed as:

f(x) ~ GP(m(x), k(x, ")) (2.10)
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Figure 2.4: Graphical illustration of a Gaussian process. Left: Graphical model
for a Gaussian process for regression. Right: Gaussian process regression results

for modeling an unknown function.

and its graphical explanation is shown in Figure 2.4. Suppose that x € R" is
an input and y; € R is an output. For a noisy observation set D = {(x;,y;)|i =

1,...,n}, we can consider the following observation model:

yi = f(x;) + €, (2.11)

where ¢; € R is a zero-mean Gaussian noise with variance o2. Then the covariance

of y; and y; can be expressed as
cov(yi,y;) = k(wi, x;) + 020ij, (2.12)

where d;; is the Kronecker delta function which is 1 if ¢ = j and 0 otherwise.
k(xi, x;) = ¢(x;)-d(x;) is a covariance function based on some nonlinear mapping
function ¢. The function k is also known as a kernel function.

We can represent (2.12) in a matrix form as follows:
cov(y) = K + oI, (2.13)

where y = [y1 ... yn]? and K is a kernel matrix such that [K];; = k(xi, ;).

The conditional distribution of a new output y, at a new input x, given D
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becomes

where

Y. = k(K +02I) "'y = k[ Ay, (2.15)

where A = (K + ¢21)~! and the variance of y, is

oy, = k(@ @.) — kI (K + 021) k.. (2.16)

Here, k. € R" is a covariance vector between the new data x, and existing data,
such that [k.); = k(x, ;). Note that when it comes to making a prediction
given a collected training set, the computational cost of GP can be reduced by

pre-computing the inverse of a kernel matrix [67].
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Efficient Nonconvex Sparse

Representation

In this chapter, we propose a nonconvex sparsity measure for sparse represen-
tation (SR) in general nonconvex problems which complements both lp- and
l1-norms from practical considerations. The motivation emerges as the follow-
ing question: What is a good nonconvex sparsity measure if it is not possible to
transform a problem to a convex one? As an answer to this question, we first an-
alyze the possible approximations of the lp-norm. Then, we propose the desirable
criteria to be a good nonconvex measure and present a representative family of
curves, termed slowly vanishing gradient (SVG), that is a solution of a differen-
tial equation. We also show that there is a trade-off between the values and the
vanishing speed of their gradients. Interestingly, these analyses lead to a simple
but effective nonconvex sparsity measure, which was proposed over two decades
ago [39], and we shed light on the measure with new analysis and algorithms
since it did not receive much attention compared to other popular penalties in

the literature. In [39], the measure was simply proposed as an approximation
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of the ly-norm without analysis similar to ours. In this study, however, we find
that the measure has very important property of having its gradient vanishing
slowly. Locally, the measure follows the [;-norm to reduce the chance of numer-
ous local optima without losing the ability of promoting sparsity. Globally, it
follows the [p-norm to reduce penalty on large-values, but it still possesses slowly
vanishing gradients to help drawing the solution of an optimization algorithm to
sparse points. Moreover, we present an efficient proximity operator for the mea-
sure. The proposed measure is applied to various applications, including low-rank
approximation (LRA), sparse coding with dictionary learning (SC), and sparse
subspace clustering (SSC) problems, to demonstrate its adequacy and experimen-
tal results confirm that the proposed method performs favorably against those of

other well-known sparsity measures.

3.1 Analysis of the [j-norm approximation

3.1.1 Notations

An observation matrix is denoted by X € R™*™, where each column corresponds
to a data sample in R"”. We denote matrices, vectors, and scalars by bold letters
in upper case, bold letters in lower case, and letters in lower case, respectively,
unless stated otherwise. Spaces and subspaces are denoted by bold italic letters
in upper case. Throughout this chapter, we use ||A|,; to denote matrix norms
of a matrix A, with ¢ = 1 for the matrix l;-norm, »_,; [a;;|, and ¢ = F for
the Frobenius-norm, , /37, [a;;|*. We denote the projection operator by P(-) and
the support set of a matrix A by Q4. rank(A) denotes the rank of A and | - |
denotes the absolute value operation of a scalar. Diagonal elements in a matrix

A is denoted by diag(A).
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3.1.2 Desirable criteria for a nonconvex measure

In this section, we will mainly discuss about a sparse representation problem
whose cost function consists of a data term and a regularizer. As explained earlier,
if the problem itself (data term) has a nonconvex structure, then the convexity
of the sparsity measure (regularizer) is not absolutely necessary. In this case, the
constant slope of the [;-norm will not necessarily make the problem convex but
over-penalize nonzero values in the input, which makes the solution deviate from
the desired solution, especially when the problem assumes the presence of noises.
Hence, we might be interested in finding a good nonconvex measure for such
general nonconvex problems. Prior works support the superiority of nonconvex
sparsity-promoting measures [29, 40, 32, 68, 69].

If the nonconvexity of the lp-norm is not a problem, then the only difficulty
in handling it is that its value only changes around zero (or we can imagine
that its shape appears as if it gives an extremely local gradient at the origin),
which is very bad from the perspective of conventional optimization methods.
That is, the derivative of the ly-norm is zero for nonzero inputs, which has no
effect on gradient-based optimization, and is not well-defined otherwise, which
can be difficult for discovering a good local optimum. In order to find a measure
which has least undesirable effects on nonzero values and can also be handled
efficiently in the conventional optimization methods, we might consider smooth
approximations of the lp-norm [29, 30, 33]. However, there can be infinitely many
such approximations and we need some criteria for finding a good measure. Below

are basic assumptions to be a good candidate:

Assumption 1. We pose the following criteria on the measure ¢(x)' (defined

'For ease of explanation, we sometimes deal with a scalar function throughout the paper due

to the separability of the measure, even though this chapter is about the sparsity-promoting
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on —oo < x < o0) we are looking for:

1. Symmetry: The sign of an input does not matter but the magnitude, hence,

we assume ¢(x) = ¢(—x).

2. Asymptotic convergence: Assume ¢(0) = 0. Then, ¢p(x) satisfies limy_o0 ¢(x) =
1. This prevents ¢(x) from penalizing large nonzero inputs equally as small

ones, and makes it closer to the ly-norm.

3. Monotonicity: In order for ¢ to be a valid measure, we assume ¢'(x) > 0 for
x > 0 where ¢'(x) is the derivative of ¢(x) at x, i.e., ¢ is a monotonically

increasing function on x > 0.

4. Smoothness (Monotonicity of gradient): There can be some choices of ¢
that ¢'(z) goes up and down, but this behavior is unnecessary and will over-
complicate ¢(z). Hence, we assume ¢ (x) < 0 for x > 0, i.e., the gradient

decreases monotonically for x > 0.

5. Finite nonzero gradient at x = 0: Let us define the “gradient at x = 0" as
¢ (0%) = lim,_,o+ ¢'(x). Then, ¢'(07) should be a finite nonzero value to
promote sparsity, i.e., 0 < ¢'(07) = b < co. In many examples, b will be

chosen as b =1 for ease of explanation.

Remark 1. We give more details for the last assumption. First, ¢'(0") should be
nonzero to promote sparsity. This being nonzero makes the Clarke’s generalized
gradient [70], D¢, at x = 0, has a nonempty interior, which increases the chance of
the (local) optimum being a sparse point as for the ly-norm. Second, ¢'(0") should
be finite, so that 0p(0) is bounded. This can be good for not creating too many

local optima at sparse points, because unfavorable local optima can be deviated

penalty. An extension to a vector case is straightforward.

28



Chapter 3. Efficient Nonconvex Sparse Representation

due to the influence of the data term whose slopes are high enough. If ¢'(07) is
unbounded, the possibility of local optima can increase for various sparse points,
many of which will not be good solutions. The “finite nonzero gradient at © =07
assumption is thus important, in that it makes the problem prefer solutions that
are not only sparse, but also have small values for the data term, as for the case

of using the ly-norm.

Aside from the above criteria, we have another criterion on the choice of ¢.
As discussed before, the gradient either being 0 or not being well-defined is what
makes the optimization difficult for the l[p-norm. Thus, we aim to find a measure
that has an opposite characteristic: ¢(z) whose gradient is as large as possible
across the entire interval. Because of the fourth criterion above, this is equivalent
to finding ¢(z) that has slowly vanishing gradient. If ¢'(x) decreases slowly, then
the effect of the sparsity measure can spread across a large region to help drawing
the solution to sparse points. This can be viewed as mimicking the constant slope
of the l;-norm under the above criteria. Hence, we might try to find ¢(x) with
the most slowly decreasing gradient. However, due to the second criterion, the
“total amount” of gradient is finite, i.c., [;¥ ¢/()dz = 1. This means that we

have to divide this finite value for 0 < z < oo.

3.1.3 A representative family of measures: SVG

To analyze the situation discussed above more closely, we present two extreme
examples among the possible family of measures that satisfy the above criteria.
Because of the first criterion, we can assume ¢(x) = y(|z|) for some function y

on RT.

First, let us see an example that is a smooth relaxation of the lg-norm, but its
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gradient is still concentrated in a relatively local region. An easy example is
y=1—e", (3.1)

which satisfies y(0) = 0,y(c0) = 1, ¥/(07) = 1, and all of the above criteria. Its

derivative is ¢y/(z) = e~*, which means that the gradient vanishes exponentially.
Hence, this measure will quickly become negligible except the local region near
xz=0.

As an opposite example, let us consider a case, in which the gradient vanishes

very slowly;

1
y=1— ———, (3.2)
(i+2yr
with very small a > 0. Its derivative is
Yo = (33)
(L4 g)tte’

and this also satisfies y(0) = 0,y(oco) = 1, ¥/(07) = 1, and all of the above
criteria. Here, since a is very small, y/(x) is close to a reciprocal function H%
1

Integrating =

for 0 < z < oo does not converge, hence, this can be seen as

an extreme example with very slowly vanishing gradients. However, (H%ﬁ is

very close to 0 for most of z, which is a natural consequence of spreading a

finite value ([;°y/(z)dz = 1) to a broad interval. Indeed, we can verify that

lim, g (H%ﬁ = 0 if x # 0 and the function itself approaches to zero, i.e.,
1

limg g1 — xoye = 0. Note that the previous example can be viewed as an

opposite extreme in this sense as

. 1 _
Ay T v (3.4)
a

Therefore, there is a tradeoff between the spread (vanishing speed) of gradients
and their actual values. Some example curves of y and its derivative y for various

values of a are illustrated in Figure 3.1.
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Figure 3.1: Graphical illustration of a family of representative curves (a) y and

(b) their derivatives y' for different choices of a.

In addition to the extreme examples, there are infinitely many functions that
satisfy our criteria. However, the details of curve shapes do not matter much
because local differences between two curves does not bear a significant meaning
for general problems. Hence, it suffices to choose a representative family of curves
that has a nice interpretation and includes various rates of gradient vanishment,
in order to narrow down our choices. In fact, the previous examples are good
candidates, since they are solutions to the following differential equation that has

an elegant meaning:
1
(1-y)*e=e/, y(0)=0, (3.5)

where a > 0 and € > 0 are parameters. It is worth noting that (1 — y) on the left
side is the difference between the lg-norm and y, thus, the decreasing speed of
(1 —y) is identical to the rate of asymptotic convergence (criterion 2). Therefore,
this equation describes the rate of gradient vanishment in terms of the rate of
asymptotic convergence. This can be transformed into a Bernoulli equation, and

the solution is given as

1
(1 + i)a’

ae

y(w) =1 - (3.6)
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which satisfies 3/(0%) = 1, y(0) = 0, and y(c0) = 1 for a > 0. We call the cor-
responding penalty functions satisfying the equation (3.6) as a family of slowly
vanishing gradient (SVG) measures. As a special case of the family of SVG mea-

sures when € = 1 and a — oo, the solution leads to (3.1), i.e.,y =1—e"7".

3.2 The Proposed Nonconvex Sparsity Measure

3.2.1 Choosing a simple one among the SVG family

As explained in the previous section, there is a tradeoff between the vanishing
speed and the actual value of the gradient. Thus, we can, at best, choose a good
compromise between them. Since there is no clear winner between the curves
in our SVG family, it is better to choose a simplest one among the reasonable
choices. Accordingly, we constrained a to be an integer, and find one that gives

the slowest decreasing rate of gradient, which is a = 1. As a result, we have

y(z) =1— -5 = -~ Based on this function, our proposed sparsity measure? is

xT+€ xT+te”

given as follows:

c ||
lelgve = ]+ e (3.7)

where € > 0 is a weighting factor that determines the slope at a; = 0T,
Proposition 1. SVG approzimates the ly- and li-norms:

1. lallsye < llello Ve and [latlgyq — lledlo if € = 0.

2. ellallsyg < lledly Ve and ellal|5yq = el if € = oo.

Proof. See Appendix C. O

2We just denote the measure as SVG in that it is one of our SVG family.
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Figure 3.2: Graphical illustration of SVG of a vector o with respect to various
values of € (a) compared to the lp-norm, and (b) to the /;-norm. (-) denotes the

value of e.

Note that the above properties still hold for the proposed SVG family based
n (3.6). Some example curves of SVG are illustrated in Figure 4.6 to visualize
these properties.

Another nice property of SVG is that it possesses a simple proximity opera-
tor. Recently, there have been remarkable theoretical progresses on convergence
analysis for the sparse optimization techniques, and nonconvex versions for the
accelerated proximal gradient method (nAPG) [71] and the alternating direc-
tional method of multipliers (nADMM) [72] have been proposed to solve sparse
optimization problems efficiently in nonconvex settings. Hence, even though SVG
is nonconvex, having a simple proximity operator is still a good advantage to in-
corporate the above methods for efficient nonconvex programming.

The proximity operator for SVG is defined by the following problem:
€ : € 1 2
proxgye, \(z) = min Mull§ve + §||ﬂc —ul]”. (3.8)

Note that this equation is separable, and we can solve it for each element of wu.
Since SVG is a symmetric function for each element, an element of the solution

vector u will either be of the same sign with the corresponding element of x
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or be zero. Let us assume that the sign of z;, the ith element of x, is positive
without loss of generality. Then, one of the positive solutions of the following

cubic equation

(ui+6)2< Aui +1(xi—ui)2)/

= Xe + (u; — z3)(u; + €)? £ g(u;) =0
or zero will be the optimal point of u;. Note that the coefficient of the third-order
term of g(u;) is positive, as well as the value of g(—e) = Ae > 0. This indicates
that g(u;) has at least one root for u; < 0, i.e., there can be at most two roots
for u; > 0. If there is no root or a double root for u; > 0, g(u;) is nonnegative
for u; > 0, i.e., the cost function is monotonically increasing for positive u;, and
the optimal point will be 0. If there are two distinct roots, then the solution
with a larger value is a local minimum, so either this solution or zero will be the
optimal point. In conclusion, the optimal u; is either the largest positive root of
(3.9) or zero, and we can compare the costs of these two points to find the final
solution. This analysis will relieve the computational complexity when solving

the third-order equation.

3.2.2 Relationships with other sparsity measures

There are many nonconvex sparsity-promoting measures (regularizers), such as
smoothly clipped absolute deviation (SCAD) [28], minimax concave penalty (MCP)
[32], and Capped-l; penalty [40], which have been proposed to approximate the
lp-norm. Extensions to low-rank representation for the nonconvex measures have
been explored in [69]. A comprehensive study on the nonconvex sparsity measure
can be found in [68, 73]. In [28], authors advocate a nonconvex penalty function

that has three desired properties: unbiasedness, sparsity, and continuity. More
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general properties to be a good nonconvex penalty are described in [73] (see As-
sumption 1). Note that our family of measures satisfies the conditions and so
it is covered by the well-developed theory for good nonconvex sparsity penalty
functions [73]. Further details on this point are included in Section 3.2.3. Besides,
ours further extends the properties by introducing an important new criterion:
We suggest the slowly vanishing gradient criterion and derive a corresponding
family of measures. The above penalties do not satisfy this condition, since they
have large flat regions (gradient zero or quickly converging gradient). This may
increase the chance of local optima if some local optima of a loss function (data
term) are located at the plateau of the penalty functions (regularizers). Our aim

is to mitigate this effect.

Unlike the previous functions that give a large flat region, there is another line
of penalty functions as an alternative to the original /p-norm, such as the /;-norm
penalty (0 < ¢ < 1) [27], which gives a constantly inclinatory curve analogous to
the proposed penalty. However, there is no analysis about the /,-norm analogous
to ours. Even worse, the [,-norm is known to be difficult to solve because it is
not separable and it does not have an efficient proximity operator due to the ¢g-th
power, making it less practical. Whereas, ours enjoys a simple proximity operator
and handles the raised issues efficiently. Analogous to the [,-norm penalty, the
log-sum penalty (LSP) [29] gives a non-flat curve similar to ours, but it does not
give the satisfying performance compared to the proposed penalty as shown in
Section 3.3.1. There has been another attempt to use a smooth approximation of
the lp-norm based on an exponential function in [30], but no analysis was provided
for justifying such a choice. In fact, our analysis shows that the approximation
based on an exponential function also has fast vanishing gradients, which is more

prone to local optima, and thus this approximation does not give satisfactory
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performance as shown in Section 3.3.4.

While preparing this manuscript, we became aware of that our proposal, as a
special case of the SVG family, leads to the same type of measure proposed by
Geman and Yang [39] (sometimes called the Geman penalty) over two decades
ago. However, it is important to note that there are clear differences between their
and our studies. First, the specific choice for approximating the lg-norm is not
justified in [39] because its focus is an image reconstruction problem. Second, the
optimization approach in [39] is outdated, while we provide efficient algorithms
based on a proximity operator derived from a nice property of the penalty.

To the best of our knowledge, our analysis gives a new insight from the op-
timization perspective for nonconvex sparsity-promoting penalty functions. The
proposed penalty provides superior performance compared to the existing non-
convex and convex surrogates of the lp-norm, because it has (1) a slowly vanishing
gradient to reduce the chance of local optima, (2) unbiasedness to reduce the over-
penalized issue due to the constant gradient of the [;-norm. Besides, it is easily
solvable by its simple and separable proximity operator. Experimental evidences

verify the superiority of the proposed penalty in Section 3.3.

3.2.3 More analysis on SVG

We show that the sparse representation based on the SVG measure (regularizer)
satisfies the well-studied theory for nonconvex sparsity-promoting measures [73],
whose graphical illustrations are shown in Figure 3.3. In order for the proposed
family to apply the theory, we need to show that our family satisfies the following

well-analyzed assumptions:

Assumption 2 ([73]). We consider a scalar variable x for simplicity and define

a reqularizer as ¢y : R — R.
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1. The function ¢ satisfies $»(0) = 0 and is symmetric around zero (i.e.,

oa(x) = da(—x) for all z € R).

2. On the nonnegative real line, ¢y is nondecreasing.

3. For x > 0, the function x — mT@ S monincreasing.

4. A measure ¢y is differentiable for all x # 0 and subdifferentiable at x = 0,

with lim,_,g+ ¢\ (z) = AL.
5. There exist 1 > 0 such that py ,(z) = ¢x(z) + La? is convex.

We first show that our representative family of measures satisfying the criteria

presented in Assumption 1 meets the above assumptions:

Lemma 1. The representative family of measures ¢y designed by our criteria

with the parameters € and a satisfies the conditions of Assumption 2 with L = %

and p = — (a;?)‘
Proof. See Appendix B. O

From the lemma, we directly obtain the following result on the proposed mea-

sure as a special case:

Corollary 1. The SVG measure with the parameter € satisfies the conditions of

Assumption 2 with L = % and p = f—é

By Corollary 1, we confirm that the proposed measure satisfies the Assumption
2 and this makes that the sparse representation based on the proposed measure
can directly follows the theory on the error bound under mild conditions [73]. In
other words, any stationary points guaranteed by a nonconvex sparse optimization

method are close to the small ball around the optimal point.
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Figure 3.3: Illustrations of curves for nonconvex sparsity measures.

3.2.4 Learning sparse representations via SVG

The proposed measure can be applied to various sparse representation problems
that the lg-norm and /;-norm are applied. In this section, we focus on three impor-
tant problems including low-rank approximation (LRA) [1], sparse coding (SC)

[3], and sparse subspace clustering (SSC) [53].

SVG for LRA. Sparse representation has been widely used in many applica-
tions to filter out outliers in data. One of the most popular applications is the
low-rank approximation (LRA) of a matrix under the existence of outliers, and
the /;-norm is usually used to model the sparse outliers [6, 11]. If the rank of a
matrix is not specified, then using the nuclear-norm [35] can be a good choice
that makes the entire problem convex. However, there are many problems that
the rank is explicitly specified, such as structure reconstruction [74] and photo-

metric stereo [35], to name a few. In this case, it becomes a nonconvex problem.
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For the LRA problem, we apply SVG for modeling sparse errors, whose problem

formulation (LRA-SVG) is constructed as follows:
gl}\r/} Pax (E)|lsyg, st- E=X — M, rank(M) <r. (3.10)

This problem can be efficiently solved using the nADMM framework [72] as dis-
cussed before. The derivation of LRA-SVG is included in Appendix A.

SVG for SC. The proposed measure can be applied to another well-known
nonconvex sparse representation problem, sparse coding with dictionary learning
[3, 2], which is basically a matrix factorization problem. Unlike LRA problems,
SVG is used to enforce the sparsity of the encodings in this case. The problem
formulation of SC for an observation vector  based on SVG (SC-SVG) can be

given as follows:

1
min - | — D + Ay, (3.11)
(e

)

where D and « are an overcomplete dictionary consisting of word vectors and
a sparse coefficient vector, respectively. This problem is solved in an alternating

fashion based on the proximal gradient method.

SVG for SSC. Subspace clustering is a problem to find the cluster member-
ships of data points based on an assumption that a point can be represented by
a linear combination of other points in the same cluster. Note that this prob-
lem can be efficiently solved based on convex optimization, nevertheless we apply
SVG to this problem, in order to verify the capability of the proposed measure
in general problems. We apply SVG to the well-known sparse subspace clustering

(SSC) [53], where the corresponding formulation (SSC-SVG) under noisy scenario
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is given as follows:
1
min o || X — XZ|% + M Z|svg, st diag(Z) = 0. (3.12)

This problem can be efficiently solved by nAPG [71]. Especially, we incorporate
the nonmonotone update framework [71] to accelerate the convergence of the
algorithm.

Note that the initial values of optimization variables for the proposed algo-
rithms are set to zero, based on empirical observations that they are not sensitive

to the choice of the initial values.

3.3 Experimental Results

In this section, we report numerical results of the sparse representation algo-
rithms based on SVG. We compare these algorithms with other state-of-the-art
algorithms®: RPCA-TALM (RPCA-I) [35], ALADM [11], and LRA-L1 (an /;-norm
version of LRA-SVG) for low-rank approximation problems, KSVD [3] and SC
[2] for sparse coding problems, and LRR [75], SSC-BP [53], SSC-OMP [76], and
SSC-SLO (SSC based on smoothed lp-norm [30]) for subspace clustering tasks.
We also compare the proposed measure with other well-known nonconvex spar-
sity measures, SCAD [28], MCP [32], Capped-L1 (CapL1l) [40], and LSP [29],
in order to demonstrate the superiority of the proposed nonconvex measure for
problems described above. For the compared algorithms, we used the codes pro-
vided by the authors, unless stated otherwise. For low-rank approximation and

sparse coding problems, we compute the reconstruction error as

W o (MT — M)/ |W ], (3.13)

3In order to compare the proposed method with various algorithms, we report experimental

results also for convex algorithms based on the [1-norm.
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where MST and M are the ground-truth and reconstructed matrices, respec-
tively, W is a weight matrix concerning missing entries, and ® is the Hadamard
product operator. For subspace clustering, we compute the accuracy by the Hun-
garian method [77]. We set the parameter € of SVG to 0.05 for entire experiments,
since it was not sensitive to various problems in our empirical experiences. More
analyses on parameters are included in Section 3.3.5. All experiments were per-
formed using MATLAB environment on a desktop computer with 24GB RAM
and a 3.4GHz quad-core CPU.

3.3.1 Evaluation for nonconvex sparsity measures

We first evaluate the proposed penalty, SVG, on synthetically made examples to
compare with other renowned nonconvex sparsity-promoting penalties. We used
the codes of other compared penalties provided by the work in [33], which solves
the nonconvex optimization problems efficiently with a convergence guarantee.
Following the experiments in [33], we performed the sparse approximations based
on the penalties, whose problem formulation is to find a sparse coefficient vector

o

1
min ||z — Derlf3 + ¢(c), (3.14)

where & € R™ is a target vector, D € R™*P is a data matrix, and ¢() is a
penalty function. For all experiments in this subsection, we set m = p = 500. We
made a scenario by varying sparsity (0 ~ 90%) of a ground-truth coefficient vector

b

T where lower sparsity means denser representation, and made an observation
2CT from the multiplication of D and a®”, which are obtained by the Gaussian
distribution from A(0,1). Based on %7, we made x by adding Gaussian noises

from A(0,1072). For each setting in the scenario, we performed %k independent
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runs, where k is set to 30. The average reconstruction error is computed as

k
1
%ZH%GT—Diain, (3.15)
i=1
where &7 is the ground-truth vector for the i-th scenario.

Results of the compared measures are shown in Figure 3.4. As shown in Figure
3.4(a), the proposed measure performs better than the other nonconvex measures
on average. LSP, which represents a similar non-flat curve, gives the similar per-
formance to ours when the sparsity ratio is larger than 30%. SCAD and MCP
show the similar but worst performances in this problem. Figure 3.4(b) shows the
lo errors between the true coefficient vector and obtained vectors based on dif-
ferent measures under the sparsity ratio of 90%. The proposed measure finds all
the sparse coefficients with the lowest errors, whereas LSP and CapLl give larger
errors than ours for all cases. SCAD and MCP perform competitively compared
to the proposed measure for some scenarios, but they sometimes fail to find the
exact coefficient vectors. The average computation times (sec) of the measures
for the reconstruction problem are as follows: 0.15 for CapLl, 0.28 for SCAD,
0.26 for MCP, 0.23 for LSP, and 0.3 for SVG, respectively. In the problem, most

of the methods take similar execution times.

3.3.2 Low-rank approximation of matrices

We report the results for low-rank approximation problems using both synthetic
and real-world problems. To generate synthetic examples, we made a matrix
whose size is 500 x 500 and set the rank of the matrix to 10. In the matrix, we
added Gaussian noises with A(0,1075) and outliers with magnitude of 10 for
randomly chosen elements. The outlier ratio is varied from 0% to 60% to verify

the robustness of the proposed method. Here, we compare with three nonconvex
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Figure 3.4: Average performances on synthetic examples for nonconvex sparsity
measures. (a) Reconstruction errors w.r.t. the sparsity. (b) Errors in ascending

order for different scenarios.

penalties in the same framework to ours, LRA-CapL1, LRA-MCP, and LRA-LSP,
based on CapL1 [40], MCP [32], and LSP [29], respectively. The experimental re-
sults of the synthetic problems for 50 independent trials are described in Figure
3.5(a). From the figure, we can see that the proposed method withstands much
higher outlier ratios than the other methods, which confirms its excellent robust-
ness, whereas other methods fail to find a good solution roughly over 30%. The
three nonconvex penalty based algorithms mentioned above perform better than
the other methods based on the convex penalty, i.e., the [;-norm, on average,
but they could not endure as many outliers as the proposed penalty. The average
computation times (sec) of the algorithms are as follows: 0.62 for ALADM, 11.74
for RPCA-I, 1.76 for LRA-L1, 50.24 for LRA-LSP, 13.77 for LRA-MCP, 13.8 for
LRA-CapL1, and 3.16 for LRA-SVG, respectively.

We have performed real-world experiments on two problems; nonrigid motion

estimation [13] and photometric stereo [74]. For nonrigid motion estimation, we
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used the Shark sequence [13]. The rank of the problem is set to r = 6. In or-
der to consider missing environments, we replaced 10% randomly selected entries
in the Shark dataset as missing. For photometric stereo, we used Static Face
dataset [74] which has 42% missing entries. We set the rank to r = 4 for this
problem. For these problems, we did not evaluate RPCA-TALM because they are
rank-constrained matrix completion problems. Figure 3.5(b) and 3.5(c) show the
average reconstruction errors of the algorithms for 50 independent runs under
various outlier ratios (0 ~ 50%). From the figure, we can confirm that the pro-
posed method outperforms the other methods for both problems. Especially, the
proposed method is highly robust against outliers and missing data for the Static
Face dataset. While LRA-LSP gives competitive results to the proposed method
for the Shark sequence, it performs poorer than ours for the Static Face dataset.
The [1-norm based approaches, LRA-L1 and ALADM, perform worse than other

nonconvex measure based algorithms on average for both datasets.

3.3.3 Sparse coding

We have conducted experiments for a sparse coding problem (3.11) based on
well-known example images in the literature: Barbara, Lena, Boat, and Peppers.
Following the practice of [3], we extracted n 64-dimensional word vectors based
on 8 x 8 local patches for each image, where n is the number of training data
which was set to n = 15,000. Based on these word vectors, we learned both
a dictionary and a sparse code for each sample. In the problem, we compare
with two well-known sparse coding methods with dictionary learning: SC [2] and
KSVD [3]. For all tested images, the size of dictionary D was set to 250, i.e.,
D € R*250 Tn each dataset, we added Gaussian noises from AN(0,0.3). The

average reconstruction errors of the tested algorithms are shown in Table 3.1.
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Figure 3.5: Average performances on low-rank approximation problems in the

presence of outliers and missing data.
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Table 3.1: Average reconstruction errors (x10?) for sparse coding.

Methods Barbara | Lena | Boat | Peppers | Average

KSVD 3] 2.23 1.90 | 2.04 2.05 2.06
SC [2] 2.11 2.02 | 2.15 2.12 2.1

SVG (Ours) || 1.15 | 0.7 | 0.97 | 1.09 0.98

In the table, our algorithm gives excellent results for all cases. KSVD, which
uses OMP, performs slightly better than SC based on the [;-norm, but it is

unsatisfactory compared to ours.

3.3.4 Subspace clustering

Face clustering. @ We have evaluated the proposed measure on the Extended
Yale B database [78] for subspace clustering. The dataset used for this experiment
consists of 38 subjects, each of which has 64 frontal face images under illumination
changes. We collected the first ¢ subjects, where ¢ € {2,5,8,10}, and performed
subspace clustering on the image of these subjects. In this problem, we compare
with state-of-the-art subspace clustering algorithms assuming sparsity [53, 76]
and low-rank-ness [75]. For each problem, we used PCA to project images in
9c-dimensional subspaces to make an overcomplete dictionary. Table 3.2 shows
the clustering accuracy for different numbers of subjects. The proposed method,
SSC-SVG, shows a superior clustering performance compared to the existing al-
gorithms based on the convex or nonconvex regularizers. SSC-OMP performs
better than SSC-BP, SSC-SL0, and LRR on average, but it gives lower accuracy
than ours for most cases. Especially, its performance collapses considerably when
the number of clusters is larger than 5. SSC-SLO shows the worst performance

among the tested algorithms.
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Table 3.2: Performance comparison on clustering accuracy (%) on the Extended

Yale B dataset for face clustering.

No. clusters (c) 2 5 8 10 | Average
LRR [75] 96.9 | 89.1 | 87.5 | 80.3 88.5
SSC-BP [53] 94.5 | 93.1 | 889 | 70.5 86.8

SSC-OMP [76] | 98.4 | 97.8 | 81.1 | 82.9 | 905
SSC-SLO [30] 98.4 | 756 | 66.2 | 53.4 | 73.4
SSC-SVG (Ours) || 99.2 | 96.3 | 95.7 | 90.3 | 95.4

Motion segmentation. The goal of motion segmentation task is to segment
trajectories of rigidly moving objects based on tracked points along the frames.
Since collected trajectories from a rigid motion lie in a low-dimensional subspace,
we can solve the motion segmentation as a subspace clustering problem [53].
Hence, we applied SSC-SVG to the well-known benchmark dataset, Hopkins 155
[55], which consists of 155 video sequences with two or three motion clusters.
Four quantitative measures were used for clustering performance: mean, stan-
dard deviation (Std.), minimum, and median, following the work in [53]. The
average performance of the algorithms are shown in Table 3.3. As shown in the
table, our proposal outperforms existing algorithms approximating the [g-norm
and the dense representation method, LRR. SSC-BP and LRR give the similar
performance, but they are unsatisfactory compared to ours. Two algorithms ap-
proximating the [g-norm, SSC-OMP and SSC-SLO0, show the disappointing results
in this problem. Some graphical results on the dataset for four selected methods

are illustrated in Figure 3.6.
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Ours (100%) SSC-BP (99.2%) SSC-OMP (93.6%) LRR (100%)

SSC-OMP (49.5%)

Figure 3.6: Motion segmentation results (snapshots) of five randomly chosen video
sequences from the Hopkins 155 dataset by four methods: the proposed method,
SSC-BP [53], SSC-OMP [76], and LRR [75]. Tracked points are marked by a sym-
bol '+’. Different colors in the mark correspond to independent motion clusters.

() denotes the segmentation accuracy. Best viewed in color (x2).
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Table 3.3: Performance comparison with respect to clustering accuracy on the

Hopkins 155 dataset for motion segmentation.

Algorithms || LRR | SSC-BP | SSC-OMP | SSC-SLO | SSC-SVG (Ours)
Mean 96.53 96.47 87.16 77.93 97.31
Std. 8.04 9.12 14.04 16.82 7.25
Median 99.72 100 93.10 80.82 100
Minimum 58.19 52.81 46.82 39.44 58.14

3.3.5 Parameter Analysis

The proposed measure has two parameters: the measure parameter ¢ and the bal-
ancing parameter A. Following our analysis on the slowly vanishing gradient of
the measure as shown in Figure 3.2, we can set the measure parameter € to a small
value (usually, it is recommended to have in the range of [1072, 1]). Nonetheless,
we evaluate the impact of the parameter ¢ on the low-rank approximation prob-
lems using the Shark and Face data sets. Figure 3.7 gives the reconstruction error
with variations of € for the data sets. From the figure, we can observe that the
proposed measure performs similarly with the choice of any value in the enough
range of the parameter for each scenario, which confirms that our measure does

not sensitive to the choice of the parameter value.

Now, we further report specific values of the parameters for all conducted exper-
iments as shown in Table 3.4. Note that there is no specified A in the formulation
of the low-rank approximation problem, thus we do not report the value of the
parameter for the problem. Since we have seen that the parameters are not sen-
sitive to the choice of the values for data sets in each experimental subsection,

we fix the two parameters for each subsection. Especially, we set the measure
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Figure 3.7: Reconstruction error with respect to values of the parameter € for two

data sets.

Table 3.4: Parameter values of (¢, A) used in this work.

Parameter € A
Evaluation-Synthetic (Section 3.3.1) 0.05
Low-rank approximation (Section. 3.3.2) —
Sparse coding (Section 3.3.3) 005 0.6
Subspace clustering (Section 3.3.4) 15

parameter € to 0.05 throughout the experiments due to the empirical observa-
tions that it consistently gives satisfying performance with a fixed value for all
tested problems. Since A is a balancing parameter between the sparse regularizer
and data term, it is natural to have different values according to independent

problems.
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3.4 Summary

In this chapter, we have analyzed desirable criteria to be a good nonconvex spar-
sity measure and presented a corresponding family of measures that are a solution
of a differential equation, named slowly vanishing gradients (SVG). Among the
SVG measures, we selected a practical one as a proposed measure, which comple-
ments both [p- and [;-norms from practical considerations. The penalty is a good
alternative to the lp-norm that possesses slowly vanishing gradient, which can
be good for gradient-based optimization, and a simple proximity operator, which
can be efficiently utilized in nonconvex optimizations. The proposed measure has
been tested on various applications to demonstrate its effectiveness and empirical

results have confirmed the superiority of the proposal.
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Chapter 4

Robust Fixed Low-Rank

Representations

This chapter describes several robust low-rank matrix approximation algorithms
for an unstructured matrix and a structure matrix based on the robust /;-norm.
The motivation of the algorithms is derived from the fact that conventional low-
rank approximation algorithms are neither robust to outliers nor efficient when
handling real-world applications. We first propose a gradient descent based al-
gorithm for an [y minimization problem, where the alternating rectified gradient
method is suggested to solve the algorithm quickly. For better performance than
the gradient-based algorithm which only consider the error measure, we introduce
an efficient regularizer and an orthogonality constraint and the overall framework
is solved using alternating minimization under the augmented Lagrangian frame-
work. Since they assume a user-defined fixed-rank problem, we extend to handle
rank uncertainty issue by proposing a rank estimation strategy for practical real-
world problems. We also study a case where an observation matrix is structured,

in which a robust kernel subspace learning algorithm based on the recently at-
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tracted rank minimization is devised to model trajectories of moving objects
under noisy environments. The performance of the algorithms are demonstrated

from several experiments on well-known real-world data sets.

4.1 The Alternating Rectified Gradient Method for [,
Minimization

Tn this section, we propose two alternating rectified gradient algorithms that
solve the l1-based factorization problems at significantly less running time and
memory for large-scale problems. Even though the proposed methods are based on
an alternating minimization method, they give fast convergence rates owing to the
novel method of finding the update direction by a rectified representation based
on matrix orthogonalization. These methods are derived from the observation
that there are numerous projections and coefficient matrices that give the same
multiplication result while the convergence speed depends largely on how these
matrices are chosen. The methods proposed in this section are more efficient and
robust than other /1-norm based factorization and RPCA methods in solving

various problems in Section 4.1.3.

4.1.1 [1-ARG, as an approximation method
Gradient-based update

We first describe the problem of low-rank matrix approximation in the l;-norm

by an alternating gradient descent framework. The cost function for the low-rank

!This section is based on the paper appeared in IEEE Transactions on Neural Networks and
Learning Systems: “Efficient 11-Norm-Based Low-Rank Matrix Approximations for Large-Scale
Problems Using Alternating Rectified Gradient Method” [21].
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matrix approximation is

)

where Y € R™*" P € R™*" and X € R"™"™ are the observation, projection, and
coefficient matrices, respectively. Here, r is a predefined parameter and less than
min(m, n). Since |z| is not differentiable, we approximate |x| by lim_,o V22 + €.

Then we approximate the derivative of |z| using the derivative of lim¢_,o V22 + €2

as follows:
d /2 2
dl] ~ lim ovrT e lim —— = sgn(z), (4.2)
dx e—0 ox e—0 $2 +52

where sgn(x) is the signum function of x and the approximation is exact except
at = 0. In this way, we can differentiate (4.1) with respect to (w.r.t.) X and

find that its derivative is
VxJ(P,X) =Pl sgn(y — PX). (4.3)

Here, sgn(Y') for matrix Y represents a matrix whose (i, j)-th element is sgn(y;;).
Now, we consider the problem of finding an optimal step size o > 0 to update

X by the steepest gradient descent method.
moin J(|P,X,VxJ)=|Y — P(X —aVxJ(P, X))l
=Y - aPPT sen(Y") |1 (4.4)
= [[Y" — adll1,
where Y/ = Y — PX and A = PP sgn(Y’). We apply the weighted median
algorithm to the ratio y, ; /ai; with weight |a;;| to get the step size a that minimizes
the cost function (4.4). Note that in this algorithm, we apply the weighted median

algorithm to update either P or X at a time, to reduce the total computation

time and this is different from [10], where the algorithm is applied columnwise.
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Finally, Y" and X are updated as

Y'Y’ — aPPTsgn(Y"),

(4.5)
X « X + aPTsgn(Y").
For P, we can also differentiate (4.1) w.r.t. P in the same manner as
VpJ(P,X)=—sgn(Y — PX)XT. (4.6)

The projection and coefficient matrices P and X are updated alternatingly until
convergence is achieved.

However, a serious issue arises in this updating procedure, because there are
numerous pairs of P and X that give the same multiplication result of PX. To
see this, let us reexamine the minimization problem (4.1). If P’ = PH~! and
X' = HX for some nonsingular matrix H € R"*", then

min  J(X,P) = Y = P'X'ly = Y = PX]|r. (4.7)

Accordingly, the step-size problem for X’ can be written as
mﬁin JBIP, X"\ VxiJ)=||Y' = BP' PT sgn(Y")|1, (4.8)

where [ is a step size. When H is orthogonal, (4.4) and (4.8) are the same because
of the relation P’/P"T = PH-'H-TPT = PHTHPT = PPT . If it is not the case,

then the update direction of (4.8) changes depending on H, i.e.,
PPTsgn(Y") # P'P'" sgn(Y"). (4.9)

This means that the update direction depends on the choice of P and X. There-
fore, it is important to find P and X that will give a good update direction for

fast convergence.
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Finding an optimal direction for alternating updates

In the previous subsection, we have shown that the update direction depends on
the representation of P and X, which can influence the convergence rate. This
happens because P and X are the intermediate variables of the following basic

problem:

min ||Y — G|
¢ (4.10)
st. GeR™"

where R7"*™ is a set of m x n matrices with rank r. However, this problem is
difficult to solve directly because R*™ is not convex. This is why it is common
to use alternating updates based on intermediate variables like P and X for low-
rank matrix approximation. In summary, it is difficult to solve the problem (4.10),
while the less difficult problem (4.1) can still lead to a slow convergence because
of the ambiguity of the update direction.

Then, how do we compromise? To answer this question, notice that the gradient

w.r.t. X can also be expressed as the solution to the following problem:

min J(AX'|P,X) =Y — P(X + AX')|y
Ax (4.11)
st |AX'||% = &,

where AX’ is the variation of X that we are seeking and ¢ < 1. This problem
is to minimize the directional derivative of the cost function w.r.t. AX’ and the
optimal AX" is the same as VxJ up to scale if ¢ — 0. To avoid the ambiguity in
representing P and X, and to convert the problem as if it were to be solved for

G € R™™ in the basic problem, we modify the constraint as

min  J(AX'|P,X) = |[Y — P(X + AX')|
2 Y = AG|| (4.12)
st. ||AG|% 2 |PAX|2 = €.
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In this modified problem, we search the update direction for X, but the new
constraint limits the search domain with respect to AG’ = PAX’, the update of
G, instead of AX’. In this manner, we can preserve the convexity of the search
domain while avoiding the difficulty that arises from the ambiguity in representing
P and X.

By introducing a Lagrange multiplier to (4.12), the resulting Lagrangian is
A
|Y' — PAX'||; + §(tr(AX/TPTPAX’) —é%), (4.13)

where tr is the trace operator (||Al|% = tr(AT A)). Differentiating (4.13) w.r.t.

AX’ and equating it to zero, we obtain
—PTsgn(Y' — PAX') + \PTPAX' =0,

which gives

1
AX' = XP+ sen(Y' — PAX'"), (4.14)

where Pt = (PTP)~'PT is the left pseudo-inverse of P. By applying (4.14) to

|PAX'||% = €%, we get

1 €
i 4.15
A ||PPtsgn(Y' — PAX')||p’ ( )

and finally
Pt sgn(Y' — PAX')
AX' = - €. 4.16
PP+ sgn(Y’ — PAX")[[, (4.16)
For an infinitesimal €, the update direction becomes
lim AX’ oc lim P* sgn(Y’ — PAX')

= PTsgn(Y’) & AX.

Note lim._,osgn(Y’ — PAX’) = sgn(Y’) in (4.14) because lim.,o AX’' = 0 in

(4.16) and we regard sgn as a limit of a smooth function as defined in (4.2). Here,
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we ignore ||PP"sgn(Y’ — PAX')|| in (4.16) because we are interested only in
the direction, which is denoted as AX, and the step size for the update will be
found next. Note that the update direction of the low-rank approximation is given
as

AG 2 PAX = PP sgn(Y’), (4.18)

and this does not change depending on the representation of P and X, i.e., there is
no ambiguity in AG unlike PP sgn(Y”) in (4.9). With the new update direction

AG, we revise the step-size problem (4.4) as the following;:
min |V — aAG|y = [|[Y — aPP* sgn(Y')|]1, (4.19)
«

where « is determined by the weighted median technique. For updating P, we

can obtain AP in the same manner under the constraint (||AP'X|[|% = €2) as
AP =sgn(Y)XT, (4.20)

and find the optimal step size as in (4.19).
There is an observation to be made on this updating rule. This new update
direction is analogous to the Gauss-Newton update direction in the least-squares

problem. The Gauss-Newton direction of || F(z)||% is given as —V,F(z)* F(z). If

Ol F(@)ll%

we regard F'(z) as a result of OF ()

ignoring its scale, then it is similar to the
expression AX = Pt sgn(Y’). Hence, we may consider this update direction as
an extension of the Gauss-Newton method to /;-norm problems and expect it to
be better than the normal gradient direction.

Note that this procedure is equivalent to changing the representation of P and
X so that the fixed matrix, either P or X, is orthonormal. This means that

the step size problem (4.8) of the normal gradient method becomes the same as

(4.19) when P and X are chosen so that P is orthogonal. We can easily find such
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an orthogonal matrix using the QR decomposition. We call this as the rectified
representation. Hence, it is better to use ordinary gradient descent in conjunction

with this representation change, which is faster than calculating a pseudo-inverse.

Summary of the proposed algorithm

First, we update P while X is fixed in (4.1). To make X orthonormal, we apply

QR decomposition to X7

XT = X'TR,
(4.21)
PX = PR'X' = P'X,
where orthogonal matrix X’?" and upper triangular matrix R are obtained from
QR decomposition, and P’ = PR”. Then, we can compute AP by using X’ and
find the optimal step size using the weighted median algorithm.

Once the update of P is finished, we update X with P fixed. Again, we apply
QR decomposition to P to change the representation. The update rule is similar
to that of the P update. Then, we continue to update P and X alternatingly; the
overall procedure is described in Algorithm 1. We call the method as I1-norm-
based alternating rectified gradient method based on approximation, I1-ARG 4,
because it find the gradient by approximated manner. In the algorithm, P and
X are rectified by the QR decomposition at line 8 and 14, respectively.

To deal with numerical errors, we modify the signum function as:

,

I z27,
sgn’(z) = 1 0 —y <z <7, (4.22)
-1 =z < -

where v is a threshold with a small positive value. Using this modified function,

we can find a better solution despite the difficulties that numerical errors might
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create.

Algorithm 1 /;-norm-based matrix approximation using the approximated al-

ternating rectified gradient method (I;-ARG4)

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

Input: Y € R™*" the subspace dimension r
Output: P € R™*" X € R™"
Initialize P to a zero matrix and X randomly
Y +Y
while residual Y’ does not converge do
## P update (Fix X, update P)
while residual Y’ does not converge do
XTR + XT P+ PR"
AP + sgn’(Y)X'T
(Y, P') + Update(Y', P', X', AP)
end while
## X update (Fix P, update X)
while residual Y’ does not converge do
PR+ P, X + RX'
AX < PTsgn'(Y")
(YT X'T) « Update(Y'T, XT, PT,AXT)
end while

end while

In Algorithm 1, the update of either P or X is repeated until convergence, and

then the roles of the matrices are switched. Even though the algorithm can work

by just alternating the updates of P and X one by one, the present approach gave

us better performance in some of the experiments, such as the nonrigid motion

estimation in Section 4.1.3. This is not exactly an “alternating” update, but we
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Algorithm 2 Function: Update (Y,U,V, Z)
1: Input: Y, U, V, Z: matrices

2: Output: T, R: matrices

3: ## Line-search (by weighted median)
4: a < argmin, [|[Y —aZV|;

5 T+ Y —aZV

6: R~ U+ aZ

still call it alternating rectified gradient method. The projection and coefficient
matrices are updated by line-search technique using the weighted median method
in Algorithm 2.

As mentioned earlier, the step size « is determined by using the weighted me-
dian algorithm. For the weighted median algorithm, we may use a divide and
conquer algorithm such as quick-select [79, 80], which can find the solution in
linear time on average. However, in practice, it is faster to use existing sorting
functions when the number of elements is not large. Moreover, since we are ap-
plying the weighted median algorithm to find the step size, which does not need
to be accurate, it is better to calculate the weighted median of randomly selected
samples, when the number of samples is large. To see how the weighted median
depends on the number of samples, we consider the problem of finding an approx-
imate weighted median from a set consisting of an infinite number of elements.
To simplify the problem, we assume that elements have the same weights. Then
the cumulative probability F'(¢;2d+ 1) that the sample median of 2d + 1 samples
is less than the (100 x ¢)% quantile of original elements is equal to the cumu-
lative probability that the success is no more than d for a binomial distribution
B(2d+ 1,1 — q). Since the cumulative distribution function of a binomial distri-

bution can be represented in terms of the regularized incomplete beta function,
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the result is given as
F(¢;2d+1)=P(Z <d)=1,(d+1,d+ 1), (4.23)

where Z is the binomial random variable and I, is the regularized incomplete
beta function. This expression can be calculated numerically, and we have found

that

F(1/2 +0.005;10° + 1) — F(1/2 — 0.005; 10° + 1) ~ 0.998.

This means that if we use 10° samples, then the sample median resides within
the +0.5% range of the true median with probability 0.998. Even if this result
applies for the case of equally weighted samples, the result is also meaningful
for the weighted median if the weights are moderately distributed. This is a
valid assumption because AG, which is an orthogonal projection of sgn’(Y”’), is
bounded by | sgn’(Y”)||r. In experiments, we randomly selected 10° samples if
the number of elements is greater than 10°, and then applied an existing sorting
function to find the weighted median. There is a small chance that the weighted
median technique may not reduce the cost function due to random sampling, but
the problem can be resolved by a slight tweak in the algorithm, such as repeating
the random sampling until it reduces the cost function.

The downside of the proposed algorithm is the difficulty of guaranteeing whether
P® and X® will converge to a local minimum, due primarily to the assumption
that the derivative of |z| is sgn(x), which is in fact not differentiable at 0. Hence,
there is a possibility that the algorithm may find an update direction that does
not decrease the cost function when many of the elements of Y’ are zero, even
though it is not a local minimum. In that case, the step size will be zero and
the algorithm will be terminated. Nonetheless, if this happens, it will be near

a local minimum since many of the residual elements are zero. Besides, there is
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usually some Gaussian noise in Y for practical problems, which prevent many of
the residual elements from being zero at the same time. Therefore, the proposed
algorithm will work well in practical problems and we verify the convergence

using real world problems in Section 4.1.3.

Weighted method of /[1-ARG 4 with missing data

In real applications, there are not only outliers but also missing data, which can
have a negative effect on vision and recognition systems. We solve the problem
of low-rank matrix approximation using the /1-norm in the presence of missing
data which is also known as a matrix completion (MC) problem by extending the
result from the previous subsection.

The problem can be formulated as

min  J(P.X|W) = [W o (¥ - PX)|ls, (4.24)

where © is the component-wise multiplication or Hadamard product. Here, W &€
R™*™ is a weight matrix, whose element w;; is 1 if y;; is known, and is 0 if y;; is
unknown. Similar to the problem (4.12), we can formulate the weighted low-rank

matrix factorization in the l1-norm under the constraint | PAX'||% = €2 as

min  J(AX'|P,X, W) = ||(W © (Y' - PAX"))]|1,
AX (4.25)
st. |PAX'||% = €.

Similarly as in Section 4.1.1, the solution to this problem can be represented in

vector form as

vec(AX) = (I ® PT)Wvec(sgn(W © Y))
(4.26)
= (I ® P")vec(W ®sgn(W 0 Y")),
where ® is the Kronecker product, W = diag(w) € R™*™" 5 = (w!,wl, ..., w?l

R™*1 aw; is the i-th column vector of W, and I denotes an n x n identity matrix.
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Because the elements of W are either 0 or 1, (4.26) can be rewritten as

vec(AX) = (I ® PT)vec(sgn(W @ Y))

(4.27)
= vec(PT sgn(W ©Y")),
and this gives
AX = PTsgn(W o Y). (4.28)
Similar to (4.19), the cost function to find the step size o becomes
min J(a|P, X, W,AX) = min |[W ® (Y — aPAX)|;
“ “ (4.29)

=min|[W oY —aW © (PPt sgn(W © Y"))|;.
(0%
Compared to (4.19), the only difference is the presence of W in the cost function.

When we vary P for a fixed X, we can obtain AP and the cost function to
find the optimal step size similarly.

AP =sgn(W oY )X T, (4.30)

min J (/| P, X, W,AP) = min |W © (Y’ — APX)||;

o o

(4.31)

=min ||[W oY — oW o (sgn(W o Y)XTX)|.

a/

The step sizes in (4.29) and (4.31) can also be solved by the weighted median

algorithm.

4.1.2 [1-ARGp as a dual method
[1-ARGp in the presence of outliers

In this section, we propose a second novel method to find a proper descending
direction without the gradient approximation of AX. Since it is difficult to guar-
antee that [1-ARG 4 converges to a local minimum, we propose the second novel
method with a convergence guarantee. We refer to the algorithm as a l;-norm-

based alternating rectified gradient method using the dual problem, [1-ARGp. As
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mentioned earlier, the problem to find the gradient of X for a fixed P in low-rank

matrix approximation is formulated as

min ||Y' — PAX|;
PX

’ (4.32)
st. ||[PAX|)% =€
We reformulate (4.32) to an unconstrained problem as
. 1
min - f(X,AX) £ ||V’ — PAX||1 + %IIPAXII%, (4.33)

where 1 > 0 is a weight parameter. Here, we assume that P is orthonormalized
using the QR decomposition, i.e., [|[PAX||% = [|AX][%.
We can obtain the Lagrangian of (4.33) by substituting ||Y' — PAX||; to Z as
T 1 2
LIAX, A M)=1"71+ ?|\AX||F
il (4.34)
+tr(AT(Y — PAX — Z)) + tr(MT(-Y + PAX - Z)),
where 1 € R™ and A, M < 0 are Lagrange multipliers. By taking a derivative of
(4.34) and solving for Z and AX at a stationary point, we can obtain 117 — A —
M =0 and AX = nPT(A - M) = nPTV, respectively, where V 2 A— M and
—1 < ;; <1 for all elements of V. Therefore, (4.34) can be reformulated as
1 ~
o IAX[[7 + tr((V)T (Y = PAX),
Ul (4.35)
s.t. —1 S fﬁij S 1.
Hence, the dual problem of (4.33) is constructed by using the corresponding
primal solution AX = 77PT17 and 77\7 =V as
max  gy(V) 2 L (VTY') - 1| PTV|2

(4.36)
st. —n<wy <.
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We use the proximal gradient technique [81] to solve this problem. We convert

the sign of (4.36) and reformulate it as an unconstrained problem

. 1 1
mn tr(VIY') + %HPTVH% + I,(V), (4.37)

where I,,(V') is the indicator function for each element of matrix V'

0 -—n<wv;<n,
(i) = (438)

oo else.
Denoting U as the V' in the previous step, the proximal approximation [81] of

(4.37) is given as

1
Etr((V ~U)I(-Y'+ PPTU)) + ||V - U|%

=
, , 21 (4.39)

+ %IIPTUH% - gtr(UTY’) + 1 (V),
where L is the Lipschitz constant of (4.37) and is 1 in this case because P is

orthogonal.

The above equation can be simplified as
1
%HV ~U —Y'+ PPTU||% + I,(V) + constant, (4.40)

and this gives the following result

n V'>n,
V=9V <V <y, (4.41)
-n V' <-n,
where
V' =Y'+U - PP'U. (4.42)

Since this iterative process itself can take a non-ignorable amount of time, we

perform the iteration just enough to find a good descending direction, rather
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than calculating the exact optimal solution. We update the solution V' and cor-
responding primal solution AX = PTV until the ratio between the difference of
the previous and current primal cost values and the difference of the previous

primal and current dual cost values is no less than a positive scalar 0 < 8 < 1 as

S (X, AX) — [ (X, AXjy1)
fn(X, AXy) — gn(Vk+1)

> 8. (4.43)

Let AX* = argminax f,(X, AX), then we obtain the following relation

fn(X,0) — fn(Xa AX) > B(fn(Xa 0) — gn(V))

> 6(fﬂ<X70) - fn(X7 AX*))

(4.44)

Note that during the proximal optimization, g,(Vi+1) is always not larger than
(X, AXj41). After finding a solution that satisfies (4.43), we apply the weighted
median method as an exact line-search? to find the optimal step size of the gra-
dient. The overall procedure is described in Algorithm 3. In the algorithm, 7 is
decreased during the iteration and is bounded by 0 < min < 7 < Nax < 00
where Mmin and Nmax are predefined constants. P and X are rectified by the QR
decomposition at line 7 and 11 in the algorithm, respectively. We find the gradient
of P or X by Algorithm 4.

The main difference between the two proposed methods is that we can for-
mally guarantee that I;-ARGp converges to a subspace-wise local minimum (see
Section 4.1.2), whereas a local minimum is not guaranteed for [1-ARG 4 due to
the approximation of the [y cost function. Although both algorithms may reach

similar cost values, they can find different solutions as shown in Section 4.1.3.

2Here, we assume that an exact line-search is performed in order to simplify the proof in the

below.
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Algorithm 3 [;-norm-based matrix approximation using the exact alternating

rectified gradient method (I1-ARGp)

1:

2:

3:

10:

11:

12:

13:

14:

Input: Y € R™ " low-rank 7, 8 = 1074, 9y = 1076
Output: P € R™*", X € R™*"
Initialize P to a zero matrix and X randomly, n = oo
Y'Y
while residual Y’ does not converge do
# P update (Fix X, update P)
XTR « XT P« PR"
APT « findGradient(X'", P YT VT 1, Nuin, B)
(Y', P’) + Update(Y’, P', X, AP)
# X update (Fix P, update X)
PR+ P', X + RX'
AX + findGradient(P, X, YY", V,n, 8)
(YT XT) + Update(Y'T, XT, PT AXT)

end while
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Algorithm 4 Function: findGradient (K, L,Y, V.1, min, 3)

1:

2:

3:

10:

11:

12:

13:

14

Input: K, L, Y, and V: matrices; 1, 9min, B: scalars
Output: AS: a matrix
Description:

1 < max(min(n, ||Y||1/mn), Nmin), k=1, Vo =0

fo(KAKo) = f(K,AKy) = [[Y]|1, gn(V1) =0

while 2GR < 6 do
1 ¢ max(F, Nmin)
Vi <Y + Vi1 — Vi1 LTL and by (4.41)
AKy + V. LT
Fo(K, AK 1) = [|Y = AKRL|| + o || AKE| [
gn(Vies1) 4= tr(YTVR) — L || AT
k+—k+1

end while

: AS — AKp_4
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Proof of convergence

Regardless of the initial point, the proposed method, [;-ARGp, which is a de-
scent algorithm, converges to a subspace-wise local minimum according to the
Zangwill’s global convergence theorem [82, 83]. Subspace-wise local minimum is

defined as follows:

Definition 2 (Subspace-wise local minimum). Let the cost function of l;-ARGp
be J(P,X) 2 ||Y — PX||1. If there is no AX or AP such that ||Y — P(X +
AX)|h < ||Y = PX||1 or ||Y = (P+ AP)X||1 < ||Y — PX]||1, then (P,X) is a

subspace-wise local minimum.

A local minimum is a subspace-wise local minimum. If a cost function is smooth,
a subspace-wise local minimum is also a local minimum [83]. However, the cost
function (4.1) is not smooth, and consequently, a subspace-wise local minimum
may not be a local minimum. Nonetheless, it is worth finding a subspace-wise
local minimum because a subspace-wise local minimum is a necessary condition
to be a local minimum. It also minimizes the cost function as well as the other
state-of-the-art methods in the experiments of Section 4.1.3.

Let us denote A : (P, X) — (P, X) as a point-to-set mapping [82, 83] that de-
scribes the behavior of [1-ARGp, where P, and X are the domains of P and X,
respectively. According to the Zangwill’s theorem, a descent algorithm is globally
convergent under the following three conditions (converges to a subspace-wise

local minimum irrespective of the initial point).

1. All (Pg, X}) should be contained in a compact set.

2. For cost function J(P,X) = ||Y — PX]||1,

(a) if (P, X) is not in the solution set consisting of subspace-wise local
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minimums, J(P', X') < J(P, X) for all (P',X’) € A(P,X).
(b) if (P, X) is in the solution set, J(P’, X’) < J(P, X) for all (P, X’) €
A(P, X).

3. Mapping A is closed at points that are not subspace-wise local minimum.

Theorem 1. [1-ARGp converges to a subspace-wise local minimum irrespective

of the initial point under the three conditions.
Proof. See Appendix D O

The local convergence rate is hard to find, but we show empirically that [;-
ARGp gives fast convergence in Section 4.1.3. Table 4.1 shows the comparison
between the proposed methods with and without applying rectification (QR de-
composition) for three reconstruction problems with 5% outliers over 10 inde-
pendent runs. As shown in the table, the methods using rectification take much
shorter execution time and need less number of iterations, and give lower recon-

struction error.

Weighted method of [;-ARGp with missing data

The proposed method, [1-ARGp, can be applied to real application problems
in the presence of missing data. We solve the problem of low-rank matrix ap-
proximation using the [;-norm by extending the proposed method as a weighted
low-rank approximation problem.

The problem can be formulated as
1
||W®(Y/_PAX)H1+%||PAX||%H (4.45)

where 7 is a small positive constant. We assume that P is orthonormalized by

the QR decomposition.
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The dual problem of (4.45) is constructed in the similar fashion as in the

previous section

1 1
max (W0 V)'Y) = —||[PT(W o V)]l

Voo n (4.46)
st. —n<Vi<n,

and this gives the following unconstrained minimization problem as a proximal
mapping operator

1 1
min %HPT(W oV)|IF - micl((ge VTY') + L, (V), (4.47)

where I,,(V) is an indicator function. Now, we consider the following approxima-

tion of (4.47):

1

~tr(V-U)'[-WoY +Woe (PPT(WoU)))
! L (4.48)
""%HV —U|[% + I,,(V) + constant,

where L is the Lipshitz constant (L = 1). Then this can be reformulated as
1
%Hv ~U-WoY' +Wo (PPT(WoU)|% + 1,(V) + constant.  (4.49)

Therefore, we obtain the result in the same form as (4.41) with V! =U + Y’ +
W e (PPTU).

4.1.3 Experimental results

We evaluated the performance of the proposed methods (I;-ARG 4 and [1-ARGp)
by experimenting with various data. We compared the proposed algorithms to
other methods (IALM and EALM [43], ALADM [11], {;-AQP [10], Regl;-ALM
[49]) in terms of the reconstruction error and execution time. The initial pro-
jection and coefficient matrices were set to zero and Gaussian random numbers,

respectively, for the proposed methods and I1-AQP. All the elements of the weight
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matrix for Regli-ALM was set to 1 for non-weighted factorization problems. In
addition, the weighted median method used in the proposed methods was imple-
mented as described in Section 4.1.1. We set p = 10~ in the stopping condition
and v as the same as p for all of the proposed methods. The trace-norm reg-
ularizer of Regli-ALM was set to 20, which gave the best performance in the
experiments, if not stated otherwise.

We also performed experiments with missing data using the weighted version of
the proposed methods (WI;-ARG 4 and Wi;-ARGp) in Section 4.1.1 and Section
4.1.3, and the performances were compared to those of other methods that can
handle missing data (ALADM-MC which is a weighted version of ALADM [11],
Regli-ALM [49]). We did not evaluate the methods [;-AQP [10] for large-scale
data because of its heavy computational complexity and memory requirement.
We set the parameters of ALADM and ALADM-MC as described in [11], and
all of the parameters of the proposed methods were the same as those of non-
weighted versions. To show the usefulness of the proposed algorithm, we also
applied the proposed methods to the non-rigid structure from motion problem
[49]. All experiments were conducted using MATLAB on a computer with 8GB
RAM and a 3.4GHz quad-core CPU.

Synthetic data with outliers

Firstly, we applied the proposed methods to synthetic examples with outliers.
We generated an (m x r) matrix B and an (r X n) matrix C' whose elements
were uniformly distributed in the range [—1,1]. We also generated an (m x n)
noise matrix N whose elements had the Gaussian distribution with zero mean
and variance of 0.01. Based on Yy = BC + N, we constructed the observation

matrix Y by replacing 25 percent of the elements from the 25 percent randomly
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selected samples in Y{ by outliers that were uniformly distributed in the range
[—10,10]. We generated five sets from small-size to large-scale examples (500 x
500 ~ 10,000 x 10,000). We set the rank of each example matrix to min(m,n) x
0.08. We compared the proposed methods to IALM, EALM, ALADM, Regl;-
ALM, and /1-AQP in terms of the reconstruction error and execution time. We
used the global parameter for IALM and EALM as in [43].

In the experiment, the average reconstruction error E;(r) was calculated as
1 or low—rank
Er(r) = _|IY™9 =Y 1, (4.50)

where n is the number of samples, Y9 is the ground truth, Y!¥=7e* js the
matrix approximated by an algorithm.

The average reconstruction errors and execution times are shown in Table 4.2.
We did not evaluate the methods [;-AQP, EALM, and Regli-ALM for large-scale
data because of their heavy computational load. Unlike the fixed-rank approx-
imation methods that give the matrix whose rank is approximately 8% of the
original matrix dimension, JALM and EALM give the matrix whose rank is ap-
proximately 55% of the original matrix dimension on average in this section. In
the table, [1-ARGp gives the best result in terms of the reconstruction error and
execution time. Although ALADM takes a shorter execution time compared to
the proposed methods, it gives poor reconstruction performance. The proposed
methods are superior to the other methods especially for large-scale problems
because it uses the weighted median algorithm to handle large-scale problems
efficiently. The computational complexities of the proposed methods, ALADM,
and [1-AQP are O(rmn) for each iteration. However, [1-AQP have to perform a
whole convex optimization in each iteration, which is very inefficient in terms of

processing time.

The computational complexity is O(min(m, n) max(m, n)?) for IALM and EALM,
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Table 4.3: Reconstruction error with respect to various r for a 1,000 x 1,000

matrix with rank 80

Algorithm r=70 | r=75 | r=80 | r=85 | r=90

11-ARG 4 202.74 | 141.64 | 14.88 | 15.08 | 19.68
l1-ARGp 188.28 | 126.03 | 6.16 | 23.19 | 45.03
ALADM 199.76 | 144.13 | 17.16 | 30.61 | 46.63
Regli-ALM || 193.06 | 129.19 | 5.01 | 12.39 | 21.39

and O(rmax(m,n)?) for Regl;-ALM, for each iteration. IALM, EALM, and
Regli-ALM perform SVD in each iteration, and hence, need much computation
time for a large-scale matrix. Figure 4.1 shows the cost function of the proposed
methods at each iteration for three examples (500 x 500, 1000 x 1000, 2000 x
2000). As shown in the figure, the cost function of I;-ARGp decreases much faster
than that of [{-ARG 4, and both methods converge to nearly the same value. Fig-
ure 4.2 shows the reconstruction error with respect to the execution time for an
example (1,000 x 1,000). In the figure, the proposed method l1-ARGp outper-
forms other methods. Table 4.3 shows the reconstruction error with respect to
various r for a 1,000 x 1,000 matrix with rank 80. As shown in the table, [1-
ARGp gives the best results when r is lower than or equal to the exact rank,
whereas [1-ARG 4 shows good results when r is larger than the exact rank. It can
be explained as follows. Since [1-ARGp tries to find a solution that minimizes
the cost function for a given r, the performance can be a little bit poorer when
r is not correct. {1-ARG 4 finds an approximate solution to the original problem,
hence, its result may be worse than [1-ARGp. But [1-ARG 4 is less sensitive to

the rank uncertainty.
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Figure 4.1: Normalized cost function of the proposed algorithms for three exam-

ples (500 x 500, 1000 x 1000, 2000 x 2000).
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n = 1,000, r = 80).
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Face reconstruction

We applied various methods to face reconstruction problems and compared their
performances. In the experiments, we used 830 images having five different il-
luminations for 166 people from the Multi-PIE face database [84], which were
resized to 100x120 pixels. The intensity of each pixel was normalized to have a
value in the range of [0, 1]. Each 2-D image was converted to a 12,000-dimensional
vector. We only considered an occlusion case for the experiments of the images
and measured the average reconstruction error for occluded images. To generate
occlusions, 50 percent of the images were randomly selected, and each of selected
images was occluded by a randomly located rectangle, whose size varied in the
range of 20x20 pixels to 60x60 pixels, with each pixel of the rectangle having a
value randomly selected from [0, 1]. We could not apply [1-AQP and EALM to
these problems because they required too much computation time (more than an

hour).

Figure 4.3 shows some examples of face images with occlusions and their re-
constructed faces with 100 projection vectors. In the figure, we can see that the
occlusion blocks have almost disappeared for most of the cases. IALM and EALM
tend to produce blurry images, and ALADM gives the poorest results among the
methods. Table 4.4 shows the average reconstruction errors F4 for the face im-
ages. In the table, we can see that our methods show competitive performance
in both of the reconstruction error and processing time compared to the other
methods. TALM and EALM give a little bit smaller errors than our methods,
because the ranks of their reconstructed matrices are higher (around 200) than
the others (100). Except ALADM, which gives the poorest reconstruction error,

all the compared methods are about 4 to 350 times slower than our methods.
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Criginal Ccclusion Regl 1-ALM

Figure 4.3: Face images with occlusions and their reconstructed faces.

Experiments with missing data

We performed experiments with simple examples in the presence of missing data
using the proposed methods Wi1-ARG 4 and Wi;-ARGp compared with the other
state-of-the-art methods, ALADM-MC [11] and Regl;-ALM [49], which can han-
dle missing data. We generated five examples as in the previous synthetic prob-
lem. Here, we did not perform the experiment for a matrix of 10,000 x 10,000
because of memory limitation. To construct the weight matrix, we randomly se-
lected 20 percent of the elements of matrix W for each example and set them to

zero (missing), while the other elements were set to one.

Table 4.5 shows the average result for the five examples with outlier and missing
data. In the table, Wi;-ARGp gives the best performance and needs much shorter
execution time than the other methods except ALADM-MC. Although ALADM-
MC gives the shortest execution time, its performance is much worse than the
proposed methods. Because of the execution time and the performance, Regl-

ALM is impractical to use for large-scale data.
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Table 4.4: Average performance for face data with occlusions

m=12,000, n=830, r=100
Algorithm || Error (E7) | Time (sec)
[1-ARG 4 276.957 71.164
11-ARGp 279.442 29.760
TALM 261.895 275.426
EALM 257.392 10543.432
Regli-ALM 287.749 478.168
ALADM 314.298 9.902

We also performed a face image reconstruction experiment using the proposed
methods and the other methods in the presence of occlusions and missing data.
Occlusion blocks were generated as described before in 50 percent randomly se-
lected images. To generate missing blocks, 50 percent of images were randomly
selected again, and a randomly located square block, whose side length varied
from 30 to 60 pixels, was considered as missing in each image. The values of the
block elements were set to zero. The number of projection vectors was set to 100.
The average reconstruction error Fq and execution time for various methods are
shown in Table 4.6. In the table, WIl;-ARGp shows good performance in both
of the reconstruction error and execution time compared to the other methods.
Although Regli-ALM gives the comparable reconstruction error to the proposed
methods, its computation time is longer than the proposed methods. Figure 4.4
shows the reconstructed face images in the presence of occlusions and missing
data. We do not see much difference between the reconstructed images of the

proposed methods and Regli-ALM in this figure.
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Table 4.6: Average performance for face data with occlusions and missing blocks

Original

Figure 4.4: Face images with occlusions and missing blocks, and their recon-

structed faces.

m=12,000, n=830, r=100
Algorithm Error (Ep) | Time (sec)
WIi1-ARG»4 305.893 262.976
WIii-ARGp 319.462 82.671
ALADM-MC 387.628 11.872
Regl;-ALM 327.556 538.014
Decluston WL1-ARG-A  WLI-ARG-D  ALADM-MC

and missing

84
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Non-rigid motion estimation

Non-rigid motion estimation [13] with outliers and missing data from image se-
quences can be considered as a factorization problem. In this problem, /;-norm-
based factorization can be applied to restore 2D tracks contaminated by outliers
and missing data. In this experiment, we used the well-known giraffe sequence?
consisting of 166 tracked points and 120 frames. The data size is 240 x 166 and
30.24% of entries are missing. In this section, we also present another algorithm,
WI1-ARG 44 p, which is Wi;-ARGp using the result of WIl1-ARG 4 as an initial
value. The goal of using Wi;-ARG 4, p is to verify the superiority of Wi1-ARGp
compared to WI1-ARG 4 by showing that WIl1-ARGp can improve the quality of

the solution beyond what is possible by Wi;-ARG 4.

To demonstrate the robustness of the proposed method, we replaced 10 percent
of the points in a frame by outliers in the range of [-1,000, 2,000], whereas the
data points are in the range of [127, 523]. In another experiment, we constructed
the data by replacing 20 percent of the points in a frame by outliers. The number
of shape bases was set to 2, which gave a matrix of rank 6 = 2 x 3 (for z, v,
and z coordinates). We compared the proposed weighted version to ALADM-MC
and Regl;-ALM. We set the stopping condition p to 107¢ and 3 in (4.43) to
10!, The result of reconstruction error* for the observation data can be seen
in Table 4.7. As shown in the table, Wi;-ARG /4 gives better performance than
WIi1-ARGp but poor than Wi;-ARG 44 p in this problem. We suspect that Wi;-
ARG p is more sensitive to the initial value and can be trapped in a local minimum
for a complex problem. Thus, WIl;-ARG 4 can sometimes find a better solution

than Wi;-ARGp. But when we apply WIl1-ARGp with a good initial value, such

3 Available at http://www.robots.ox.ac.uk/~abm/

“Reconstruction error is calculated as stated at http://www.robots.ox.ac.uk/~abm/

85



Chapter 4. Robust Fixed Low-Rank Representations

Table 4.7: Reconstruction results for giraffe sequence in the presence of additional

outliers

10% outliers 20% outliers

Algorithm Error | Time (sec) | Error | Time (sec)

WIii-ARG 4 2.910 3.623 3.006 1.589
WIi-ARGp 3.224 1.217 3.950 0.895
WI-ARG a4 p || 2.847 4.051 2.979 1.754
Regli-ALM 3.792 0.810 3.939 0.820
ALADM-MC || 9.835 0.017 21.908 0.013

as a solution found by WI;-ARG4, we can improve the quality of the solution
further. It suggests that the combination Wil1-ARG 44 p can be a good approach
for many complex problems. Although ALADM-MC takes shorter execution time
than the other methods, it gives poor reconstruction results. Regli-ALM gives
the competitive results compared to Wl1-ARG 4 w.r.t. to the error and execution

time in this experiment.

We also performed the non-rigid motion estimation problem using the shark
sequence [13] which consists of 91 tracked points for each non-rigid shark shape
in 240 frames. In this data, we examine how robust the proposed methods are
for various missing ratios in the presence of outliers. We replaced 10 percent of
the points in each frame by outliers in the range of [—1000, 1000], whereas the
data points were located in the range of [—105,105]. We set from 10 percent
to 70 percent of tracked points as missing in each frame. The number of shape
basis for each coordinate was set to two, thus it can be formulated as a rank-6

approximation problem.
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Table 4.8: Average error and time (sec) for the Shark sequence.

missing 10% | missing 30% | missing 50% | missing 70%
Algorithm Error | Time | Error | Tim | Error | Time | Error | Time
Wi-ARG 4 0.069 | 0.562 | 0.106 | 0.819 | 0.460 | 0.660 | 1.767 | 1.590
WIi;-ARGp 0.266 | 0.078 | 0.366 | 0.217 | 0.929 | 0.233 | 3.101 | 0.895
WIi-ARG 44 p || 0.063 | 0.615 | 0.087 | 0.895 | 0.443 | 0.744 | 1.676 | 1.889
Regl-ALM 0.032 | 0.805 | 0.039 | 0.815 | 2.739 | 0.872 | 24.806 | 0.364
ALADM-MC || 0.402 | 0.025 | 0.942 | 0.023 | 7.449 | 0.206 | 10.015 | 0.029

Missing 10%

Missing 30%

Missing 50%

Missing 70%

WLl—ARGA

-100 0

100

100 -100

0 100

100 0

WLl—ARGD

-100 0

100

100 -100

0 100

100 0

RegL1-ALM

-100 0

100

100 -100

0 100

100 0

ALADM-MC

-100 0

100 -100

0

100

-100

0 100

-100 0

100

Figure 4.5: Non-rigid shape estimation from the Shark image sequences.
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The average performance for the various methods are shown in Table 4.8. Sim-
ilar to Table 4.7, Wl1-ARG 4 gives better reconstruction results than Wi;-ARGp
for this problem but performs worse than Wi;-ARG 44 p due to the approximated
nature of Wi;-ARG 4. Although Regli-ALM gives excellent reconstruction error
when 10% and 30% of data were missing, but its performance gets worse as the
missing data increases. The reconstruction results for a few selected frames are

shown in Figure 4.5.

4.2 Smooth Regularized Fixed-Rank Representation

5Since the previous algorithms are based on pure /;-norm error term without any
regularization term, they may be vulnerable to an overfitting issue. Moreover,
conventional gradient based methods do not give satisfying results compared to
recent advanced in low-rank optimization using augmented Lagrangian frame-
work. From the motivation, we present a new robust orthogonal matrix approxi-
mation method using fixed-rank factorization based on the /1-norm for low-rank
subspace learning problems in the presence of various corruptions. We intro-
duce an efficient Frobenius-norm regularizer to prevent the overfitting problem
which can arise from an alternative minimization algorithm and orthogonality
constraint to reduce the solution space for faster convergence. The proposed reg-
ularized optimization problem is constructed under the augmented Lagrangian
framework and solved using an alternating direction approach. We also present
a rank estimation strategy for the proposed method without increasing the com-
putational complexity to overcome the disadvantage of fixed-rank factorization

and the parameterization issue when the exact rank of a problem is unknown.

5This section is based on the paper appeared in Neurocomputing: “Robust Orthogonal Matrix

Factorization for Efficient Subspace Learning” [85].
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4.2.1 Robust orthogonal matrix factorization (ROMF)
Problem formulation

In this section, we consider the weighted low-rank matrix approximation problem

based on the /;-norm to consider missing entries simultaneously as follows:
min [|[W o (Y — PX)||1, (4.51)
PX

where || - ||1 denotes the entry-wise l1-norm, ie., [|S|[1 = >, ;5| for a matrix
S, which is different from the induced [;-norm. But, when there are no missing
entries, we can also solve the problem by setting the values of all elements of W to
one. Generally, (4.51) is a nonconvex and nonsmooth problem which is difficult to
solve. To solve the problem in practice, a common strategy is to use an alternating
minimization approach which solves for one variable while other variables are
fixed [10]. In addition, it is reasonable to enforce an orthogonality constraint to
the basis matrix, i.e., enforcing P to be a column orthogonal matrix, for the
robustness and faster convergence by shrinking the solution space of P. Notice
that there can be many pairs of P and X which generate the same multiplication

result of PX, i.e.,

P'X'=(PH)(H'X) = PX, (4.52)

for some nonsingular matrix H € R"*". Hence, the orthogonality constraint finds
P and X, such that HTH = I, and this leads to a smaller solution space to work
with. We also consider a regularization term for P and X to prevent overfitting.

Note that, without these regularization terms, the problem (4.51) becomes pure

/1 minimization problem and it can be solved by algorithms, such as [11, 21].

SNote that regularization constrains a learning algorithm to select a simpler hypothesis h

from a hypothesis set H in order to control overfitting [86].
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We can omit the regularization term for P because we enforce an orthogonal-
ity constraint over P, which has the smoothness effect as well. From the above

analysis, we reformulate the low-rank matrix approximation problems as follows:
. A2 T
win|[W o (v = PX)l + SIX|F, se. PTP=1,, (4.53)

where A is a weighting parameter and I, is an r X r identity matrix.

If the nuclear norm || X is used instead of || X||F in (4.53), the problem be-
comes Regli-ALM proposed in [49], which finds a solution by factorization in
conjunction with the nuclear-norm minimization to improve convergence. How-
ever, it requires a longer computation time than the proposed method since it
keeps trying to find a solution with a smaller nuclear-norm under the fixed-rank
constraint by performing two singular value decomposition operations at each
iteration. There is another approach using a l;-norm regularized nuclear-norm
minimization problem [50] by applying the weight factor A to the other term.
Note that both methods can find a suboptimal solution since the optimization
based on the nuclear-norm may find a solution with a rank lower than the desired
rank of the problem (see Section 4.2.3 for examples). If (4.53) has another reg-
ularization term for P, namely || P||r, instead of the orthogonality constraint, it
becomes a nuclear-norm regularized optimization problem due to the alternative
form of the nuclear-norm [87, 22], ||S||« = ming—px 3(| P||% + || X||%), when the
rank of S is smaller than min(m,n).

Due to the difficulty of solving the problem (4.53) directly, we introduce an

auxiliary variable D and solve the following problem instead.

) A
Prr)lérjleW@(Y—D)Hl +§HX”%
X, (4.54)

st. P’P=1, D= PX.

To solve (4.54), we utilize the augmented Lagrangian framework which converts
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the constrained optimization problem into the following unconstrained optimiza-
tion problem:

A 2

LIP,X, DA B) = |Wo Y = D)l + S [1X[F

5 (4.55)

+tr(AT(D — PX)) + SIID - PX|%,

such that PTP = I,, where A € R™ " is a Lagrange multiplier and 8 > 0

is a small penalty parameter. We apply the alternating minimization approach

iteratively to minimize the augmented Lagrangian as follows:

P = argmin L(P,X,D,A,B3) st. PTP=1,

X:argmin E(P,Xa-DaA?/B)
1 (4.56)
D= arngin L(P,X,D,A,p)

A=A+B3(D-PX).

Algorithm

To solve for P, we fix the other variables and solve the following optimization

problem:
P =arg m}in L(P,X,D,A\,p)
= arg min tr(AT(D — PX)) + §||D ~- PX||% (4.57)
:argmfi)n gHD — PX +87'A%, st. PTP=1,.
This optimization problem is the well-known orthogonal Procrustes problem [88].
The orthogonal Procrustes problem finds an orthogonal matrix 2 which mini-
mizes ||A — BQ||p. A solution to the problem can be found by singular value de-

composition (SVD) over BT A, i.e., if USVT = SVD(BT A), then Q = UVT [88].

Therefore, we can solve for orthogonal matrix P using SVD over (D + f71A)XT.
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Hence, if

UsvT =SvD((D + 1A XT), (4.58)

then the solution to (4.57) becomes P = UVT. Note that SVD is used for an
m X r matrix in (4.58), whereas RPCA performs a single SVD operation on an
m x n matrix and Regli-ALM [49] performs two SVD operations on m x r and
r X n matrices at each iteration. The computational complexity is O(m?r) for the
proposed method, O(min(m,n) max(m,n)?) for RPCA, and O(m?r + n?r) for
Regli-ALM at each iteration. Hence, RPCA and Regli-ALM require more com-
putational efforts than the proposed method. The computational complexity of
pure [; minimization methods such as ALADM [11] and [1-ARG [21], which do not
have a regularization term, is O(mnr) from least squares operations performed at
each iteration. When m > r, pure {; minimization methods are faster than meth-
ods using regularization. However, methods using regularization usually perform
better than pure [; minimization methods in terms of the reconstruction error as

demonstrated in Section 4.2.3.

For X, we solve the following optimization problem:

X =argmin L(P,X,D,A,p)
X \ 5 (4.59)
= argmin §||X||% +tr(AT(D — PX)) + 511D - PX||%.

The problem (4.59) is a least-square problem and, thanks to the orthogonality

property of P, we obtain the following simple solution:

_ U or
X =55 P (A4 5D). (4.60)

For fixed P, X, and A, we have the following optimization problem for finding
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_ A
D= argmll)nHWQ (Y = D)[l + EHXH%
+tr(AT(D — PX)) + §||D - PX||% (4.61)
= axgmin W © (¥ — D)l + 511D~ PX + 574l

and the solution can be computed using the shrinkage (soft-thresholding) operator
S(-,-) [43, 35, 49]:
Al
WoOD-WolY-S|Y-PX+—,—

g5 (4.62)

_ _ A
W®D<—W®<PX—B>,

where S(x,7) = sgn(x) max(|z| — 7,0) for a variable z and a threshold 7 and
W € R™™ is a complementary matrix of W whose element w;; is 0 if y;; is
known, and is 1 if y;; is unknown.

Finally, we update the Lagrange multiplier A as follows:
A=A+ p3(D - PX). (4.63)

Based on the previous analysis, we can derive a robust orthogonal matrix fac-
torization (ROMF) algorithm and it is summarized in Algorithm 5. Note that
we can slightly change the algorithm by inserting an inner loop similar to RPCA
methods [43], such that we solve for P, X, and D iteratively until they converge in
the inner loop, to find a solution elaborately. In the algorithm, we have assumed
a normalized observation matrix. Hence, the output matrices P and X can be
obtained by rescaling them using the scaling factor. We have found empirically
that the algorithm is not sensitive to the choice of initial values. For all results
shown in Section 4.2.3, the initial values are all set to zero matrices.

For a real-world application whose elements have nonnegative values, we en-

93



Chapter 4. Robust Fixed Low-Rank Representations

Algorithm 5 Robust orthogonal matrix factorization (ROMF)

1: Input: Y e R™*" r p, 8= Hf%’ Bmax = 10'°, and A = 1073

2: Output: P € R™*" X € R"™*"

3: Initialization: P, X, D, A are all zeros

4: Normalization: Y < Y/||Y |

5: while not converged do

6:  Update P using (4.58)

7. Update X using (4.60)

8:  Update D using (4.62)

9:  Update the Lagrange multiplier A using (4.63)
10: B = min(pf, Bmax)

11:  Check the convergence condition (4.65)

12: end while

13: Re-scale P and X

force a lower bound for matrix D at each iteration as follows:

D;j; =0 if D;; <0,
(4.64)
Dij = Dij if Dij > 0.
Based on this technique, we obtain better performance empirically when approx-

imating a nonnegative matrix.

In our algorithm, we set the stopping criterion as follows:

HD(t) _p(t)X(t)H1
Y]]

<0, (4.65)

"Note that the proposed method is not exactly the same as the nonnegative matrix factor-
ization (NMF) methods since NMF enforces the nonnegative constraint for P and X instead of
D. But, we borrow the concept from NMF, such that the proposed method can be applied to

find a nonnegative low-rank representation.
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where t is the number of iterations and 6 is a small positive number. Since it is
enough for the algorithm to achieve a nearly stationary point when the difference
between the terminating cost of adjacent iterations becomes small, we set the
stopping condition as # = 107°. Here, we compute the whole elements of D
including elements corresponding to the unknown entries.

To the best of our knowledge, there is no solid convergence proof for the
nonconvex problem (4.53). Shen et al. [11] showed that a nonconvex problem
based on a bilinear multiplication under the l;-norm can achieve a local op-
timality using the KKT optimality conditions. But, it is difficult to show the
convergence of the proposed algorithm due to its nonconvex cost function and
the orthogonality constraint. Although it is difficult to guarantee the conver-
gence to a local minimum, an empirical evidence suggests that the proposed
algorithm has a strong convergence behavior. Figure 4.6 shows cost values of
the proposed method at each iteration for three examples (500 x 500, 1000 x
1000, and 2000 x 2000) described in Section 4.2.3. We have scaled cost values as
(W (Y =PX)|[1+35||X]|2)/[[WoY||1 in order to display three cases under the
same scale. As shown in the figure, the cost value of proposed method (ROMF)

decreases fast and converges to a stationary point in a small number of iterations.

4.2.2 Rank estimation for ROMF (ROMF-RE)

Although low-rank matrix approximation based on the fixed-rank factorization
is suitable for problems with known ranks, such as structure from motion prob-
lems, there are problems for which the target rank is not available. A good rank
estimation is essential for low-rank matrix factorization for problems whose rank
is unknown. But, there are few methods considering this issue. Cabral et al. [22]

suggested a rank continuation strategy, but it is time consuming task because it
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—A— ROMF (m=500)
—=— ROMF (m=1000)
—@— ROMF (m=2000)

Cost value

1 2 3 4 5 6
Number of iterations

Figure 4.6: Scaled cost values at each iteration of the proposed algorithm for

three examples (500 x 500, 1000 x 1000, 2000 x 2000).

performs an additional SVD operation at each iteration, which results in much
higher complexity than its fixed-rank optimization algorithm. In this section, we
describe a rank estimation extension of the proposed method to handle prob-
lems with unknown ranks from the algorithm described in Section 4.2.3 without
additional increase in its computational complexity.

Suppose that 7y is an initial rank which is relatively large compared with the
exact rank r* (rg > r*) . From the initial rank 7y, we solve the orthogonal
Procrustes problem using singular value decomposition (SVD) in the proposed
algorithm and check the singular values of diagonal matrix 3. Note that we do not
need additional methods or time consuming computations to estimate the rank
information in the algorithm. We can detect the largest drop between adjacent
singular values from SVD and this gives a rank estimate such that the largest

difference is larger than a minimum threshold 6,,;, as follows:

diff(SVS) = |O‘i — Uj| Z emm, (4.66)
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where ¢ and j are the adjacent indexes satisfying the largest drop. It should be

clear that if the algorithm converges to a well-conditioned low-rank solution, then

SVD will eventually give a correct answer provided that a proper thresholding

value is used [11]. The overall procedure of the rank estimation based robust

orthogonal matrix factorization algorithm (ROMF-RE) is described as Algorithm

6.

Algorithm 6 ROMF-RE

1:

2:

3:

2

I~

10:

11:

12:

13:

14:

15:

16:

Input: Y € R™*" p, 8 = ”fﬁ, Bmax, and A = 1073
Output: P € R™*™ | X € R""™*" with output rank r*
Initialization: P, X, D, A are all zeros; initial rank rg
Normalization: Y < Y/||Y ||
while not converged do
Update P, X, D using (4.58), (4.60), (4.62), respectively
if # of iterations > 6. then
Find the most reduced point between singular values satisfying diff(SVs)
> Omin
Reduced rank: r’
Update P = Py.,v and X = Xy
end if
Update the Lagrange multiplier A using (4.63)
8 = min(pB, fma)
Check the convergence condition (4.65)
end while

Re-scale P and X with final rank r*

We used the threshold 6,,;, as 10% of the next singular value, i.e., %aj, satisfy-

ing the largest drop in our experiments. While the RPCA methods find the rank
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using the soft-thresholding [43], the proposed rank estimation technique finds the
rank using a simple thresholding based on singular values obtained from SVD.
Since we estimate the rank after a small number of iterations 6., the rank estima-
tion step does not increase the total running time of the algorithm significantly.
We verify that this simple technique is sufficient to obtain exact solutions in

Section 4.2.3 and compare our approach to RPCA.

4.2.3 Experimental results

We evaluated the performance of the proposed method, ROMF, by experimenting
with various real-world problems: giraffe [74] and shark [13] sequences for non-
rigid motion estimation, the MovieLens dataset [41] for collaborative filtering
(CF), and Hall [35], PETS2009 [89] , and Wallflower [90] datasets for background
modeling. We compared the proposed algorithm to the state-of-the-art l1-norm
based low-rank matrix approximation methods, ALADMS [11], Regl;-ALM® [49],
Unifying [22], [1-ARG4, and 1;-ARGp [21]. All algorithms listed above can han-
dle missing data and give better performance for practical applications than rank
estimation based methods [43, 35], in terms of the reconstruction error and execu-
tion time [11, 49]. We also compared ROMF-RE to the rank estimation methods,
i.e., IALM, EALM® [43, 35], and ROSL [12] for synthetic and background mod-
eling examples in the presence of outliers. We also compared with /;-ALP [10] for
non-rigid motion estimation problems, APG!! [41] for CF tasks, and nonnegative
matrix factorization (NMF)!2 [91] for background modeling problems.

We set the parameters of the proposed method as p = 1.3 and By = 0.5 for

Shttp://lmafit.blogs.rice.edu/
“https://sites.google.com/site/yinqiangzheng/
Yhttp://perception.csl.illinois.edu/matrix-rank/sample_code.html/
Yhttp://perception.csl.illinois.edu/matrix-rank/sample_code.html/
http://wuw.csie.ntu.edu.tw/~cjlin/nmf/
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synthetic and background modeling problems and p = 1.1 and fy = 2 x 1072 for
non-rigid motion estimation and CF problems. The trace-norm regularizer A of
Regli-ALM [49] was set to 10 with p = 1.05, which gave the best performance
on average in the experiments, unless noted otherwise. The maximum number of
inner loops of Regli-ALM was set to 100 as stated in [49]. We set the parameters
of Unifying [22] to have the best performance according to problems. We set the
parameters of ALADM, [1-ARGy, and [;-ARGp as described in [11] and [21],

respectively, and initial values for [1-ALP are chosen randomly.

Synthetic data

First, we applied the proposed method to synthetic examples with outliers and
missing data, which is a matrix completion problem. We generated an m x r
matrix B and an r X n matrix C whose elements are random samples from
the Gaussian distribution with zero mean and unit variance. We also generated
an m X n noise matrix N using the Gaussian distribution with zero mean and
variance of 0.01. Letting Yy = BC'+ N, we constructed an observation matrix Y by
replacing 20% of randomly selected entries of 20% of randomly selected columns in
Yy by outliers, which were uniformly distributed in the range of [—40, 40]. We also
randomly selected 20% of elements of Y as missing. We generated five test sets:
1,000 x 1,000, 2,000 x 2,000, 5,000 x 5,000, 8,000 x 8,000, and 10,000 x 10, 000.
We set the rank of each test data matrix as r = [min(m,n) x 0.08]. For Regl;-
ALM, we set p = 1.2 for synthetic problems. In the experiment, the average

reconstruction error Egy, is calculated as
1 gt Ir
Egyn = EHM - M"||1, (4.67)

where n is the number of samples, M9 = BC is the ground truth, and M" is

the low-rank matrix approximated by the applied algorithm.
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Table 4.9: Average performance for synthetic problems in the presence of outliers

and missing data.

m=n=1,000 m=n=2,000 m=n=5000 | m=n=8,000 | m=n=10,000
Algorithm | Esyn | Time | Esyn | Time | Esyn | Time | Egyn | Time | Esyn | Time
ROMF 471 | 2619 | 954 | 1228 | 23.98 | 100.78 | 37.88 | 313.78 | 47.54 | 560.05

Unifying 4.75 6.363 9.50 30.31 23.77 | 256.20 37.98 815.89 47.54 1403.56
11-ARG 4 9.70 11.28 | 19.01 44.56 47.41 | 294.76 75.56 919.68 92.76 1592.3
11-ARGp 5.34 3.296 | 10.10 12.50 25.75 | 106.44 | 41.25 290.83 50.46 548.46
Regl1-ALM 7.53 52.04 | 14.66 | 261.79 | 42.75 | 2300.5 | 107.95 | 7869.4 | 193.83 | 13753.9
ALADM 8.80 1.417 | 16.10 7.03 44.62 54.48 66.74 174.05 82.16 303.69

The average reconstruction errors and execution times (in seconds) are shown
in Table 4.9. We could not evaluate [1-ALP for this experiment because of its
heavy execution time. In the table, the proposed method, ROMF, gives the best
performance in terms of reconstruction errors and execution times. Although
ALADM requires a shorter execution time compared to the proposed method, it
performs very poorly in terms of the reconstruction error. The proposed method
is superior to other methods, especially for large-scale problems. [1-ARGp shows
slightly lower performance than the proposed method with respect to both the
reconstruction error and execution time. Unifying gives similar reconstruction
results to the proposed method, but it takes more computation time than that of
the proposed method. In the experiment, Regli-ALM takes about 34 times longer
on average than the proposed method and it gives poor performance for the case
with size 10,000 x 10,000, hence, it is not suitable for a large-scale problem.

In order to validate the performance of the proposed method under different
settings of parameters 32 and p, we performed an experiment for a 1,000 1,000

synthetic matrix with some outliers similar to the previous experiment. We com-

3Note that we used values of 8 directly from the range of [1072,0.7], without dividing it by

IY ||oc, for fair comparison in this experiment.
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Figure 4.7: Reconstruction results according to variations of two parameters (p

and () for three methods (ROMF, ALADM [11], and Unifying [22]).

pared with two other methods, ALADM [11] and Unifying [22], which are based
on the ALM framework and showed good performance in the previous examples.
Figure 4.7 shows the reconstruction results with respect to various values of
and p. All methods find a good solution when g is between 0.3 and 0.5. Overall,
the proposed method shows better results than the compared methods on average
at different values of 5 and p. Especially, it finds the best solution even when
is lower than 0.3. It shows that the proposed method is less sensitive to changes

in parameters than other methods.

We also applied the proposed method to synthetic examples in the presence of
outliers without missing data to compare with the rank minimization methods,
TALM and EALM [43, 35], including five fixed-rank approximation methods listed
above. We generated Yp as before and constructed an observation matrix Y by
replacing 20% of randomly selected entries of 20% of randomly selected columns

in Yy by outliers, which were uniformly distributed in the range of [—20, 20]. We

101



Chapter 4. Robust Fixed Low-Rank Representations

generated six test sets with sizes same as the previous example and set the rank
of each data matrix as before. All entries are known and all entries of the weight
matrix W are one. We set the global parameter for IALM and EALM as described
in [35].

Figure 4.8 shows average reconstruction errors and execution times (in seconds)
of different algorithms. Similar to the case with outliers and missing entries, the
proposed method outperforms the other methods with respect to the reconstruc-
tion error in all cases. We could not evaluate the TALM and EALM for large
scale experiments since they require much longer computation times. Although
Regl;-ALM shows the similar performance compared with the proposed method,
it takes a longer computation time to get a good solution and shows poor per-
formance for large-scale problems. Similar to the previous examples as shown
in Table 4.9, Unifying finds the best solution along with ROMF but requires a
longer computation time than that of ROMF. The computing time of I;-ARGp
and ALADM are faster than ROMF, but they give poorer performance than
ROMF-.

Non-rigid motion estimation

Non-rigid motion estimation [46, 13, 47] in the presence of missing data from
image sequences can be considered as a low-rank approximation problem us-
ing fixed-rank matrix factorization. In this problem, the proposed robust matrix
factorization method based on the l{-norm can be applied to restore 2D tracks
contaminated by outliers and missing data. We conducted two experiments using
the well-known benchmark datasets: giraffe [74] and shark [13] sequences. The

14

giraffe sequence™® consists of 166 tracked points in 120 frames. The data size

Mnttp://www.robots. ox.ac.uk/~abm/
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Figure 4.8: Average performances for synthetic problems in the presence of cor-
ruptions. (a) Average reconstruction errors with random outliers for various data

sizes. (b) Average execution times for various data sizes.
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is 240 x 166 and 30.24% of entries are missing. To demonstrate the robustness
and efficiency of the proposed method, we replaced 5% of the randomly selected
points in a frame by outliers in the range of [—50, 50], whereas the data points
are in the range of [127,523]. In other experiments, we constructed the data by
replacing 10% and 15% of points in a frame by outliers, respectively. The number
of shape bases was set to two, which gave a matrix of rank 6 = 2 x 3 (for z, v,
and z coordinates). For non-rigid motion estimation problems, we computed the

mean absolute error (MAE) over the observed entries as
W © (M9 — M)y
Zi,j Wi;

The result for the giraffe sequence in the presence of various outlier levels (0% ~

Esry = (4.68)

15%) is shown in Table 4.10. The table also includes the case when no outliers
are added. As shown in the table, ROMF gives the best performance regardless
of the outlier ratio with fast running times. Although ALADM shows a similar
reconstruction error to the proposed method when there is no outlier, the dif-
ference between them gets larger when the outlier ratio increases. Regli-ALM
gives competitive performance compared to ROMF when there are many out-
liers, but it requires a longer computation time. /1-ARG4 and [;-ARGp shows
a higher reconstruction error than the proposed method. I1-ALP requires the
longest execution time and returns a poor reconstruction result when the outlier
ratio increases.

We also performed the non-rigid motion estimation problem using the shark
sequence [13] which consists of 91 tracked points for each non-rigid shark shape
in 240 frames. In this data, we examine how robust the proposed method is for
various missing ratios in the presence of outliers. We replaced 5% of the points
in each frame by outliers in the range of [—1000, 1000], whereas the data points

were located in the range of [—105, 105]. Likewise, we replaced 10% and 15% of
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Table 4.10: Reconstruction results for the giraffe sequence in the presence of

additional outliers.

no outliers 5% outliers ‘ 10% outliers ‘ 15% outliers

Algorithm || Espa | Time | Espy | Time | Espar | Time | Espa | Time
ROMF 0.294 0.092 0.397 0.098 0.596 0.104 1.442 0.101
Unifying 0.302 0.088 0.463 0.089 1.116 0.098 2.001 0.097
11-ARG 4 0.638 3.05 0.697 2.239 0.780 1.450 1.345 1.449
11-ARGp 0.491 0.603 0.531 0.611 1.461 0.671 3.214 0.691
Regli1-ALM 0.606 21.78 0.653 19.301 0.673 18.517 0.808 18.517
ALADM 0.387 0.064 1.379 0.060 3.199 0.061 7.702 0.061

the points in each frame by outliers. We set 10% of tracked points as missing in
each frame. The number of shape basis for each coordinate was set to two, thus

it can be formulated as a rank-6 approximation problem.

Average reconstruction errors at various outlier ratios by different methods are
shown in Figure 4.9. As shown in the figure, the proposed method gives good per-
formance compared to other algorithms, except [1-ARG 4. In this case, gradient
based methods using the /1-norm find good solutions. Although [1-ARG 4 gives
excellent performance than the proposed method in the presence of outliers, its
performance is worse than the proposed method when there are fewer outliers.
Unifying finds a suboptimal solution compared to the proposed method on aver-
age in this problem. Although Regl;-ALM and ALADM give good reconstruction
results when the number of missing data points is small, its performance gets
worse as the missing data ratio increases. It is interesting to notice that Regl;-
ALM sometimes finds a solution whose rank is five for this rank-6 problem. This
is due to the fact that Regli-ALM minimizes the nuclear-norm of P.X, making the
method unsuitable for fixed-rank approximation problems. The execution times

of the methods are 0.039 sec for the proposed method, 0.026 sec for Unifying,

105



Chapter 4. Robust Fixed Low-Rank Representations

Shark sequence
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Figure 4.9: Average reconstruction errors at various missing ratios for the shark

sequence by different algorithms.

0.528 sec for 11-ARG 4, 0.073 sec for [1-ARGp, 1.866 sec for Regli-ALM, and
0.074 sec for ALADM, respectively, for the case with 20% missing data. For an-
other experiment, we replaced 10% of the points in each frame by outliers and
set from 0% to 60% of tracked points as missing in each frame. The reconstruc-
tion results for the 5-th frame are shown in Figure 4.10. From the figure, we can
observe excellent reconstruction results by the proposed method against missing

data and outliers compared to the other approaches.

Collaborative filtering

We conducted two collaborative filtering (CF) problems. Low-rank matrix fac-
torization is a common tool for CF problems and has shown successful results
[1, 41]. We used two popular recommendation system datasets, MovieLens100K

and MovieLens1M!5. MovieLens100K consists of 100,000 observation ratings from

Shttp://www.grouplens.org/node/73
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Missing 0% Missing 20% Missing 40% Missing 60%
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L1-ARG A

Ll—ARGD

RegL1-ALM

ALADM
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Figure 4.10: Some reconstruction results from the Shark sequence by different
methods. Each row shows the result of each method. From top to bottom: the
proposed method, Unifying [22], [;-ARG4 [21], [1-ARGp [21], Regl;-ALM [49],
and ALADM [11]. Each column represents the result according to the different

missing ratio.

943 users for 1,682 movies, hence, the data size is 943 x 1,682 and has 6.3%
sparsity. Ratings are integer-valued ranging from one to five, and no ratings are
missing. MovieLens1M consists of one million ratings from 6,040 users for 3,952
movies which leads to an observation matrix of size 6,040 x 3,952 with 4.2%
sparsity. We did not experiment the largest dataset, MovieLens10M, whose size

is 71,567 x 10,674, due to the memory limitation of the PC used in the experi-
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Table 4.11: Reconstruction results for two CF problems.

MovieLens100K MovieLens1M
Algorithm Ecrp ‘ Time (sec) Ecrp ‘ Time (sec)
ROMF 0.1702 6.848 0.1587 96.47

11-ARG 4 0.1797 45.035 0.1637 674.74
11-ARGp 0.1709 20.468 0.1596 264.05
Regli-ALM 0.1738 261.44 0.1591 3952.49
ALADM 0.1861 1.507 0.1843 20.90

APG 0.1921 4.375 0.1997 98.049

ment.
Given the observation data, we split the data into training and test datasets
by randomly selecting 90% as a training set and remaining 10% as a test set. In

this experiment, we used the normalized mean absolute error (NMAE):

E
Eop = ——M (4.69)

dmax — dmin
where dpax and dpyin are the upper and lower bound of ratings to measure the
performance. We set the number of inner loops of Regli-ALM to 10 because of
the time limitation.

Table 4.11 shows the estimation results of the proposed method compared to
other methods: [1-ARG4 [21], 1;-ARGp [21], Regli-ALM [49], ALADM [11], and
APG [41]. We set the rank r to three for MovieLens100K and five for Movie-
Lens1M. In the table, the proposed method, ROMF, gives the best estimation
results with shorter execution times for both datasets. Although ALADM is about
four times faster than ROMF, it shows worse estimation results than ROMF in
all experiments while Regli-ALM takes a very long time to obtain a solution. /1-
ARGp gives the similar reconstruction results compared to the proposed method,
but it takes a longer computation time than the proposed method. APG shows

the worst results among the methods tried in this experiment. This result is sim-
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ilar to the results reported in [41], which reports 0.193 for MovieLens100K and

0.194 for MovieLens1M, using randomly chosen subsamples.

Background modeling

Modeling background from a video sequence is an important step to separate
foreground objects from background and applied to many applications, includ-
ing video surveillance, traffic monitoring, and abnormal behavior detection [92].
A background modeling task can be considered as a low-rank matrix approxi-
mation problem [41, 35]. We used three benchmark video datasets: Hall'® [35],
PETS2009'7 [89], and Wallflower!® [90] datasets. The Wallflower dataset is used
to compare different methods quantitatively since it provides the ground-truth
data as well.

The Hall dataset is a sequence of 200 frames taken in a hall of a business build-
ing. The frame size is 176 x 144 and the whole data size is 25,344 x 200. We con-
verted color images into gray-scale images and performed the proposed method
compared with other fixed-rank matrix approximation methods: I1-ARGp [21],
NMF [91], Regli-ALM [49], and ALADM [11]. The rank r of the fixed-rank ap-
proximation methods was set to 3. Figure 4.11 shows the background modeling
results of the methods for two selected frames. From the figure, the proposed
method successfully decomposes into background and foreground images, while
some of other methods (NMF, Regli-ALM, and ALADM) shows afterimages in
the estimated background image (see the second column of Figure 4.11). [;-ARGp

and Unifying shows good separation results which are comparable to ROMF.

Yhttp://perception.i2r.a-star.edu.sg/bk_model/bk_index.html/
"http://http://www.cvg.rdg.ac.uk/PETS2009/a. htnl/

Bhttp://research.microsoft.com/en—us/um/people/jckrumm/wallflower/testimages.

htm/
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Figure 4.11: Background modeling results of the proposed method, {1-ARGp,
Unifying, NMF, Regl;-ALM, and ALADM (Hall dataset). Each algorithm de-

composes the original image into background and foreground images.

We also compared the proposed method with the rank estimation methods
(IALM, EALM [43], and ROSL [12]). In this experiment, the proposed method
used the rank estimation technique, ROMF-RE, described in Section 4.2.2. We
set the initial rank r¢ to three times of r in this problem. We set the parameter
of TALM, EALM, and ROSL as described in [35]. Figure 4.12 shows the back-
ground modeling results of the rank estimation methods. All methods separated

foreground from background in all cases. However, ROSL sometimes finds a sub-
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Figure 4.12: Background modeling results of ROMF, IALM, EALM, and ROSL
(Hall dataset). Each algorithm decomposes the original image into background

and foreground images.

optimal solution as shown in the first frame in Figure 4.12. In common with rank
minimization methods, the proposed method using rank estimation technique has
successfully found good solutions.

The PETS2009 dataset is a sequence of 221 frames taken in a school. Unlike
the previous experiment, we used the color image of the PETS2009 dataset as it
is. The frame size is 576 x 768 and the stacked data size is 442,368 x 221 for each
channel. In this case, the proposed method with a rank estimation is compared
to two selected rank estimation methods (IALM and ROSL). Figure 4.13 shows
the separation results. As shown in the figure, IALM fails to separate background
and foreground correctly while the proposed method separates background and
foreground exactly. ROSL seems to find a background image very well, but it fail

to find a foreground image as shown in the figure.
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Original (140) Background Foreground Qriginal(210) Foreground
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ROMF-RE

TALM

ROSL

Figure 4.13: Background modeling results of ROMF, TALM, and ROSL
(PETS2009 dataset). Each algorithm decomposes the original image into back-

ground and foreground images.

For the Wallflower dataset, we used the Bootstrapping sequence which consists
of several minutes of an overhead view of a cafeteria [90]. The sequence has no
separate data for background modeling [90] and more complex than other se-
quences in the Wallflower dataset. We selected first 300 frames as an observation.
The 300th frame comes with a foreground ground-truth image and this frame
is used to compute the background modeling performance of each algorithm in
terms of precision and recall. Figure 4.14 shows an example of the 300th frame
image with its corresponding ground-truth mask. The frame size is 160x120 and
the whole dataset is 19,200x300. We converted images into gray-scale images
and added a mean-zero unit variance Gaussian noise to 25% pixels which are
selected randomly. The rank of factorization methods was set to 2. For quantita-
tive comparison, pixel-wise thresholding and mathematical morphology (closing)
were performed for foreground images extracted from each method. The final

foreground mask after post-processing was used to compute the precision and
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Figure 4.14: An image from the Bootstrapping sequence and its ground truth

mask.

recall as follows:

TP TP
Precision = ————— l=—r— 4.
recision TP+ PP Reca TP+ FN’ (4.70)

where TP is the number of correctly estimated foreground pixels, F'P is the
number of background pixels that are wrongly estimated as foreground, and FN
is the number of foreground pixels that are wrongly estimated as background.
Figure 4.15 shows precision-recall curves of different methods, including two pro-
posed methods, for the Bootstrapping sequence. The proposed method, ROMF,
outperforms other methods especially when the precision is lower than 0.85. Al-
though ROMF with rank estimation, ROMF-RE, shows a moderate improvement
when precision is low, it shows good performance on average. The [1-norm based
approaches (I1-ARGp, ALADM, and Regl;-ALM) show poor performance.

The required computation times of all methods for three datasets are shown in
Table 4.12. For the PETS2009 dataset, we compared execution times using a sin-
gle channel. For Hall and Bootstrapping datasets, we compared execution times
for gray-scale images. The proposed method shows the second fastest computa-
tion time on average except NMF, which is an lo-norm base approach. In addition,

ROMF-RE requires a longer computation time than ROMF since it needs addi-
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Figure 4.15: Precision-recall curves of different methods for the Bootstrapping

dataset.

tional operations, but the difference is relatively small. Although ALADM gives
the fastest computation time of all /;-norm base methods, it sometimes fails to

provide good approximations compared to other methods.

4.3 Structured Low-Rank Representation

YThe previous algorithms in this chapter generally solve an unstructured matrix

with a column- or row-wise low-rank assumption. However, what if an observa-

9This section is based on the paper appeared in IEEE International Conference on Robotics
and Automation: “Structured Low-Rank Matrix Approximation in Gaussian Process Regression

for Autonomous Robot Navigation” [93].
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Table 4.12: Comparison of execution times (sec) of all methods for background

modeling.
Algorithm || Hall (25,344x200) | PETS2009 (442,368x221) | Bootstrapping (19,200 300)
ROMF 7.019 133.02 5.536
ROMF-RE 9.250 230.80 7.433
11-ARGp 6.442 147.78 25.354
Unifying 38.487 622.66 24.669
NMF 1.891 81.45 1.039
IALM 18.791 298.92 27.342
EALM 468.960 21354.31 1950.97
ROSL 10.316 193.10 5.954
Regli-ALM 161.720 3348.83 208.28
ALADM 4.780 86.76 3.219

tion matrix or a problem at interest is structured situation unlike the previous
cases? In this section, we address a general matrix approximation problem where
an observation is structured condition or a kernel matrix. We first discuss a ker-
nel subspace learning problem as a basic problem. Then, we propose a novel
factorization-based robust structured kernel subspace learning with low-rank as-
sumption. We apply the proposed learning algorithm to Gaussian process regres-
sion (GPR) which is a important method based on a kernel matrix. The proposed
method based GPR, named FactGP, is applied to various regression and motion

prediction problems in simulation to demonstrate its robustness against outliers.

4.3.1 Kernel subspace learning

To reduce the computational cost of inverting the kernel matrix A in (2.15),
a number of approximation methods have been proposed, including Incomplete
Cholesky Factorization (ICF) [94] and the Nystrom method [95]. In this section,
we consider low-rank kernel matrix approximation to invoke robustness in the

presence of noises or outliers, which is also known as kernel principal component
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analysis [96]. It has been attracted much attention for a wide range of problems
in order to efficiently process a large quantity of data and to discover a hidden
low-dimensional structure based on the Euclidean distance (lo-norm).

The main idea behind the kernel-based approximation method is that, by using
a kernel function, the original linear operations of principal component analysis
(PCA) are performed in a high-dimensional Hilbert space [96]. Performing linear
PCA in a high-dimensional space has an effect of performing nonlinear PCA
in the original input space [96]. Hence, we can apply low-rank kernel matrix
approximation to reduce the computation load of A in (2.15) to speed up the
kernel machine.

Suppose that a nonlinear function ® : R™ — X is a mapping from the input
space R™ with dimension n, to a high-dimensional feature space X. Then, for

centered data x1,...,x,, the covariance matrix in X is
1 n
C=- Z} O (x;)D(x;)”
i

and the eigenvector v with nonzero eigenvalue of C' can be represented as v =
S Bi®(x;). The coefficients 3 = [B1 -+ ,])7 can be found by solving the fol-

lowing eigenvalue problem [96]:
KB =n)\B, (4.71)

where K is a kernel matrix such that [K];; = (®(x;), ®(x;)). It follows that
principle components in X can be extracted using top r largest eigenvectors, vy
for k =1,...,r, over the entire eigenvectors of K based on their corresponding
eigenvalues which are computed using coefficients found from (4.71) with a proper
normalization. Hence, we can effectively represent a kernel matrix using a subset

of eigenvectors with r largest eigenvalues.
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Given the eigenvalue decomposition of K = RELRT, where ¥ = diag(A1, -+, \y)
is a diagonal matrix of eigenvalues of K, such that \;y > --- > \,, we can ap-

proximate the inverse of K as follows:
K'=(R2R")"' = Ru'R” ~ RR", (4.72)

~ _1
where R = R,X, 2. Here, R, € R™ " collects the first r vectors from R and
Y, =diag(Ay, -+, Ar) € R™*" is a diagonal matrix of r largest eigenvalues. Hence,

we can reformulate (2.15) by treating A as K in (4.72) as
7. = kI Ay ~ kI RR"y = &Iy, (4.73)

where %*T = k:{ﬁ is a kernel vector which is projected into the orthogonal feature
space R and Y= ETy is a projected output vector into R. This means that the
low-dimensional approximation of a kernel matrix can be applied to Gaussian
process regression problems by using k, and y which are projected on E, and
the inverse of a kernel matrix becomes an identity matrix which represents the
independent relationship between basis vectors. Hence, (4.73) can be another
representation of 7, in the dimensionally reduced orthogonal feature space R.
Figure 4.16 shows the concept of the proposed method using low-rank kernel
matrix approximation.

In addition, A can be approximated by a conventional low-rank approxima-
tion method which transforms data into a low-dimensional subspace which max-
imizes the variance of the given data based on the Euclidean distance (la-norm).
However, the method is sensitive to outliers because the ls-norm can sometimes
amplify the negative effects of such data. Therefore, lo-norm based low-rank ap-
proximation methods may find projections which are far from the desired solution
due to the corruptions. As an alternative, various methods based on the [{-norm

have been proposed recently and it is known that [;-norm based methods find
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Train Phase: Learn basis in the feature space X
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%

Input space R™ Feature space X Find basis in X

Test Phase: Perform Gaussian process regression (GPR) using the basis in X
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Figure 4.16: A graphical illustration of low-rank kernel matrix approximation.
We can perform the prediction step of Gaussian process regression in the dimen-

sionality reduced feature space.

a sparse solution, which are more robust against outliers [10, 25, 21]. Recently,
Kim et al. [97] approximated a kernel matrix using {;-norm based kernel matrix
factorization for robust autoregressive Gaussian process motion model:

min  J(U,V) = |K - UV|L, (4.74)

)

where K € R™" U € R™" and V € R"™™™ are the kernel, projection, and
coefficient matrices, respectively. Here, we want to find a low-rank representation
UV of K with sparse approximation errors, such that the effects of outliers can
be reduced. However, the optimization technique in [97] may not be proper when
approximating a kernel matrix since the low-rank representation is a bilinear
multiplication and thus may not satisfy the positive semi-definiteness of a kernel

matrix.
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4.3.2 Structured kernel subspace learning in GPR

In this section, we first propose a structured kernel subspace method for approx-
imating a kernel matrix by making sure that the approximated matrix is positive
semi-definite. Then, we describe the overall framework using Gaussian process

regression for modeling motion.

Problem Formulation

For robustness of the proposed method in the presence of erroneous data, we
use robust measures in a cost function. Instead of methods based on the [s-
norm, the proposed method is based on the recent advances in nuclear-norm and
[1-norm minimization, which is also called robust principal component analysis
(RPCA) [35], to reduce the effect of outliers with an automatic rank search.?’
Hence, we approximate a kernel matrix using a nuclear-norm regularized /;-norm
minimization problem for robust approximation.

We formulate the problem of nuclear-norm regularized [1-norm minimization

as shown below:

min | K — PMP" |y + A|[PMP]]., (4.75)

subject to positive semi-definite matrix M, where K € R"*™ is a kernel or sym-
metric positive semi-definite matrix and P € R™*" and M € R"™" are optimiza-
tion variables. || - ||« denotes the nuclear-norm or trace-norm, and A > 0 is a

regularization parameter. In the cost function, we use the nuclear-norm regular-

2ONote that the original RPCA solves the nuclear-norm based optimization problem by iter-
ative thresholding over singular values obtained from singular value decomposition of a mea-
surement matrix, which leads to the automatic rank search. But, the proposed framework fixes
the rank of the target matrix PM PT. Nonetheless, it has an effect of reducing the rank of the

target matrix further from the pre-determined rank.
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izer to minimize the rank of PM PT', an approximation of K, to our desired one by
adjusting the parameter X since the exact rank is not known. The nuclear-norm
has been used as a convex surrogate for the rank in many rank minimization
problems [98, 35]. This problem is non-convex and its solution can be obtained
using the augmented Lagrangian framework [35].

To reduce the computational complexity and make the convergence faster, it
is reasonable to enforce an orthogonality constraint to the basis matrix P by
shrinking the solution space of P. Based on these observations, we reformulate
the low-rank matrix approximation problem as follows:

min K~ PMPT |y + X|M].
’ (4.76)
st. P’P=1,, M0,
where [, is an r x r identity matrix and M is a positive semi-definite matrix.
By enforcing the orthogonal constraint on P, we can compute only small matrix
M instead of PMPT when computing the nuclear-norm. Figure 4.17 shows an
overview of the proposed structured low-rank matrix approximation method. Due
to the difficulty of solving the problem (4.76) directly, we introduce two auxiliary
variables, D and M , and solve the following problem:

min_[|K — DI} + Al M]],
FM.D,M (4.77)

st. D=PMPT, M =MPT'P=1,,M 0.

The augmented Lagrangian framework [35] is used to solve (4.77) by converting

the constrained optimization problem into the following unconstrained problem:
L(K,P.M,D,M) = | K — Dl|s + A M|
+tr (AlT(D - pA?PT)) Ftr (AQT(M - M)) (4.78)

+ 21D~ PREPT I+ |13~ MI3)
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Proposed structured low-rank matrix decomposition

Q

Kernel matrix K

Q

Figure 4.17: A graphical illustration of the proposed method. A kernel matrix K
can be approximated by multiplication of P, M, and PT. We can predict future

motions of moving objects using AR-GP based on the rank reduced kernel matrix.

subject to the constraints PTP = I, and M > 0, where Aj,Ay € R™" are
Lagrange multipliers and 8 > 0 is a small penalty parameter. We apply the
alternating minimization approach iteratively, which estimates one variable while
other variables are held fixed. Each step of the proposed algorithm is described

in the following section.

Algorithm

To solve for M, we fix the other variables and solve the following optimization

problem:

A 1| A |?
]\Lr:arglrn]\/i[nB||M||*—l—2HM—]M—|—52 ,

\ | F (4.79)
= argm]vi[n BHMH* + §||M — A%, s.t. M =0,

where A = M — % If A is not a symmetric matrix, we make it a symmetric

matrix by A + ALQAT and find M. Then, this problem can be solved using
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eigenvalue thresholding (EVT) [99] and its solution is

M, = Qdiag [max (7 - ;, 0>} Q7, (4.80)

where Q and I' are matrices, which contain eigenvectors and eigenvalues, respec-
tively, from the eigenvalue decomposition of 4, i.e., A = QI'Q”T and I' = diag(y).

For D, we solve the following problem:

D, = arg m[i)n | — D1 + tr (AF{(D - P]/\ZPT)>

+§||D—PJ\7PTII%, (4.81)

~ A
= argmin | K — D + Bllp — parpT + ?1

2
q

)

F

and the solution can be computed using the shrinkage (soft-thresholding) operator

[35]:

— A1
D+<—K—S<K—PMPT+1,), (4.82)

BB

where S(z, 7) = sgn(x) - max(|z| — 7,0) for a variable .
With other variables fixed, we have the following optimization problem for

finding P:

P, = argm}ntr (AF{(D - P]/\ZPT)> + gHD - PA/ZPTH%:
, (4.83)

)

A —
= argminé HD+ = _pumpT
P F

2 B

subject to PTP = I,. The above problem is a least square problem with an
orthogonality constraint. Let R = D+% and L = PM , then L can be represented
by L = R(PT)* = R(PT)T = RP, where (PT)* is the pseudo-inverse of the
matrix PT. Therefore, from [100], we can obtain the orthogonal matrix P using

the QR factorization of L.
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To update M , we consider the following equation:

]\/Lr = argm]\%ntr (A{(D - P]\/ZPT)) + tr (AQT(]\?— M))

5 (4.84)
+5 (1D = PMPTI} + M - M|},
and its solution is computed by taking a derivative as
M+:§ P DP+BP A1P+M_BA2 . (4.85)
Finally, we update the Lagrange multipliers A; and Ay as follows:
Ay + Ay + B(D — PMPT),
(4.86)

Ao+ Ao + B(M — M).

The proposed structured kernel subspace learning algorithm is summarized in
Algorithm 7. Since it is a symmetric positive semi-definite matrix factorization
algorithm, it is named as FactSPSD. In the algorithm, we have assumed a nor-
malized observation matrix. Hence, the output matrices are obtained by rescaling
them using the scaling factor. The alternating minimization order of optimization
variables can be different, but we have empirically found that the order given in
Algorithm 7 shows better results than other orders. We set the initial values to
all zero matrices since the algorithm is not sensitive to the choice of initial val-
ues. We set the parameters of the algorithm as A = 1073, = 1072, and p = 2.
The number of inner iterations of the algorithm (lines 5-10) was set to 10 since
it is enough to converge to a local solution. The stopping criterion (line 13 of

Algorithm 1) is chosen as
|ID— PMPT|y <e¢ or |M— M| <e, (4.87)

and € = 107°, which shows good results in our experiments. Although it is difficult

to guarantee the convergence to a local optimal solution, an empirical evidence
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Algorithm 7 FactSPSD(K,r, A, 3, p)
1: Input: K € R™ " rank r, \, 8, and p

2: Output: P € R"" and M € R"™"
3: Tnitialization: M = P = D = M = 0 and Byaz = 10°
4: while not converged do

5:  while not converged do

6: Update M by (4.80)
7. Update P« QR(RP) where R = D + %
8: Update M by (4.85)
9: Update D by (4.82)

10: end while

11: Update the Lagrange multipliers A; and A by (4.86)
12: Update § = min(pfS, Bmaz)

13: Check the convergence condition

14: end while

suggests that the proposed algorithm has a strong convergence behavior and
converges with about 30 iterations of the outer loop.

Based on the structured low-rank approximation of a kernel matrix, we can
derive a robust motion model using Gaussian process regression and it is shown in
Algorithm 8. The algorithm is named as FactGP ; since it is based on factorization-
based low-rank kernel matrix approximation applied to Gaussian process regres-
sion. In Algorithm 8, we perform the standard PCA to the resulted low-rank
kernel matrix L (line 7), to remove the inverse operation as in (4.4), reducing
the computational complexity from O(n?) to O(rn?). We precompute the kernel
matrix and its principal components in lines 4-8, and test a new input x, given

the principal components R in lines 10-11.
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Algorithm 8 FactGP
1: Input: X, y, rank r, and x,

2: Output: g,

3: // Training

4:  Compute A = K + 021

5:  Perform kernel subspace learning:
6: [P, M] = FactSPSD(A, r, A, 3, p)
7. L+ PMPT

8:  Compute R and ¥ by performing PCA to L

Nej

: // Testing
10:  Compute k, = k(x., X)

11:  Compute gy, by (4.4)

4.3.3 Experimental results

In this section, we evaluate the performance of the proposed method, FactGP
by experimenting with various datasets and comparing with other well-known
Gaussian process regression methods (SPGP?! [101], PITC [102], GPLasso?? [94],
and PCGP-1; [97]) along with the standard GP. In our experiments, we used the
radial basis kernel function for all GP methods and hyperparameters are learned
using a conjugate gradient method [66]. The prediction or regression accuracy is

measured by the root mean squared error (RMSE).

Regression problems

First, we tested the proposed structured low-rank matrix approximation method

on a synthetic regression problem. We compared FactGP /s to a sparse GP (PITC

2! Available at http://www.gatsby.ucl.ac.uk/~snelson/.
22 Available at https://www.cs.purdue.edu/homes/alanqi/softwares/softwares.htm.
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[102]) and the full GP [66] to observe how different methods perform in the

presence of corruptions.

Figure 4.18 shows the results from the regression problem with two outlier lev-
els: no outliers and 20% outliers. We also compared the low-rank approximation
methods, FactGP s and PITC, at two different ranks?® (20% and 40% of the size
of the kernel matrix). When there are no outliers, the full GP exactly fits the
reference field but FactGP;; and PITC show smooth lines with 20% low-rank
components as shown in Figure 4.18(a). However, the low-rank approximation
methods try to fit the reference field with the larger rank (40%) as shown in Fig-
ure 4.18(b). However, PITC still does not fit the reference very well as it misses
some samples. The proposed method shows its competitiveness compared with
the other GP methods in this regression problem. When we add outliers to ran-
domly selected 20% of data as shown in Figure 4.18(c) and Figure 4.18(d), the
full GP and PITC try to fit outliers, showing large fluctuations. But FactGP s
is less affected by outliers, showing its robustness against outliers. From this ex-
periment, we can see a clear benefit of the proposed low-dimensional learning

method to a regression problem when the training set contains outliers.

We also tested the proposed method using real-world datasets, Pumadyn-8nm
and Kin-8nm?* [94]. Pumadyn-8nm is a dataset which consists of puma forward
dynamics of eight inputs and Kin-8nm consists of the forward kinematics of an
eight-link robot arm. For each dataset, we randomly collected 1,000 training and

800 test samples. To verify the robustness of the proposed method under the

25While PITC is a sparse GPR method, we treat it as a low-rank approximation method since

the rank can be considered as a generalization of sparsity for two-dimensional data.
24 Available at http://www.cs.toronto.edu/~delve/methods/mars3.6-bag-1/mars3.

6-bag-1.html. Both datasets are frequently used to measure the performance of different

Gaussian process regression methods.
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Figure 4.18: Simulation results on a synthetic example with and without outliers.

FactGP,; and PITC use kernel matrices whose ranks are either 20% or 40% of
the size of the original kernel matrix. (a) No outliers with 20% low-rank. (b) No

outliers with 40% low-rank. (c) 20% outliers with 20% low-rank. (c) 20% outliers

with 40% low-rank.
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5 Pumadyn-8nm dataset 0.25

Kin-8nm dataset
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Figure 4.19: Regression results of the proposed method compared with other GP

methods for two benchmark datasets: (a) Pumadyn-8nm, (b) Kin-8nm.

existence of various outliers, we added 30% outliers which are randomly selected
from [-25, 25], whereas data values are usually in the range of [-2, 2]. The simu-
lation results of the proposed method compared with other sparse GPR methods
(SPGP [101], PITC [102], and GPLasso [94]) for various basis ratios (from 10%
to 50%) are shown in Figure 4.19. As shown in Figure 4.19(a), the proposed
method gives the lowest error among the methods regardless of the basis condi-
tions. Especially, it shows better performance than the full GP, whereas sparse
GPR methods show higher error than the full GP for some cases when the basis
ratio is small. In Figure 4.19(b), the proposed method also gives lower errors than

other sparse GPR methods.

Motion prediction of human trajectories

For the motion prediction experiment, we collected trajectories of moving pedes-

trians using a Pioneer 3DX differential drive mobile robot and a Microsoft Kinect
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Collected Trajectonias from Kinect

Figure 4.20: (a) A Pioneer 3DX mobile robot with two Kinect cameras and a
notebook. (b) Snapshots from an experiment in a human-robot environment.
First column: a third-person view. Second column: the egocentric view of a robot.
(c) Collected trajectories from Kinect. We show a few trajectories in thick lines

for better visualization.

camera,?® which is mounted on top of the robot as shown in Figure 4.20(a). All
algorithms are written in MATLAB with the mex-compiled ARIA package?® on
a notebook with a 2.5 GHz quad-core CPU and 8 GB RAM. The position of a

pedestrian is detected using the skeleton grab API for Kinect.

We performed experiments in our laboratory to predict the future position of a
person. To model the future positions of a pedestrian, our algorithm is applied to
autoregressive Gaussian process (AR-GP) motion model [67]. Let D; € R? be the

position of a moving human at time ¢. The current velocity, AD; = Dy — D;_1q,

25For the motion prediction experiment, we collected human trajectories using one Microsoft
Kinect camera and the experimental results are shown in Figure 4.21. But, for other experiments,

we used two Kinect cameras to increase the field of view of the robot.
26 Available at http://robots.mobilerobots.com/wiki/ARIA.
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Figure 4.21: Motion prediction simulation results using a Kinect camera based
human trajectories: (a) Various basis ratio with 30 percent outliers. (b) Various

outlier ratio with 30 percent basis vectors.

is modeled in AR-GP as follows [67], with an appropriate time scaling:

ADt = f(thlth727 e 7Dt7p)

(4.88)
~ GPf(Dy—1,Dy 2,

- Dy—yp).

Hence, the AR-GP motion model can find the position of a pedestrian at time
t based on p recent positions of the pedestrian with this nonlinear model of an
autoregressive process under the Gaussian process framework.

Figure 4.20(b) shows snapshots from the third-person view and the egocentric
view from a robot. We collected a diverse set of trajectories of pedestrians and
obstacles, which are in the field of view of a robot as shown in Figure 4.20(c).
To make a training set from the collected trajectories, we uniformly sampled
positions to have about ten samples in a trajectory when a trajectory has many
detected positions. From a trajectory which has n positions, we obtain n —p+1

input samples where p is the order of an autoregressive motion model, i.e., the

number of past positions. One can model it as a Hankel matrix by shifting one
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point in a trajectory.

We compared the proposed method, FactGP s, with the state-of-the-art ap-
proaches (PCGP-[; [97], GPLasso [94], and PITC [102]). We divided the collected
trajectories into training and test sets with autoregressive order p = 3. Using the
dataset, we experimented for two cases: (1) various rank (basis) conditions with a
fixed outlier ratio and (2) various outlier conditions with a fixed rank. We added
outliers to randomly selected positions of collected trajectories from [—10, 10],
whereas the datasets are in the range of [—5,5]. Figure 4.21 shows prediction
errors by tested algorithms for two cases. As shown in Figure 4.21(a), the pro-
posed FactGPj; shows the best results compared to other methods in all cases.
PCGP-I; gives the second best results regardless of the basis ratios. We can inter-
pret that the proposed algorithm approximates the positive semi-definite (PSD)
matrix better than PCGP-l;, since the proposed algorithm can guarantee the
positive semi-definiteness, whereas PCGP-l; cannot. The RMSE error results for
a fixed rank (r/n x 100 = 30%) under various outlier conditions are shown in
Figure 4.21(b). As shown in the figure, the proposed method gives the best results
regardless of outlier conditions. From two figures, we can see that the proposed
method shows the robustness against outliers, by recovering from measurement
noises and erroneous trajectories. Figure 4.22 shows some snapshots from the mo-
tion prediction experiment using two Microsoft Kinect cameras (field of view of
about 110°) in our laboratory. The robot performed the nearly exact prediction

of the future positions of pedestrians in real-time.
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4.4 Summary

In this chapter, we have proposed several low-rank representation from unstruc-
tured matrix approximation to structured approximation. We have first proposed
two novel gradient-based methods, [1-ARG 4 and [1-ARGp, using the alternat-
ing rectified gradient method. For the dual method /1-ARGp, we have proved the
convergence of the algorithm to the subspace-wise local minimum using the global
convergence theorem. We have shown the superiority of the proposed methods
compared to existing algorithms for large-scale problems.

To overcome the previous unregularized algorithms, we have also proposed a
method, ROMF, for efficient fixed-rank factorization with the Frobenius-norm
regularizer and orthogonality constraint. ROMF is constructed under the aug-
mented Lagrangian framework and can address the rank uncertainty issue by
a rank estimation strategy for practical real-world problems. The experimental
results have shown that ROMF outperforms other existing methods including
[1-ARG methods in terms of the approximation error and running time.

Lastly, we have presented a novel optimization formulation for a structured
matrix which is generally symmetric positive semi-definite matrix and finds low-
rank kernel subspace by minimizing a nuclear-norm regularized l;-norm objec-
tive function. The proposed method is applied to various regression and motion
prediction problems in real-world environments. The experimental results have
shown the efficiency and robustness of the proposed method against outliers and

measurement errors.
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Chapter 5

Robust Lower-Rank Subspace

Representations

In this chapter, our goal is to develop a robust and stable algorithm for find-
ing subspace structures of grossly corrupted data. For this objective, we propose
elastic-net subspace representation based on elastic-net regularization of singular
values of data. The elastic-net method embraces the benefits of both lasso and
ridge regression methods [104, 105, 106, 103], such as automatic variable selec-
tion, continuous shrinkage and thresholding, and selection of groups of correlated
variables. We show that the propose framework allows more stable and efficient
algorithms for subspace representation in the presence of corruptions or missing

entries, due to the strong convexity enforced by the elastic-net regularization.

It is worthwhile to note that while both the proposed method and our main

competitor, lasso-based method [22], use an alternative definition of the nuclear-

!This chapter is based on the following papers:
“Elastic-Net Regularization of Singular Values for Robust Subspace Learning,”, CVPR [19],
“Robust Elastic-Net Subspace Representation”, IEEE TIP [103].
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norm regularizer in order to speed up the algorithms, there are clear differences.
First, the proposed framework is more general than [22] for rank-related problems,
since it can further shrink the singular values under the fixed-rank constraint by
introducing strong convex regularizer, whereas [22] does not perform shrinkage as
it simply employs the alternative variation of the nuclear-norm regularizer, which
makes [22] unstable in the presence of corruptions and produces incorrect results
(see Figure 5.1 for an example). Second, it is possible for the proposed method to
conduct automatic rank estimation by shrinking and suppressing singular values
from the maximum user-defined rank based on the elastic-net regularization of
singular values, whereas it is difficult to conduct elaborate rank estimation using
[22], making it less applicable in practice.

Based on the proposed elastic-net subspace representation framework, we pro-
pose two algorithms: FactEN and ClustEN. FactEN solves a low-rank subspace
learning problem, where data lie in a single low-dimensional subspace, for rank-
specific problems [13, 14, 12]. It is a holistic approach to deal with both bilinear
factorization and rank minimization using elastic-net regularization. ClustEN is a
joint optimization algorithm to solve a general problem, in which data are drawn
from a union of subspaces. It jointly solves subspace clustering and subspace
learning. The advantages of the elastic-net subspace representation algorithms
compared to the state-of-the-art subspace representation algorithms are demon-

strated in an extensive set of experiments.

5.1 Elastic-Net Subspace Representation

The methods described in the previous section solve various instances of subspace
representation problems. Given an observation matrix Y = [yq,...,y,] € R™*",

where samples are drawn from a single subspace or a union of multiple subspaces,
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the goal of subspace representation is to find the underlying subspace structure
of an observation data.

In this chapter, we propose a new approach to solve various subspace repre-
sentation problems using elastic-net regularization. The general framework of our
proposal, where data samples are assumed to be drawn from a union of multi-
ple subspaces, can be formulated as the following optimization problem under
noisy scenarios to learn a dictionary or clean matrix D, an error matrix F, and

a subspace representation matrix C', simultaneously:

[gnElnC fw(E) —l—)\QEN(D,C), st. D,E.C € Cgn, (51)

where fi(F) = ||[W ® E||1 is a weighted [;-norm loss function to handle outliers,
occlusions, and missing entries, and W is a weighting matrix, whose element w;;
is 1 if y;; is known, and 0 if y;; is unknown. When there are no missing entries,
we can also solve the problem by setting the values of all elements of W to one.

Qen(D,C) and Cgy are defined as
Qpn(D,C) = || Dlls + || D% + B8l Clh, (5.2)

Cen ={D,C,E|Y =D+ E,D = DC, diag(C) = 0}.

Here, Qpn consists of the elastic-net regularization over singular values of D
and a subspace representation matrix C' to represent the subspace membership
by sparse representation, and Cgy is used to enforce the low-rank and noise
matrices separation from the observation matrix Y and self-expressiveness of D.
©® is the component-wise multiplication or the Hadamard product.

From the subspace representation problem (5.1), we can consider an important
special case, in which data samples are drawn from a single subspace with fixed

basis vectors (or fixed-rank) by constraining C' = I, where [ is the identity matrix.
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Then, (5.1) can be reduced to the following problem:

IlI)liél fw(E) + )\QEN(D), st. D, E € EEN7 (53)

where Qg (D) = || D||«+a|D||% and Cgy = {D, E | Y = D+E,rank(D) = r}. In
this problem, we enforce the rank of D to r. A fixed-rank approximation problem
appears frequently in rank-related applications, such as background modeling
[12], structure from motion [13], and photometric stereo [14]. The detailed analysis
of this problem (5.3) will be the focus of the next section.

In order to compare with other subspace representation algorithms, we can

consider the following general form:
m‘;n Jross(V) + AM2eg(V), st. V €C, (5.4)

where fioss, (dreg, and C are a loss function, regularization function, and constraint
set, respectively. V is a set of optimization variables. By substituting terms in
(5.4), we can represent different problems, such as low-rank matrix factorization
[10], sparse and low-rank matrix separation [35], and subspace clustering [15],
to name a few. For example, with the following substitutions in (5.4), we have

RPCA [35].
floss = ”EHhQTeg = ||DH*7C = {D7E | Y=D+ E}v (55)

where Y is an observation matrix and D and F are optimization variables. Table
5.1 shows the comparison of well-known subspace learning and clustering prob-
lems including the proposed subspace representation algorithms according to the
loss function, regularizer, and constraint set. The main difference between the
proposed algorithms and existing methods is that ours are based on singular
value analysis using the elastic-net regularization to estimate exact singular val-
ues with their corresponding singular vectors and reconstruct a clean low-rank

matrix from a corrupted observation.
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In the subsequent sections, we will give detailed analysis for the proposed al-

gorithms, formulated in (5.1) and (5.3).

5.2 Robust Elastic-Net Subspace Learning

5.2.1 Problem formulation

In this section, we first address a low-rank and sparse matrices separation problem
[35, 22], considering missing entries in an observation matrix, based on convex

envelopes of rank and sparsity functions as follows:

mDin [i(D) + AQpeq, s.t. D € Co, (5.6)

where f1(D) = [W ® (Y — D)1 and Qyeq = ||D||«. Here, Co = 0. || - |1 and || - ||«
denote the entry-wise /;-norm and the nuclear-norm, which are convex relaxation?
of the lp-norm and the rank function, respectively. Note that the regularization
term in (5.6), || D]+, can be interpreted as a sum of singular values, Y |oj],
where o; is the ith singular value of a low-rank matrix D and r is the rank of
D. The nuclear-norm based subproblem in (5.6) can be solved by singular value
thresholding [108], which has both thresholding and shrinkage effect over singular
values of D.

Here, we would like to note that the problem (5.6) can find a suboptimal
solution where the rank of the target matrix is pre-defined as a constant, such
as structure from motion [13], background modeling [12], and photometric stereo
[14]. Furthermore, there is an issue in regard to the computational complexity

due to the SVD operation performed at each iteration to solve a nuclear-norm

2Since a problem based on the lp-norm or rank function is NP-hard, a convex surrogate of

the function is used in practice.
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based cost function. In order to address these issues efficiently, one can consider

the following property of the nuclear-norm [87]:

Lemma 2 ([87]). For any matriz D € R™*™, the following holds:

|DJl. = min
P?

in (IP|% + [IX|%) st D=PX. (5.7)

N |

If the rank of D is v < min(m,n), then the minimum solution above is attained

at a factor decomposition D = PpyxrXrxn-
Using Lemma 2, we make an equivalent form of (5.6) as follows:

: A 2 2
min fi(D)+ 5 (IPIR+ IXI}), st.DeC. (5:8)

where C = {D, P, X | D = PX}. However, by using the lemma, we have lost the
effect of shrinkage since the singular value thresholding operation is no longer
needed. Even though we have lost the effect of thresholding, the effect remains
in the problem by fixing the rank to r. Moreover, (5.8) is a lasso-based approach
which has weak convexity and, hence, can make an iterative minimization routine
unstable when highly corrupted data are presented. To improve the stability of the
algorithm and give the shrinkage and thresholding effects on the singular values
of D, we introduce a strong convex regularizer for the original cost function (5.6)3

using the ls-norm penalty of singular values:
mli)n fl(D) + )\QEN<D), s.t. DeC, (59)

where Qpn(D) = ||D[l« + | D||%. Although (5.9) is slightly modified from

(5.3), they are equivalent. Using the fact that |D|. = >, |oy| and ||D|% =

3Here, we first give an equivalent form of the original problem (5.6), for a while, instead of

(5.8), to analyze the problem from a theoretical perspective.
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tr(VEUTUZVT) = tr(32?) = Y, |oi|?, where D = USVT is SVD of D, we have

the following equivalent form to (5.9):
Hll%n fi(D) + I e (%), (5.10)

where
. r Ay &
Tana(®) £ MY loil + 5 lif?, (5.11)
i i
A1 = A, and Ay = al.

In (5.11), we have elastic-net regularization of singular values of D, which has
shown its superiority compared to lasso [34] in many applications [104, 106, 105].
It is capable of stabilizing a lasso-type method due to its strong convexity, owing
to the Frobenius norm [104, 106, 109]. By incorporating with Lemma 2, we have
the following equivalent formulation of (5.9):

. )‘1 2 2 )‘2 2
min £i(D)+ 5 (IPIF + 1X13) + 21D, (512

and it has both a thresholding effect over singular values from the alternative
definition of Lemma 2* and a shrinkage effect from the Il regularizer to make a
parsimonious and stable model. In summary, we can achieve both thresholding
and shrinkage effects without performing SVD by introducing a strong convex
regularizer, called elastic-net, to accelerate the computation speed and stably
solve problems.

Note that, without these regularization terms, the problem (5.11) can be solved
using the augmented Lagrangian alternating direction method (ALADM) [11].
There is another approach using a nuclear-norm regularized /1-norm cost function

[49]. Tt is extended using the alternative definition of the nuclear-norm given in

4Actually, it also gives a hard thresholding effect due to the matrix factorization by the

pre-defined rank.
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Lemma 2 (Unifying®) [22], which does not contain the smoothness term given
in (5.12). However, these methods can find a suboptimal solution since these
alternating minimization based approaches with weak convexity may lead to a
poor solution in the presence of highly corrupted data (see Section 5.4.1). Figure
5.1 shows results of the proposed method compared to Unifying [22], a lasso-based
method, and ground-truth on a simple example (100 x 100) with 20% outliers.
The rank of the ground-truth is five. From the figure, the proposed method gives
a stable result against outliers and eliminates noises by suppressing the singular
values, whereas Unifying finds relatively inaccurate and larger singular values
and shows a poor reconstruction result compared to the proposed method and

the ground-truth.

In general, the problem (5.12) with the low-rank constraint D = PX is a non-
convex and non-smooth problem, making it difficult to find a solution efficiently
and exactly. To solve the problem efficiently, a common strategy is to use an alter-
nating minimization approach which solves for one variable while other variables
are fixed [10]. Hence, we give an equivalent formulation of (5.11) by introducing

an auxiliary variable D and solve the following problem instead.

. ~ A A2
min_ f1(D)+— (P[5 + 1X11%) + 5HDH%
P,X,D,D (513)
st. D=PX, D=D.

To solve (5.13), we utilize the augmented Lagrangian framework which converts

(5.13) into an unconstrained problem with Lagrange multipliers Aj, Ao € R™*™.

5We call the method in [22] as Unifying for simplicity.
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Chapter 5. Robust Lower-Rank Subspace Representations

5.2.2 Algorithm: FactEN
Algorithm

Based on the previous formulation, we develop a method based on the augmented
Lagrangian framework and solve it using an alternating minimization technique
[11]. To solve for P, we fix the other variables and solve the following optimization

problem:

A
Py = argmin M |PJF+ 5D = PX + 2| (5.14)

where 8 > 0 is a small penalty parameter. This optimization problem is a least

square problem and the solution is
Py = (A + BD)XT(MIT 4+ BXXT)7L (5.15)

where I denotes an identity matrix. Similar to (5.14), X and D can be solved as

follows:

X, = (I +pPTP)'PT (A + BD), (5.16)

_ BPX + 8D+ Ay — A,

D 5.17
+ Y+ 28 (5.17)
We obtain the following equation to solve for lA),
D = argmin f1(D) + tr (Ag(f)—D)) —l—gﬂﬁ—DH%, (5.18)
D

and the solution can be computed using the absolute value thresholding operator

[43, 35, 49]:
_ Ay 1
W®D+:W®<Y—S<Y—D+2,>>,
BB
N (5.19)
W@D+ :WCD(D—;),
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Algorithm 9 FactEN by ALM for optimizing (5.13)

1

2

3:

4:

5:

6:

7

8

9

. Input: Y € R™*" r B, p, and A\;, Ay = 1073
: while not converged do
while not converged do
Update P, X, D, lA?, respectively
end while
Update the Lagrange multipliers Aq, A2 using (5.20)
8 = min(pB. Brnaz)
: end while

: OQutput: P € R™*", X € R™*", and D € R™*"

where S(z,7) = sgn(r)max(|z| — 7,0) for a variable z and W € R™*" is a

complementary matrix of W whose element w;; is 0 if y;; is known, and is 1 if

¥ij is unknown.

Finally, we update the Lagrange multipliers as
Ay = A1+ B(D — PX), Aoy =Ay+3(D— D). (5.20)

Based on the previous analysis, we derive a robust elastic-net regularized low-

rank matrix factorization algorithm and it is summarized in Algorithm 9. Since

the algorithm is constructed based on elastic-net regularization and solved using

a matrix factorization approach, the proposed method is named as FactEN. In

the algorithm, we have assumed a normalized observation matrix. Thus, the out-

put matrices P and X can be later re-scaled based on initial scaling factor. We

initialize the optimization variables with the Gaussian distribution A/(0,1073).6

The computational complexity of the inner loop (line 4 in Algorithm 9) is

5Note that we have empirically found that our algorithm is not sensitive to initial values and

finds similar solutions with different initial values.
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O(mnr) for the proposed method, where m, n, and r denote dimensionality, sam-
ple size, and rank, respectively, which is the same as those of Unifying [22] and
ALADM [11]. Since IALM [43] and Regl;-ALM [49] perform an SVD operation at
every iteration, their computational complexities are O(min(m,n) max(m,n)?)
and O(rmax(m,n)?), respectively, requiring more computational efforts than
FactEN. In the algorithm, we can choose (4, by following several works [43, 49]
(e.g., 10%°) as a real-valued choice of 3 for the positive infinite number or very
high upper bound. However, since our algorithm converges within a small number
of iterations (see Figure 5.2), the exact value does not influence the performance
of the proposed method.

Note that the proposed method can be easily extended to speed up the algo-
rithm with linear complexity at each iteration by sampling sub-matrices from a

measurement matrix as described in [12].

Convergence analysis of FactEN

In this section, we analyze the convergence property of the proposed method. Al-
though it is difficult to guarantee its convergence to a local minimum, an empirical
evidence suggests that the proposed algorithm has a strong convergence behavior
(see Figure 5.2). Nevertheless, we provide a proof of weak convergence of FactEN
by showing that under mild conditions any limit point of the iteration sequence
generated by the algorithm is a stationary point that satisfies the Karush-Kuhn-
Tucker (KKT) conditions [110]. The KKT conditions are first order conditions to
be an optimal solution in constrained optimization problems. It is worth proving
that any converging point satisfies the KKT conditions because they are necessary
conditions to be a local optimal solution and give the minimum guarantee about

the convergence behavior of an algorithm when it is nonconvex and thus difficult
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to show the complete convergence. This result provides an assurance about the
behavior of the proposed algorithm.

We rewrite the cost function of FactEN by assuming the fully-observed data
model of (5.13), i.e., W;; =1 for all 4, j, as follows:

: A~ A
min_ fo(D) + - (IPI7 + [ X]%) + A2 D%
PX,D,D 2 (5.21)

st. D=PX, D=D.

where fg(ﬁ) = ||Y — lA)||1 However, a similar result can be derived for the
partially-observed data model.
Let us assume that the proposed algorithm reaches a stationary point. The

KKT conditions for (5.21) are derived as follows:

D-PX=0, D-D=0, glﬂlep—Ale:o,
oL - oL
oy =MX P Ay =0, oD XD+ Ay — Ay =0, (5.22)

Ay € =95(|[Y = Dlh).

Here, we can obtain the following equation from the the last relationship in (5.22):

A 1 .
Y—D+F2 €Y -D-— Baﬁ(uy—pul)

o R - (5.23)
=Y D= 505([Y = Dlj) = Qp(Y - D),

where scalar function Qg(t) £t — %0|t| is applied element-wise to Y — D. From

[11], we can obtain the following relation:

Y—f):Q51<Y—D+/;2)ES(Y—D+AﬁZ7;>, (5.24)

where S(z,7) = sgn(x) max(|z| — 7,0). Based on these conditions, we prove the

convergence to a point which satisfies the KKT conditions.
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Theorem 2. Let G £ (P, X, D,ZA),Al, Ao) and {G7 321 be generated by FactEN.

Assume that {G7 521 is bounded and lim; 0o {G'T — GI} = 0. Then, any accu-
mulation point of {G’ 521 satisfies the KKT conditions. In particular, whenever

{GI 521 converges, it converges to a KKT point.
Proof. See Appendix E O

In our algorithm, we set the stopping criterion as

||D(t) _ p(t))((lt)H1
[1Y|[1

<0, (5.25)

where t is the number of iterations and 6 is a small positive number. Since it is
enough for the algorithm to achieve a nearly stationary point when the differ-
ence between the terminating cost of adjacent iterations becomes small, we set
the stopping condition as # = 107 in our experiments in Section 5.4.1. Figure
5.2 shows scaled cost values’ of the proposed method at each iteration for four
examples from 500 x 500 to 3,000 x 3,000 with outliers as described in Section
5.4.1. Each point denotes a cost value at each iteration. As shown in the figure,
the cost value of FactEN decreases fast and converges to a stationary point in a

small number of iterations.

"We have scaled cost values as (f1(D) + %(HPH% + X117 + A%HDH%;)/HVV ©Y|; in order

to display four cases under the same scale.
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1 —— FactEN (m=500) | |
—@— FactEN (m=1000)
0.9 —8— FactEN (m=2000) | |
—A— FactEN (m=3000)
0.8
3
=< 07
>
8 06
o
0.5
0.4
0.3
0 5 10 15 20 25

Execution time (sec)

Figure 5.2: Scaled cost values of the proposed algorithm at each iteration for
four synthetic examples. The termination of the cost value means the algorithm
reaches to a stationary point in the cost function, which gives an empirical jus-
tification, showing that the proposed algorithm converges to an accumulation

point.
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5.3 Joint Subspace Estimation and Clustering

5.3.1 Problem formulation

The subspace learning method described in the previous section only considers
a single subspace and cannot be applied to datasets, in which data samples are
drawn from a union of multiple subspaces. Hence, in this section, we consider the
general elastic-net subspace representation framework given in (5.1). Handling a
union of multiple subspaces is closely related to a subspace clustering problem
[15], where the goal is to estimate the structure of multiple subspaces by a method
based on a user-defined regularizer, such as the l;-norm for sparse representation
[16], the nuclear-norm for low-rank representation [4], and the Frobenius-norm
for least square regression [111]. While there are many algorithms to identify the
exact structure under noiseless scenarios [16, 4], it is still difficult to find the
precise structure under grossly corrupted scenarios. As a remedy of the issue, we
propose a new joint optimization framework handling both subspace learning and
clustering under the presence of corruptions.

The problem formulation of the unified framework for both subspace learning

and clustering in the presence of corruptions is as follows:

Igiél fi(D) + XN (D,C), s.t. D,C € Cgn, (5.26)

where Qpn(D,C) = Qpn(D) + BQc(C) and C € R™" is a latent matrix to
reveal the structure of multiple subspaces. Qc(C) = ||C|; and § is a weighting
parameter. Here, Cpy = {D,C | D = DC, diag(C) = 0}. The last constraint in
Cen, diag(C) = 0, is used to avoid a trivial solution, i.e., C' = I, where [ is the
identity matrix. The problem (5.26) can be reduced to the problem (5.9) when
we ignore C and enforce the rank constraint for D. In (5.26), we jointly learn the

outlier-reduced low-rank matrix D and the subspace representation matrix C. A
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similar approach to (5.26) is low-rank subspace clustering (LRSC) [107], which
pursues both subspace estimation and clustering in the presence of outliers.

Notice that we do not factorize the data matrix into basis and coefficient matri-
ces, unlike FactEN in Section 5.2, since the rank of a subspace clustering problem
is generally unknown or difficult to estimate reliably. Hence, we do not apply the
Lemma 2 to (5.26), which means that we do not obtain the computation advan-
tage for this problem. But, the effect of the elastic-net regularization is still valid
for subspace clustering since the elastic-net over singular values is used in the
joint optimization procedure to find a noise-reduced data stably in the presence
of corruptions.

Let us consider a case where all data are observable. But, we can easily extend
to a scenario with missing data. The equivalent problem of (5.26) for a non-

missing scenario with two auxiliary variables D and J is as follows:

: A2\
min fc(M)+A1HDII*+§||D||%+A3HJII1
M.,D,D,J,C (5.27)

st. D=M,M=DC,J=C,D = D,diag(J) =0,

where fo(M) = ||Y — M]||; and A3 = BA.

5.3.2 Algorithm: ClustEN

From the above formulation, we derive another method based on the augmented
Lagrangian framework with Lagrange multipliers I1;, Iy, II3, and II4. and solve
it using the alternating minimization approach of optimization variables as dis-
cussed in the previous subspace learning section.

To solve for M, we have the following problem:

M, = min f.(M
= min fu(M)+

(5.28)
Y 1 - 11,
3 (1D 0+ S+ 11 - Do+ 2
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where v > 0 is a small penalty parameter and its solution is computed by an
absolute value shrinkage operator [43]:
1
M+:Y—S<Y—K,>, (5.29)
2y
where K = %('y(lu) + DC) 411} + II,) and S(z, 7) = sgn(x) max(|z| — 7,0).
To find D, we have the following problem:

2

o 11
D, :minAly\D||*+7HD—D+4 : (5.30)
D 2 Yl r
which can be solved by singular value shrinkage [43, 35]
Dy =UpS;(Sp)Vp, (5.31)

where 7 = % and [Up, Sp, Vp] = svd (lv) — %), where svd(-) is the singular
value decomposition (SVD) operator.
The update of C and D are constructed by least square problems and their

solutions are

9

~ ~ 1 =4 H
C,=D'D+1)™! <DTM + DTy 4 J + 3> , (5.32)
gl gl
and
Dy = (y(M + MCT + D) — Iy + II,CT +11,) T, (5.33)

respectively, where I' = \oI + 2vI +~CC7T.

Lastly, the update of J is constructed as

~

Jy = J — diag(J), (5.34)

where J is computed as follows:
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Algorithm 10 ClustEN by ALM for optimizing (5.27)

1: Input: Y € R™*™ ~_ p, and A1, Ao, and Ag

2: while not converged do

3:  while not converged do

4: Update M, D, C, D, J, respectively

5.  end while

6:  Update the Lagrange multipliers Iy, 1o, I3, and 114
7y =min(pY, Ymaz)

8: end while

9: Qutput: D € R™*" and C' € R™*"

We also have the same update strategies of the Lagrange multipliers, 11y, I1o, I13,
and Il4, as described in Section 5.2.

In conclusion, for the problem described in (5.27), we have derived a new al-
gorithm, named ClustEN, and it is described in Algorithm 10. In this algorithm,
we set the initial values of optimization variables to zero. We solve for the prob-
lem (5.27) with respect to the five optimization variables using the alternating
Lagrangian framework whose convergence properties are similar to those in [43].
While it is difficult to prove the convergence in general, there exist some guaran-
tees for ensuring the convergence with mild technical conditions when we optimize
three or more variables [43]. We set the stopping criterion of the algorithm to the
following:

MO =MD <& A 00 -0V <6,
(5.36)
A IO — gD <,
where t is the number of iterations in the inner loop and ¢ is a small positive

number. Since it is enough to obtain a nearly stationary point of the optimization
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Algorithm 11 Subspace segmentation by ClustEN

1: Input: Y € R™*™ the number of subspaces k

2: Obtain C' in (5.27) using Algorithm 10

3: Construct Z by performing post-processing [16] on C

4: Perform NCut on Z and segment data samples into k clusters

5: OQutput: cluster memberships of data samples

variables like FactEN, we set the stopping condition of the proposed method as

e = 1077 in all subspace clustering experiments.

The computational complexity of the inner loop is O(min(m,n)max(m,n)?)
for ClustEN, which is the same as SSC [16], LRSC [107], and LRR. [4].® Although
the proposed algorithm have more optimization variables than other methods,

the difference of running time among them are not significant (see section 5.4.2).

After finding the structure of multiple subspaces in the subspace representation
matrix, the next stage is to perform post-processing, which is used for most of
the subspace clustering algorithms and gives a definite effect on the clustering
performance. In our experiments, we use a post-processing technique described in
[16], which reduces the noise effect in a subspace representation matrix while pre-
serving the sparsity. Finally, we use the well-known spectral clustering algorithm,
Normalized Cuts (NCut) [52], to segment data samples to their respective sub-
spaces. The whole procedure of the subspace segmentation based on the proposed

method is summarized in Algorithm 11.

8Note that we compare the accelerated version of LRR described in [4] in this work.
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5.4 Experiments

We evaluated the performance of the proposed subspace learning method, FactEN,
by experimenting with various synthetic and real-world problems, such as non-
rigid motion estimation [46, 49], photometric stereo [14, 22], and background
modeling [12]. We compared FactEN to the state-of-the-art low-rank approxima-
tion methods, ALADM [11], Regl;-ALM [49], and Unifying [22], and rank esti-
mation methods, TALM [43] and ROSL [12]. We set the parameters of FactEN
as follows: p = 1.2 for all cases, except for Giraffe and Static Face datasets, in
which p = 1.05; and Sy = 0.5 for all cases, except for non-rigid motion estimation

problems, in which 8y = 1072, Note that 8 = Bo/||Y||co-

We also compared the another proposed method, ClustEN, with the state-of-
the-art subspace segmentation algorithms, SSC [16], LRR [4], LRSC [107], LSR
[111], and SMR [59], for well-known subspace clustering problems, such as mo-
tion segmentation [55], face clustering [4], and handwritten digits clustering [59].
For ClustEN, we focus on the comparison of methods for clustering accuracy and
running time. We set the parameters of ClustEN as follows: p = 1.2 for face clus-
tering, 1.7 for handwritten digit clustering, and 1.5 for motion segmentation; and
v = 1072 for face and handwritten digits clustering, 10~! for motion segmenta-
tion, respectively. We report the setting of remaining parameters, A = (A1, A2, A\3),
for each dataset in Section 5.4.1. Parameters of all compared algorithms are set as
reported in their papers and tuned to achieve the best performance for each task.
In this work, we used an inexact version of ALM [43] in the proposed algorithms
for all experiments, since the inexact version generally gives the comparable per-

formance with faster computation than exact ALM [43, 4].
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5.4.1 Subspace learning problems
Synthetic data

First, we applied the proposed method to synthetic examples. We generated six
test sets from 500 x 500 to 10, 000 x 10, 000 with Gaussian noises which were sam-
pled from A(0,1072). In the matrices, we added outliers for randomly selected
entries, which were uniformly distributed in the range of [—15,15]. All entries of
the weight matrix W are one in this problem. We set the rank of each test data
matrix as 7 = [min(m,n) x 0.01 X x]. In the experiment, the average reconstruc-
tion error Egy, is calculated as Egy, = 1||M9 — M |1, where M9t is the ground
truth and M is the low-rank matrix approximated by the applied algorithm.
Figure 5.3 shows average performances on a synthetic example (500 x 500) with
various data ranks” and various outliers ratios to verify the robustness under
various conditions. We did not perform IALM for experiments using different
outlier ratios, since it gives much poorer performance than compared methods.
Overall, the proposed method outperforms other methods with respect to the
reconstruction error for both scenarios. Regli-ALM follows the proposed method
with slight error difference. Unifying gives similar performance to FactEN, but its
reconstruction error becomes higher as the data rank or outlier ratio increases.
TALM and ROSL show unsatisfactory results when data rank or outlier ratio is
large, restricting their applications in practice. From Figure 5.3(b), we can see
that the proposed method is robust to outliers regardless of the outlier ratio.
To verify the ability of the proposed method compared to Unifying with re-
spect to the rank and sparsity, we conducted an experiment for a 1,000x 1,000

synthetic example. Figure 5.4 plots the fraction of correct recoveries at different

9Note that the data rank means the percentage of the true rank over the maximum possible

rank of the data matrix.
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Figure 5.3: Average performances on a synthetic example (500 x 500) with various
conditions. (a) Average reconstruction errors at different observation data rank

ratios (10% outliers). (b) Average reconstruction errors at different outlier ratios

(10% data rank).

rank and sparsity ratios. The region which is correctly recovered by the pro-
posed method appears to be broader than that of Unifying. From the figure, the

proposed method is more capable of handling corruptions than Unifying.

Figure 5.5(a) and 5.5(b) show average reconstruction errors and execution times
of different algorithms, respectively, for various matrix sizes with 8% fixed data
rank and 4% outliers which were uniformly distributed in the range of [—20, 20].
We could not evaluate TALM and Regli-ALM for a large-scale problem (10, 000 x
10,000) because of their heavy computational complexity. The proposed method
outperforms the other methods with respect to the reconstruction error in all
cases. Although Regli-ALM shows the similar performance compared with the
proposed method for small-scale datasets, it takes a longer computation time to
get a good solution and shows poor performance for large-scale problems. The

computing time of ALADM is faster than FactEN, but it performs poorer than
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Figure 5.4: Phase transition in rank and sparsity for a synthetic example
(1,000x1,000) using the proposed method and Unifying. Correct recovery (white
region) is achieved when a recovered low-rank matrix M satisfies | Mt —

M|y /|| M9t <5 x 1074,

FactEN.

To compare the proposed algorithm in realistic conditions, we changed the
outliers to block corruptions with missing entries in a synthetic example. For a
similarly constructed 300 x 300 example, we added occlusions with various sizes
with 20% missing data. Figure 5.5(c) shows reconstruction errors of different
methods. As shown in the figure, the proposed method robustly reconstructs
corruptions while other methods except ALADM give poor reconstruction results
when there are large-sized block corruptions. It is interesting to note that Unifying
is not robust against heavy corruptions including missing data compared to the

proposed method.

Non-rigid motion estimation

We evaluated the proposed method for real-world problems, which are summa-

rized in Table 5.2. For these problems, we computed the mean absolute error
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Figure 5.5: Average performances for synthetic problems in the presence of cor-
ruptions. (a) Average reconstruction errors with random outliers for various data
sizes. (b) Average execution times for various data sizes. (c¢) Average reconstruc-
tion errors with various block corruption sizes and 20% missing for an example

of 300 x 300 in size.
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Table 5.2: Summary of real-world problems with known rank r.

Datasets Size Rank r | Missing
Giraffe [74] 240 x 167 6 30 %
Shark [13] 91 x 240 6 10 %
Static Face [74] 4,096 x 20 4 42 %
PETS 2009 [89] || 110,592 x 221 | 2 0%
(MAE) over the observed entries as
W © (M — M)||x
Erea = : 5.37

First, we conducted a non-rigid motion estimation experiment using Giraffe
sequence [74]. The non-rigid motion estimation in the presence of missing data
from image sequences can be considered as a low-rank approximation problem. In
this problem, low-rank matrix factorization can be applied to restore 2D tracks
contaminated by outliers and missing data. To demonstrate the robustness of the
proposed method, we replaced 5% of the randomly selected points in a frame
by outliers in the range of [0,100] whereas the data points are in the range of
[127,523]. In this setting, we performed several experiments by changing outlier
ratio in the data.

The result for the Giraffe sequence in the presence of various outlier levels is
shown in Figure 5.6(a). The figure also includes the case when no outliers are
added. As shown in the figure, FactEN gives the best performance regardless
of the outlier ratio. Although Unifying gives similar reconstruction performance
when the outlier ratio is small, the performance gets worse as the outlier ratio
increases. Regli-ALM and ALADM show worse performance compared to other

state-of-the-art methods. Figure 5.7 shows how the average reconstruction error
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Figure 5.6: Average performances on real-world problems (non-rigid motion es-

timation, photometric stereo) in the presence of outliers and missing data. (a)
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Giraffe sequence. (b) Shark sequence. (c¢) Static face.

is affected by the choice of A for FactEN and Unifying [22]. The proposed method

shows more stable results under different values of A\; and Ay, whereas Unifying

is sensitive to the choice of

We also performed the motion estimation problem using the Shark sequence
[13]. In this data, we examine how robust the proposed method is for various
outlier ratios in the presence of missing data. We randomly dropped 10% of

points in each frame as missing data. We set from 0% to 15% of tracked points

Al
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Figure 5.7: Comparison between the proposed method and Unifying [22] at dif-

ferent values of A1 for the Giraffe sequence. () denotes a value of \s.

as outliers in each frame in the range of [—1000, 1000], whereas the data points

were located in the range of [—105, 105].

Average reconstruction errors at various outlier ratios by different methods
are shown in Figure 5.6(b). As shown in the figure, FactEN and Unifying both
give outstanding reconstruction results. However, the proposed method gives the
better reconstruction results than Unifying on average. Similar to the previous
example, Regli-ALM and ALADM show the bad reconstruction performances
when there exist outliers. The reconstruction results of the three selected algo-
rithms, the proposed method, Unifying, and l1,-ARGp, for selected three frames
in the presence of 15% outliers are shown in Figure 5.8. From the figure, we can
observe excellent reconstruction results by the proposed method against missing
data and outliers compared to the other approaches. Even though Unifying shows

the similar reconstruction, it sometimes fails to estimate the exact reconstruction
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Unifying FactEN

RegL1-ALM

Figure 5.8: Reconstruction results from the shark sequence by three methods:

FactEN, Unifying [22], and RegL.1-ALM [49]. ')’ means the ground truth and
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'+’ means the reconstruction point.

point as

shown in the figure.

Photometric stereo

Photometric stereo [14] is another well-studied problem to estimate the surface
normal of an object given multiple images of the object under different lighting
conditions. It can be shown that the observation matrix has rank at most 3 [14].
In this work, we used the Static Face sequence [22] for the problem which has
20 images consisting of 64 x 64 pixel per image. We examine how robust the
proposed method is for various outlier ratios in the presence of missing data. We

set from 0% to 15% of tracked points as outliers in each frame in the range of

[0, 100].

The overall results are represented in Figure 5.6(c). From the figure, the pro-
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posed method gives the obvious distinction compared to other methods regardless
of the outlier ratio. Following the proposed method, Unifying presents the second
best performance. Although ALADM shows the satisfactory performance when
there exist small elements corrupted by outliers or no outliers, the reconstruction
error gets larger as the outlier ratio increases. Regli-ALM gives the vulnerability

for outliers in this problem.

Background subtraction

Modeling background from a video sequence is an important step to separate
foreground objects from background and applied to many applications, including
video surveillance, traffic monitoring, and abnormal behavior detection [92]. A
background modeling task can be considered as a low-rank matrix approximation
problem [35]. We have used a benchmark video dataset, PETS2009 [89], which
exists many walking people from a static overhead camera. For the task, we used
PETS2009 [89] which is a sequence of 221 frames. Since the original image frame
size is 576 x 768, which is very high dimensional, we rescaled each frame to 288
x 384 for computational tractability and thus the stacked data size is is 110,592
x 221. We performed the proposed method compared with the state-of-the-art
methods: Unifying [22] and ROSL [12]. We added 30% random noises in randomly
selected frames.

Figure 5.9 shows the background modeling results on two selected frames. As
shown in the figure, FactEN and Unifying correctly separated foreground from
background. The rank estimation method, ROSL, fails to find a good solution in
the presence of heavy corruptions. The computation times are 186.37 sec for the
proposed method, 497.46 sec for Unifying, and 145.93 sec for ROSL. Although

ROSL gives the slightly faster computation time than FactEN, it did not provide
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Chapter 5. Robust Lower-Rank Subspace Representations

satisfying results.

In order to compare the algorithms quantitatively, we used the Bootstrapping
sequence [90]. The dataset has a foreground ground-truth image which is used
to compare the performance of algorithms in terms of precision and recall.!?
We used the whole 300 frames, where each frame is 160 x 120, and converted
them into gray-scale images. In the dataset, we inserted uniform noises from
[0,1] for randomly selected 10% of entries. We extracted final foreground images
of different algorithms by performing pixel-wise thresholding with mathematical
morphology (closing). Two low-rank approximation algorithms, Regl;-ALM and
ALADM, were included in this experiment. Figure 5.10 represents the precision-
recall curve by varying the threshold level for final foreground images. From the
figure, the proposed method shows the higher performance compared to other
algorithms. While Regli-ALM gives higher performance than FactEN when the
recall is low, it performs poorer than FactEN as we require higher recalls. In this
problem, Unifying gives the worst performance among the tested methods. The
running times of the compared methods are 11.9 sec for FactEN, 24.5 sec for

Unifying, 11.7 sec for ROSL, 211.4 sec for Regli-ALM, and 3.1 sec for ALADM.

5.4.2 Subspace clustering problems

The proposed subspace clustering method, ClustEN, is compared in this section.
We evaluate the method along with other state-of-the-art algorithms for three
subspace clustering problems using the clustering accuracy and execution time.

The clustering accuracy is computed as %Z?:l ©(pi, map(q;)), where n is the

0The precision and recall are computed as follows: Precision = TP/(TP+FP) and Recall
= TP/(TP+FN), where TP is the number of correctly estimated foreground pixels, FP is the
number of wrongly estimated background pixels, and F'N is the number of wrongly estimated

foreground pixels.
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1
0.8
S o06Ff
@
(8}
< \
Q 047| = = =FactEN \
_____ Unifying .
\.._
ozt ALADM (
: RegL1-ALM
ROSL
o L= I I ! ! ! !

02 03 04 05 06 07 08 09 1
Recall

Figure 5.10: Precision-recall curve for the Bootstrapping sequence [90].

number of samples, p; and ¢; are the ground-truth and estimated cluster labels
from the tested method, respectively, ¢(a,b) is the Kronecker delta function, and
map(-) is a mapping function to permute estimated labels to match with the

ground-truth labels, which is computed by the Kuhn-Munkres algorithm [77].

Motion segmentation

Motion segmentation [55] is the process of separating tracked points of moving
objects from a video sequence into their underlying independent subspaces. Since
trajectories associated with a rigid motion lie in a low-dimensional subspace, we
regard motion segmentation as a subspace clustering problem. We performed the
proposed subspace clustering method compared with the state-of-the-art algo-
rithms, SSC [16], LRR [4], LRSC [107], LSR [111], and SMR [59], for the well-
known benchmark dataset, Hopkins 155 [55]. Hopkins 155 dataset contains 155
video sequences along with features of two or three motions in all frames. Typical

examples of the Hopkins 155 dataset are described in Figure 5.11. Motivated from

168



Chapter 5. Robust Lower-Rank Subspace Representations

Figure 5.11: Typical examples in the Hopkins 155 dataset.

the work in [16], we computed four measures for the accuracies of 155 sequences:
mean, standard deviation (Std), minimum, and median values. The parameters
of the proposed algorithm are set to A = (1072,1071,5 x 1073).

The experimental results of different methods are shown in Table 5.3. From
the table, the proposed method gives the state-of-the-art performance. Although
SMR shows better clustering accuracy than ClustEN, their performance gap is
insignificant. It is interesting to note that the proposed method is based on the
joint optimization using sparse representation similar to SSC [16], hence, SSC
can be considered as a baseline method of ours. In this respect, the proposed
method outperforms SSC with respect to all measures. Hence, we can see that
the subspace learning part in the proposed joint learning procedure can improve
clustering performance. LRSC, which has the similar strategy as ours, gives worse

performance than ours.

Face clustering

Face clustering [78] is a task to segment face images collected from multiple
subjects into their corresponding identities under various illumination conditions.
To evaluate the performance of the proposed method, we use the Extended Yale

B dataset [78], which contains 38 subjects each of which has 64 aligned frontal
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Table 5.3: Motion segmentation results (%) on the Hopkins 155 dataset.

Algorithms || Mean | Std | Min | Median
SSC 96.2 | 9.34 | 52.2 100
LRR 96.9 | 7.73 | 59.9 99.7

LRSC 96.5 | 8.08 | 60.3 99.5
LSR 95.9 | 10.2 | 52.1 99.6
SMR 97.7 | 6.7 | 58.2 100
ClustEN 974 | 7.19 | 57.6 100

face images under various illumination conditions. Following the works [16], we
evaluated different methods for five scenarios by collecting the first ¢ subjects,
where ¢ € {2,3,5,8,10}. We created a dataset by reducing the dimension of each
image to 9¢ by PCA. Hence, we have a dataset, whose size is 9¢ x 64c¢, for each

scenario. We set the parameters of ClustEN to A = (102,50,5 x 1072).

The clustering accuracies of different methods are shown in Figure 5.12. From
Figure 5.12(a), the proposed algorithm outperforms existing methods on average.
Even though SSC performs better than existing algorithms except ClustEN, it
degrades when the number of clusters is large. SMR shows good performance
for ¢ = 10, but it gives unsatisfactory results on average compared to the pro-
posed method. LRR and LRSC show the similar clustering accuracies across the
scenarios. We also compared the proposed method with respect to the running
time. The running times of different methods for a scenario when the number of
subjects is 10, are 5.68 sec for SSC, 1.45 sec for LRR, 0.73 sec for LRSC, 0.16 sec
for LSR, 1.2 sec for SMR, and 7.13 sec for ClustEN, respectively. The proposed
method gives the competitive computing time compared to other methods, even

though it has many variables to learn in a joint optimization problem.
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Figure 5.12: Clustering accuracy (%) on the (a) Extended Yale B dataset and (b)

Yale-Caltech dataset.
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Figure 5.13: Examples from the Yale-Caltech dataset. First and second rows show

facial and non-facial (outlier) images, respectively.

To evaluate the robustness of the proposed algorithm, we created a dataset
motivated from the work in [4]. The dataset, which we call Yale-Caltech, consists
of the Extended Yale B dataset [78] and Caltech 101 dataset [112]. We collected
101 images from Caltech 101 dataset, where we randomly selected an image for
each class, and regarded them as outlying samples. The typical examples from
the Yale-Caltech dataset are shown in Figure 5.13. As described in the previous
experiment, we selected the first ¢ subjects from the Extended Yale B dataset.
We made the dataset by blending Extended Yale B and Caltech data sets, each
of which has dimension of 9c¢ by projecting it to a basis matrix extracted from the
Extended Yale B dataset using PCA. We compared our proposal with existing
methods, SSC [16], LRR [4], and LRSC [107], which address outliers. In the
dataset, we did not compare LSR and SMR since they cannot handle outliers.
We set the parameters of the proposed method to A = (102,50, 8 x 1072).

Figure 5.12(b) shows the clustering accuracy of the compared methods for
the Yale-Caltech dataset. Similar to the previous problem, the proposed method
gives the best performance outperforming existing algorithms. Whereas, LRSC,
which is another joint optimization method, performs poorer than the proposed

algorithm. Even if LRR can handle outlying samples due to its group sparsity
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regularizer, it dose not show satisfying results compared to the proposed algo-
rithm. Average accuracies of the methods are 8.25 for SSC, 2.78 for LRR, 0.98 for
LRSC, and 8.96 for ClustEN. As shown in Figure 5.12, the proposed algorithm

shows its excellent performance for problems with and without corruptions.

Handwritten digits clustering

The proposed algorithm was also applied to handwritten digits clustering prob-
lems using the USPS dataset [113], which consists of 9,298 16 x 16 grayscale
images. The number of classes is ten, which contains digits from 0 to 9. We
tested the proposed algorithm compared with existing methods for two scenar-
ios by selecting the first 500 and 1,000 samples, which contains image samples
from all classes, from the dataset. The parameters of ClustEN are as follows:

A= (5x10%5x 10%,1071).

Table 5.4 shows the segmentation accuracy (%) and running time (sec) of dif-
ferent algorithms. As shown in the table, the proposed algorithm, ClustEN, gives
the state-of-the-art performance on average for both scenarios. SMR gives the
comparable performance to the proposed method. Note that all algorithms, ex-
cept SMR and ClustEN, show unsatisfactory results when the number of samples
are large (n = 1,000). Another joint optimization approach, LRSC, shows poor
performance for this problem. When it comes to the running time, the proposed
algorithm shows the decent running time, which is faster than SSC, and LRR.
Although LSR shows the fastest running time due to the closed-form solution,

its clustering accuracy is lower than that of ours.
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Table 5.4: Handwritten digit clustering results on the USPS dataset.

n=500 n=1,000

Algorithm || Acc | Time | Acc | Time

SSC 71 9.13 | 61.3 | 33.3
LRR 75.8 | 18.06 | 66 31.9
LRSC 478 | 4.03 | 50.3 | 9.49
LSR 72.2 | 0.19 | 66.2 | 0.86
SMR 73.4 | 094 | 74.8 | 8.75

ClustEN 76.0 | 3.34 | 734 | 12.7

5.5 Summary

Throughout this chapter, we have proposed a new subspace representation frame-
work based on elastic-net regularization of singular values. The introduced elastic-
net is shown to stabilize the proposed algorithms in the presence of heavy cor-
ruptions due to the strong convexity. The proposed algorithms can find a robust
solution more efficiently and is stable against missing data and outliers. Two al-
gorithms are developed under the proposed framework. FactEN is proposed to
robustly identify a low-rank matrix approximating the given data matrix. For
the general problem of subspace clustering and estimation, ClustEN is proposed.
The proposed algorithms have been applied to a number of applications for sub-
space learning and clustering, including non-rigid motion estimation, photomet-
ric stereo, and background modeling problems for subspace learning, and motion
segmentation, face clustering, and digit clustering for subspace clustering. The
experimental results show that the proposed algorithms outperform the state-of-
the-art methods in terms of the approximation error, clustering accuracy, and

execution time.
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Robust Group Subspace

Representations

As mentioned in the previous chapter, subspace clustering assumes that a data
sample can be represented by other samples drawn from the same subspace. While
many recent studies are based on sparse or low-rank representation for robust-
ness, the grouping effect among similar samples has not been often considered
with sparse or low-rank representation. In this chapter, we introduce group sub-
space representation to handle highly correlated data samples. It is motivated
by the well-known regularizer introduced in Chapter 5,! called elastic-net [104],
which has the grouping effect with variable selection. Based on the representation
using the elastic-net regularization, we propose two robust subspace clustering
algorithms: group sparse representation (GSR) and group low-rank representation

(GLR) which are based on sparse and low-rank representation, respectively. GSR

"While the elastic-net is introduced in Chapter 5 for the purpose of stabilizing the proposed
algorithm by regularizing singular values, we use the regularizer from a grouping perspective for

subspace segmentation by regularizing coefficient elements.
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is devised to reveal grouping effect in sparse representation due to the strictly
convexity of the proposed representation. While LRR has the grouping effect as
discussed earlier, GLR is proposed to overcome the non-strict convexity of LRR
and to demonstrate the effectiveness of the proposed group subspace representa-
tion over existing methods.

The main contributions of the proposed methods are summarized as follows.
First, the proposed group subspace representation generalizes sparse and low-rank
representation problems with strictly convexity promoting the subspace grouping
effect. It accelerates the grouping capability for both representations by captur-
ing the similarity among data samples collected from the same cluster, even in
the presence of noises or corruptions. We also show that our two proposals, GSR
and GLR, reveal a block-diagonal structure if subspaces are independent. In ad-
dition, we verify the grouping capability of our proposals when highly correlated
data are presented, theoretically and empirically. Lastly, the proposed methods
outperform the state-of-the-art methods, without introducing an additional com-
putational complexity from their baseline methods, on well-known benchmark
subspace clustering tasks, such as motion segmentation and face clustering with

and without corruptions.

6.1 Group Subspace Representation

The well-known subspace clustering approaches, SSC [53, 16] and LRR [54, 4],
work well for many problems, but they have limitations when performing a clus-
tering task as discussed in the previous section. In order to overcome the weak-
nesses, we introduce a generalized approach, named group subspace representa-

tion, to improve both methods. Motivated by the grouping effect discussed in
[104], we define:
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Definition 3 (Group subspace representation). Given a set of sample vectors
X = [®1,...,2,] € R>™, where samples are drawn from k subspaces. The task
of group subspace representation is to find a subspace representation matriz Z =
(21, ..., 2n) € R™*™ where ||z; — z;|| = 0 if ||x; — ;|| — 0,Vi # j, to segment the

samples according to the underlying subspaces they are drawn from.

From the definition, we can consider the following problem to find a subspace

representation matrix Z:
. A ou2 .
mZm||Z||5—i—§HZHF, st. X = X7, diag(Z) =0, (6.1)

such that A > 0. Here, || Z||s can be the I; norm for finding sparse representation of
Z or the nuclear norm for finding low-rank Z (with the last constraint, diag(Z) =
0, removed). This formulation promotes sparsity by the /; norm or the nuclear
norm and enforces grouping effects on a subspace representation matrix Z from
the Frobenius norm regularizer over Z, which allows grouping of highly correlated
samples in X. This is due to the strict convexity property of the group subspace
representation in (6.1), unlike the sparse representation in (2.8) in Chapter 2,
which is non-strict convex. Furthermore, it shrinks the subspace representation
matrix to parsimonious one by the /1 norm of Z. The distinct difference between

strict and non-strict convexity can be seen from the following lemma [104]:

Lemma 3. In a linear regression model, x = Xz, where X = [x1, ..., x,] is a set
of sample vectors and z is a coefficient vector, assume that x; = x;, for some
i,7 € {1,....,n}. (a) If we use the group subspace representation in (6.1), then

zi = zj. (b) If we use the sparse representation in (2.8), then z;z; > 0 and z* is
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another minimizer, where

2k, if k#1i and k #j,
d=1  (uta) () if k=i
(zi+2z)-1—s9) if k=4,

for any s € [0,1].

The strict convexity guarantees the grouping effect in the ideal situation with
the same samples drawn from a cluster, whereas the sparse representation ap-
proach does not provide a unique solution because of its non-strict convexity. Al-
though Lemma 3 shows an ideal case where samples are exactly the same, we can
infer the weakness of the sparse representation in (2.8) from Lemma 3. Based on
the above analysis, we propose two methods: group sparse representation (GSR)
and group low-rank representation (GLR), which are based on the group subspace
representation defined in Definition 3. Figure 6.1 shows the clustering evaluation
of the proposed methods, GSR and GLR, and their corresponding baseline algo-
rithms, SSC and LRR, using a synthetic example with small corruptions. From
the figure, the proposed methods find the subspace structure better than the
baseline algorithms, which can fail to find the exact clusters when there are cor-
ruptions (see the second cluster). Our proposals accelerate the cluster grouping

which prevents an unnecessary segmentation within a cluster.?

Theorem 3. Suppose that the data sampling is sufficient and samples are drawn
from a union of k independent linear subspaces. Let us define a function f satis-
fying f(Z) = f(ZP), for any permutation matriz P. Then, the optimal solution

Z* € R™" to the problem (6.1) is block-diagonal.

2While an affinity matrix is not perfect block-diagonal, an application of spectral clustering
can provide a better segmentation result by cleaning up disturbances in the imperfect affinity

matrix [114].
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Proof. See Appendix F.1 O

Theorem 3 shows that the optimal solution of a linear combination of any
functions satisfying f(Z) = f(ZP), for any permutation matrix P, such as the Iy
norm, Frobenius norm, and nuclear norm, achieves the block-diagonal condition.
In the following subsections, we introduce two algorithms based on the group

subspace representation.

6.2 Group Sparse Representation (GSR)

6.2.1 GSR with noisy data

In practice, there exist noises in real data sets. Now, we modify the cost function

(6.1) to consider noises as follows:
: A :
min £p(2) + M| Z]y+ FIZI%F. st diag(Z) =0, (6.2)

where {r(Z) is the Frobenius norm loss function to reflect the Gaussian noises,
i.e., 3| X — XZ||%, and A and )y are weighting parameters. The problem (6.2),
which we name group sparse representation (GSR), is a method based on the
well-known elastic-net regularizer [104] with self-dictionary X. Elastic-net is a
generalization of ridge and Lasso regression methods with a grouping effect by
applying both the /1 norm and Frobenius norm regularization on Z [104]. Hence,
GSR can prevent the sparsest representation of Z by grouping clusters properly.
When there exist closely related samples drawn from the same cluster, GSR
encourages the subspace representation matrix Z to have the same membership

for the closely related samples, as stated by the following theorem [104]:

Theorem 4. Given a sample x, € R, a dataset X € RY™, and parameters

(A1, A2), and assume that X is normalized. Let z* € R™ be the optimal solution
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to following problem:

1 A2
min  ||@, — X 2[5+ Mllz[ + 5= (6.3)
z 2 2
where X = [T1, ..., X1, Tht1, ..., Tnt1]. Supposed that zz; > 0, we have the
following relation:
* * 1
n(z,25) < o 2(1 = p), (6.4)
2
where (27, 27) = ||zf — 2} |l2/llzkll2 and p = xl'z; is the sample correlation.

Proof. See Appendix F.2. O

Theorem 4 says that when «; and x; are highly correlated up to a sign change
when negatively correlated, i.e., p ~ 1 (p ~ —1 if negatively correlated, then
consider —x;), the difference between the corresponding coefficients in z is almost

0, leading to the same subspace membership.

6.2.2 GSR with corrupted data

Now, we consider a problem where collected data are faced with unwanted cor-
ruptions, such as outliers and occlusion blocks. Since the problem (6.2) with the
Frobenius norm cannot handle the corruptions, a robust loss function, such as

the [ norm, is a better choice to deal with corruptions
. )\1 2 .
min (| 2] + 51 ZlF + A261(2), s.t. diag(Z) =0, (6.5)

where &(Z) = || X — X Z||1 is the element-wise [; norm of X — X Z.

Optimization for solving (6.5)

The problem (6.5) can be solved by the alternating minimization approach under

the augmented Lagrangian framework. Let F be a corruption matrix, which is
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modeled by X — X Z. Then we have the following Lagrangian:

A
£(Z,C.E) = | Z|1 + G217 + Al Ell
+tr(I7 (X — XC - E)) + tr(1 (C — 2)) (6.6)

p
+ DX - XC - B} + 0 - 213,

such that diag(Z) = 0, where C is an auxiliary variable for Z, and II; and Il
are Lagrange multipliers and S is a penalty parameter. We have optimization
problems to update the variables Z, C', and F using the alternating direction

method of multipliers (ADMM) [115]. First, we solve Z by the following equation
Z = 7 — diag(Z2), (6.7)

where Z is obtained by solving the following problem

2

: (6.8)
F

A
SIZIE+ 5|0 -2+

Z = min || Z
min || Z]1 + 5

8 I,
2

and the solution of (6.8) can be computed by the absolute value shrinkage oper-

ator [43]:

5 1
Z:Sﬁ ()\1+B(IBC+H2)>’ (6.9)

where S, (z) = sgn(x) max(|z| — v,0) for a variable z.
For solving C' and F, we have the following problems:

2 2

Il
X-XC-E+-L

I
min 4WC—Z+2 , (6.10)
C B g Bl r
'AHEH+ﬁHX XC E+H12 (6.11)
min A9 1 - — — — N .
E 2 B g
where (6.10) is a least-square problem whose solution is

XTI, 1

C=A" (XTX—XTE+Z+ 3 ! —5) (6.12)
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Algorithm 12 GSR or GLR for subspace clustering

1:

2:

Input: data matrix X € R%™ lying in a union of k linear subspaces
Solve an optimization problem of GSR or GLR to obtain a subspace repre-
sentation matrix Z

Form a similarity graph Z from Z

: Apply a clustering method to Z in order to segment the data samples to k

clusters

Output: a similarity graph Z and k clusters

with X7X + 1 = A and (6.11) is computed in a closed form using the absolute

value shrinkage operator:

i
E =38y <X - XC+ 1> . (6.13)

Note that we have the same optimization strategy to that of [16], which solves

Z and E simultaneously using ADMM, whose convergence to the optimal solution

for two variables are guaranteed in [43]. In summary, we derive a group sparse

representation (GSR) algorithm, based on the group subspace representation dis-

cussed in Section 6.1, for robust subspace segmentation, which is described in

Algorithm 12. In the algorithm, we solve an optimization problem (6.2) or (6.5)

according to the case when there are noises or outliers, respectively. After find-

ing a subspace representation matrix Z from the optimization, we construct an

undirected similarity graph Z as stated in [53]. Finally, we assign a cluster label

for each sample based on a clustering algorithm.
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6.3 Group Low-Rank Representation (GLR)

6.3.1 GLR with noisy or corrupted data

The proposed group subspace representation (6.1) can be applied to the nuclear
norm based subspace clustering problems, such as LRR [54] and LatLRR [116].
Like the sparse representation [53], the nuclear norm based clustering algorithms
can sometimes encourage the within-cluster segmentation due to their non-strict
convexity when there exist corruptions as shown in Figure 6.1. Hence, our group
subspace representation can help the nuclear norm based clustering methods to
improve the subspace grouping effect in a within-cluster. The new formulation to

consider the grouping capability is as follows (noiseless case):
. Ao
mzlnHZH*—i—5H2HF st. X =XZ. (6.14)

The problem (6.14), which we call group low-rank representation (GLR), also
satisfies the block-diagonal condition in Theorem 3. Based on results given in

[59], we can show the grouping effect of GLR as follows:

Theorem 5. The optimal solution of GLR has grouping effect, i.e., given a set of
data samples X = [x1,...,xp] € R¥X™ and a subspace representation matriz Z €
R™ ™, a solution to the optimization problem of GLR using X, if ||x; — ;|| — 0,

then ||z; — z;|| = 0 for all i # j.

Proof. See Appendix F.3. O

When data samples contain noises, i.e., X = XZ + F, where elements in F
have the independent and identically distributed Gaussian distribution, we can
easily make an optimization problem by inserting a loss function {r(Z) to the

formulation instead of the equality constraint.
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Now, we consider a more realistic scenario when data have some corruptions.
As stated in Section 6.2, we introduce a loss function &;(Z) to the problem (6.14)

to have the following robust subspace clustering problem:
. )\2 2
minéy(2) + M |12l + 21213, (6.15)

where A1 and Ay are weighting parameters.

Optimization for solving (6.15)

The problem (6.15) can be solved by ADMM of the following problem with two

auxiliary variables:

. A2 2
ZJ{IB%HX — Dli + M| Z]|« + ?HZH}«W

(6.16)
st. D=XM, Z=M,
and its corresponding augmented Lagrangian is
A2
L(Z,D,M) = | X = Dl + MllZ]. + 1 217
+tr(I7 (D — XM)) + tr(T13(Z — M)) (6.17)
s
+ (1D~ XM+ 112 - M),

where II; € R™ and II, € R™™ are Lagrange multipliers and 8 > 0 is a small
penalty parameter. Then, we solve for each variable while other variables held
fixed.

First, we form the following optimization problem to solve for Z:

. A2 s B 11y
mZm)qHZH*—i-?HZHF—i-E Z — M + F

and the solution of (6.18) can be computed by the singular value shrinkage op-

2

, (6.18)
F

eration [43] in a closed form as follows:
Z =18 (S)VY, (6.19)
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_ M
where 7 = o5 and

[Ul, Sl, Vl] = svd < (ﬁM — H2)> s (6.20)

1
A2 + B
where svd is the singular value decomposition operator.

For finding D, we consider the following problem:

p

2

, (6.21)
F

D—XM—!-&

in || X — D
i | - Dl + | L

and it has a closed-form solution using the absolute value shrinkage operator:

— Hl
D_X—SE<X—XM+B>. (6.22)

Lastly, the update of M is computed by the simple least squares
M=T"Y8X"D + XTI, + BZ + 1I,), (6.23)

where I' = B(XTX +1).

The overall procedure is to update the optimization variables via the alternat-
ing minimization until convergence. After finding the output Z by solving the
problem (6.16), we build an undirected graph and apply a clustering algorithm
to obtain k clusters as stated in Algorithm 12. In the ADMM procedure, we set
B to an increasing sequence to a maximum point, i.e., Si11 = min(pBt, Bmaz),
following [43, 4]. It is interesting to note that the convergence behavior of GLR
can be ensured by [43], since we have two-step optimization procedure in every
iteration where Z and D are optimized independently when M is held fixed.
Hence, the convergence of ADMM with two blocks can be guaranteed by [43]. A
similar proof can be applied to the well-known previous work, LRR [4], where
two variables in LRR can be optimized independently and simultaneously while
another variable is fixed, even though they said that it is difficult to ensure the

convergence of ADMM with three or more blocks [4].
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6.4 Experimental Results

In this section, we evaluate the proposed methods, GSR and GLR, for various
subspace segmentation tasks such as synthetic problems, motion segmentation
[55, 16], and face clustering [78, 4]. In the experiments, we formulate the proposed
methods based on the /3 norm loss function, i.e., we solve GSR and GLR for
problems (6.5) and (6.15), respectively. We compare the proposed methods with
state-of-the-art subspace clustering methods: SSC [53, 16], LRR? [54, 4], LRSC
[107], LatLRR [116], LSR [111], CASS [56], and SMR [59]. For the comparing
algorithms, we use the codes released by their authors. The parameters for each
method are tuned to have the best performance for each task. In experiments,
clustering accuracy and running time are used to evaluate the performance of
methods, where the clustering accuracy are calculated using the metric from [59].
Since k-means can give an unsatisfactory result when the number of clusters
is large as it can be biased to the initial condition [117, 118], we take another
approach described in [118], which avoids such problem, to segment data samples
into k clusters for all methods. Nonetheless, we also provide results using spectral

clustering (with k-means) in Table 6.2.

Synthetic Examples

First, we performed clustering experiments on synthetic examples. We generated
an example where the number of clusters and the number of samples were cho-
sen randomly in the range of [3, 10] and [30, 70], respectively. The dimension of
each sample is set to 50. For each cluster, we drew samples from a linear sub-

space which was generated by obtaining orthogonal basis vectors from Gaussian

3We used an accelerate version of LRR [4], which gives a speed-up over the original LRR

[54].
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Table 6.1: Average performance on synthetic problems over 100 independent runs.
From the first to the third row, we have the names of algorithms, clustering

accuracies (%), and running times (sec), respectively.

Algorithms | SSC | LRR | LSR | CASS | SMR | GSR | GLR

Accuracy | 83.31 | 86.55 | 84.78 | 85.68 | 86.60 | 89.05 | 91.61

Time 1.43 0.52 | 0.044 | 247.7 | 0.21 0.46 2.08

random vectors whose mean is zero and standard deviation is chosen randomly.
The number of basis vectors is randomly selected to be less than the half of the
number of samples. When generating a synthetic dataset, which consists of k
clusters, we added a noise matrix whose elements had the Gaussian distribution
with zero-mean and variance of 0.2. In this problem, we compared with SSC and
LRR, and methods addressing the grouping issue (LSR, CASS, and SMR) to

demonstrate the performance of the proposed group subspace representation.

The average clustering accuracy and running time over 100 different synthetic
examples are shown in Table 6.1. From the table, the proposed methods achieve
the best clustering accuracy with a competitive running time. GSR outperforms
SSC on both clustering performance and computing time. Although LSR is faster
than ours, the clustering performance is lower than those of GSR and GLR.
Since CASS gives a much longer running time than other methods (over 100
times longer) because of its expensive operation to solve the trace Lasso based
optimization problem, it is hard to be used for large-scale problems in practice.
SMR gives the best performance among the existing methods, but it gives lower

clustering accuracy than the proposed methods.

Figure 6.2 shows affinity matrices computed from different algorithms for an
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Ground Truth SSC (89.2857%) LRR (95.2381%) LSR (84.0476%)

CASS (95.8333%) SMR (95.8333%) GSR (97.619%) GLR (98.8095%)

Figure 6.2: Clustering evaluation of the proposed methods and other state-of-
the-art methods, SSC, LRR, LSR, CASS, and SMR, for a synthetic example
with Gaussian noises. Figures show a ground truth affinity matrix and affinity

matrices computed from different algorithms. (-) denotes the clustering accuracy.

example where the number of clusters is 5 and the number of samples in each
subspace was chosen randomly in the range of [30, 70] with Gaussian noises. As
shown in the figure, the proposed two methods show the clear representations
over the affinity matrix with higher clustering accuracies than other methods,
whereas other methods represent somewhat noisy affinity matrices with poorer

performance than ours.

We also generated an example with the same setting to the previous example,
and added a corrupted matrix which consists of a square occlusion block whose
area is n2/10 and Gaussian noises. The optimization results from different algo-
rithms are shown in Figure 6.3. In the figure, most of the affinity matrices give

the noisy representation due to the corruption. Among the methods, our pro-
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Ground Truth SSC (87.6652% LRR (70.4846%

CASS (74 8899%

GLR (96.9163%)

SMR (88 5463%) GSR (93 8326%)

Figure 6.3: Clustering evaluation of the proposed methods and other state-of-the-
art methods, SSC, LRR, LSR, CASS, and SMR, for a synthetic example with
corruptions. Figures show a ground truth affinity matrix and affinity matrices

computed from different algorithms. (-) denotes the clustering accuracy.

posals represent more clean results than the compared methods including their
baseline algorithms, SSC and LRR. Specifically, GLR improves LRR by prevent-
ing the inter-cluster grouping and outperforms other methods significantly by its
robust group subspace representation. CASS gives poor performance because it
did not capture the resemblance among similar samples in some subspaces under

the noisy scenario.

To verify the robustness of the proposed methods under the various of noise
conditions, we added various percentages of corrupted elements, from 0% to 100%,
to synthetic examples whose elements are drawn from a uniform distribution in
the range of [—1, 1]. In this experiment, we compared our proposals with the cor-

responding baseline methods, SSC and LRR, to investigate the robustness of the
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Figure 6.4: Average clustering performance on synthetic examples under various

noise ratios.

proposed subspace grouping. The average clustering performances of the methods
over 100 independent scenarios are shown in Figure 6.4. Note that even though
SSC gives much lower accuracy than LRR, GSR reduces the gap considerably
and even surpasses LRR when the corruption ratio is lower than about 35%. As
shown in the figure, we can see that the proposed grouping methods outperform

their baseline algorithms.

Motion Segmentation

Motion segmentation [55] is a task for clustering trajectories of rigidly moving
objects based on tracked points along the frames. Since all trajectories associated
with a single rigid motion lie in a low-dimensional subspace, it is considered as
a subspace clustering task over the point trajectories. We applied the proposed

methods to the well-known benchmark dataset, Hopkins 155 database?.

“http://www.vision. jhu.edu/data/hopkins155
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We compared the proposed methods with seven state-of-the-art subspace clus-
tering methods for evaluation, including LRSC [107] and LatLRR [116]. Table
6.2 describes the results of two measures (mean, standard deviation (Std)) over
segmentation accuracy of the methods for the Hopkins 155 dataset. We compared
the methods via two clustering methods, a method in [118] and spectral cluster-
ing [58], as discussed in the previous section. From the table, GSR outperforms
other methods including SSC with respect to the mean and standard deviation
of 155 motion segmentation tasks. GLR shows competitive results for both cases
and it also has a higher accuracy than LRR, which is the baseline algorithm of
GLR. LatLRR and SMR show better performance than GLR, but not as good as
GSR. LSR and CASS, which address the grouping issue, do not give satisfactory
results compared to the proposed methods. We can see that the proposed group
subspace representation method helps the baseline methods, SSC and LRR, sig-
nificantly. Note that GSR can have a denser membership representation than
SSC because of its subspace grouping, which can balance between sparse and
dense representation. Although LRR gives a dense representation by minimizing
a nuclear norm based optimization problem, our group representation using GLR
further enhances the clustering accuracy. Note that the two clustering methods
[118, 58], which are used after affinity matrices are found, give similar clustering

performance for most of the methods in this problem.

Face Clustering

Face clustering without outliers. Face clustering [78, 54] is a task for seg-
menting face images into their identities. We tested the proposed algorithms for
the face clustering task under unfavorable conditions. We used the Extended Yale

B [78], which consists of 38 subjects placed in order where each subject has about
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Table 6.2: Motion segmentation results (%) on the Hopkins 155 dataset.

Method in [118] | Spectral clustering

Algorithms | Mean Std Mean Std

SSC 96.42 8.99 96.46 9.11
LRR 96.59 7.67 96.53 8.04
LRSC 96.43 7.85 96.5 7.94
LatLRR 97.51 6.19 97.53 6.12
LSR 95.86 10.45 95.62 10.89
CASS 94.67 9.89 94.35 10.55
SMR 97.25 7.44 97.25 7.44
GSR 98.4 6.42 98.37 6.58
GLR 96.64 7.45 96.73 7.66

60 manually aligned frontal face images under illumination variations. Following
the experimental setting in [119, 120], we make 8 scenarios by taking the first
¢ subjects from the dataset, where ¢ € {2,3,5,8,10,20, 30,38} is the number of
subjects, to verify the clustering performance for various subjects. Similar to the
setup in [119], face images were projected into 9 x c-dimensional subspace by
PCA [9].

Table 6.3 shows the clustering accuracy with respect to the number of clusters.
The proposed methods, GSR and GLR, outperform other methods on average.
Especially, GSR gives much higher accuracy than others when the number of clus-
ters is larger than three. GLR gives the second best performance on average and
it outperforms other methods when ¢ = 2. Following our proposals, LatLRR and
CASS perform better than others but their performance are unsatisfactory. LRR
and LRSC give similar clustering accuracy and lower than that of LatLRR on

average. LSR and SMR show the poor performance when the number of clusters
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is over 30. Although CASS gives the satisfactory results for small subject cases,
its performance gets worse when the number of subjects increases. SSC shows the
worst performance on average and especially it gives unsatisfactory results when
the number of clusters is large. From the table, we can see that the proposed
methods based on the group subspace representation work well for all cases and
show the superiority over the face clustering experiment without outliers, even

though their formulations are based on the Iy norm loss function.

Face clustering with outliers. To verify the robustness of the proposed
methods, we created a dataset, Yale-Caltech, which combines Extended Yale B
and Caltech-101% [112], motivated by [4]. Unlike the dataset described in [4], we
randomly collected an image from each category of Caltech-101 as outliers. Hence,
we added 101 outlier images, which are converted into gray-scale images, to a
dataset consisting of the first ¢ subjects. We resized both face and outlier images
to 20 x 20 to make all images have the same size and to reduce the computational
cost and memory requirement. We performed face clustering experiments for
¢ € {10,20,30,38} to investigate the clustering performance of the proposed

methods when the number of clusters is large.

Figure 6.5 shows the clustering performance of methods, SSC, LRR, LRSC,
LatLRR, GSR, and GSR, which can handle outliers. Even though LSR, CASS,
and SMR are not robust against non-Gaussian noises, we provide the results of
them in the following experiment. In this experiment, the clustering accuracy is
computed only for the facial images without the outlier images. The proposed
method, GSR, achieves the highest accuracy for all cases. SSC gives the com-

petitive results compared to the proposed methods. Although GLR gives less

Shttp://www.vision.caltech.edu/feifeili/Datasets.htm
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Figure 6.5: Face clustering results on the Yale-Caltech dataset.

accuracy than SSC and LatLRR, it outperforms LRR and LRSC on average.
Note that like the previous example, it is meaningful to compare our proposals,
GSR and GLR, with their baseline methods, SSC and LRR. In this perspective,
the proposed methods show a significant improvement. The running times of the
methods are 173.4 sec for SSC, 80.3 for LRR, 98.4 for LRSC, 108.2 for LatLRR,
182.7 for GSR, and 490.4 for GLR, for the case of ¢ = 38.

For the Yale-Caltech dataset, we provide the experimental result for the case
when ¢ = 10 for all compared methods including LSR, CASS, and SMR, as
mentioned before. Table 6.4 shows the clustering performance and running time
of different methods. Similar to the previous example, the proposed methods
give the best performance among the methods with competitive running time.
Three methods, LSR, CASS, and SMR, which cannot handle outliers, show poor
performance in this case. In addition, CASS shows an extremely long computation

time, making it infeasible for large-scale problems.
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Table 6.4: Face clustering accuracies (%) and running times (sec) on the Yale-

Caltech dataset. (# clusters: 10)

Algorithms | SSC | LRR | LRSC | LatLRR | LSR | CASS | SMR | GSR | GLR

Accuracy | 71.7 | 72.3 79.8 90.9 70.8 63.7 40.2 | 93.9 | 83.3

Time 16.8 | 25.8 7.87 43.8 0.51 | 15,680.3 | 2.55 | 18.3 | 123

6.5 Summary

In this chapter, we have proposed two subspace clustering algorithms, group
sparse representation (GSR) and group low-rank representation (GLR), using the
group subspace representation. The proposed methods simultaneously address
sparsity-based representation and the grouping issue by introducing a strong
convex regularizer, since a grouping capability is important for improving the
subspace clustering performance. Our proposals encourage the grouping effect by
capturing the resemblance among data samples drawn from the same subspace.
The proposed methods have been applied to various subspace clustering tasks,
such as synthetic problems, motion segmentation, and face clustering under the
existence of various noise and illumination conditions. Experimental results show

that our methods provide favorable performance compared to existing methods.
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Scalable Low-Rank Subspace

Clustering

In this chapter, we address another important issue of the subspace clustering
task. While existing subspace clustering algorithms have been successfully applied
to various clustering problems, they are still challenges in terms of scalability and
an ability to handle out-of-samples. These methods compute an affinity matrix
using all observed samples in a batch mode. Hence, if an out-of-sample is intro-
duced, the affinity matrix has to be recomputed using all samples. Hence, they
are not scalable and their applications are limited. Furthermore, since most of
the methods are iterative approaches or need heavy complexity when construct-
ing an affinity matrix, they are not suitable for large-scale problems. There is an
additional factor to consider. After an affinity matrix is computed, there are two
remaining steps, post-processing and spectral clustering, whose time complexities

are also significantly high (in general, over cubic complexity).
To reduce the complexity everywhere in subspace clustering, in this chapter, we
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propose an end-to-end! integrated pipeline for scalable subspace clustering. We
first introduce a scalable learning framework for subspace clustering which seeks
to find an affinity matrix incrementally without degrading the performance from
its baseline algorithm. The complexity of the introduced incremental learning
framework is further reduced by proposing summary representation based on the
motivation that a subspace can be well represented by sparse representative basis
vectors [121]. But there still remains post-processing? and spectral clustering steps
before the final clustering result if obtained. These additional steps can sometimes
demand more computation than the affinity learning step. To reduce the complex-
ity of the overall algorithm, we propose an efficient integration of post-processing
and spectral clustering into the proposed scalable low-rank representation frame-
work, named scalable low-rank representation (SLR). It is interesting to note that
even our method is based on the ls-norm, the proposed summary representation
enforces the affinity matrix to be low-rank and has sparse connections due to
its selection strategy. To conclude, the proposed learning framework achieves not
only the competitive performance but also robustness to outliers, as well as the
fairly reduced time complexity. The main contributions of the proposed method

are as follows.

e The proposed method constructs an affinity matrix incrementally using the
summary representation, which gives an efficient and robust representation

of data with low complexity.

1We would like to note that the term “end-to-end” is used in this chapter to describe the fully
scalable framework in the entire process from the front-end to the back-end, even though the
meaning of recently used end-to-end pipelines in the deep learning literature is slightly different

from our intention.

2Since it has an impact on the clustering performance, many algorithms usually contain a

post-processing step.
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e More importantly, the proposed affinity learning strategy is integrated in
a complete pipeline of subspace clustering, including post-processing and
spectral clustering, to reduce the overall time complexity to linear in the

number of samples.

e The proposed method can be integrated with kernel methods for handling
challenging problems where data lie in nonlinear manifolds. Thus, the pro-

posed framework can address both linear and nonlinear clustering problems.

e The clustering accuracy of the proposed method is satisfactory with an
order-of-magnitude speed-up compared to the existing subspace clustering

algorithms on various benchmark tasks.

7.1 Incremental Affinity Representation

The goal of this work is to develop an efficient scalable algorithm for subspace
segmentation since many recently developed methods are not suitable for han-
dling streaming samples. To handle this issue, we develop a scalable method based
on least squares regression (LSR) [111]. LSR utilizes an ly-norm regularizer for
enforcing grouping effects among the samples of the same subspace, and it shows
the state-of-the-art performance on various datasets. The lo-norm regularizer in
LSR makes it highly efficient and adequate for incremental processing, but at
the same time, it can make the method vulnerable to outliers or ill-conditioned
subspaces. This disadvantage will be addressed by using the robust summary rep-
resentation later in this chapter. Before introducing the proposed method, we
present an incremental approach of LSR in this section, since the incremental

concept is used in the proposal in the next section. First, we reformulate the LSR
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problem under the noisy case without the diagonal constraint as follows [111]:
min || X — XC7 + A C|7, (7.1)
where A is a weighting parameter and its analytical solution is
C* = (XTx 4+ )1 XxTX. (7.2)

Here, I is the identity matrix. Although the solution consists of simple operations,
it is hard to process streaming data, because it involves an inverse operation whose
complexity is cubic in the number of samples. To compute the inverse operation
efficiently, we introduce an equivalent solution using the matrix inversion lemma
[88]:
-1
AU AL o —-A~lU

= +
V D 0 0 I (7.3)

x (D-VA~lU)™! [—VA—l I] ;

where A and D are invertible and square matrices, and U and V are compatible
matrices so that dimensions of A and UDV are the same.

Now, let X,,—1 = [®1,...,Tn-1] € R?*("=1) he a matrix whose samples are
collected until time n — 1, and x,, € R? is a newly observed sample. Then we can
update the affinity matrix C,, € R™*" for all n samples as follows:

Cn=(XIX, + M) 'XTX,

-1

X Xy 4+ Mooy XTIz,

= ! . XTXx,
wTTan_l :vZacn + A (7.4)
_1 N
AU A U
vV D vV D
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Algorithm 13 Incremental LSR (ILSR)

1: Input: streaming data X,, = [x1, ..., @y]

2: fori=1,..,ndo

3:  Solve the problem (7.5) for each sample x;
4: end for

5: Perform post-processing [4]

6: Apply spectral clustering [58] to C' to obtain k clusters

where I,, denotes an n x n identity matrix, A = X! X, € RDX(=1) Jang
D = xlx, € R. From (7.4), we have the complexity of O(nd) for the inverse oper-
ation when computing with the new sample x,,. Likewise, the last term X X,, in
(7.4) is constructed incrementally. Using (7.3) and (7.4), we compute the solution

sequentially

c - Cn-1 Cu N —Cy

0 0 1 (7.5)

X (D — VCU)il _VCn—l —+ V — VCU + D] )

where C,,_1 = A=A and Cy = A7'U. We can see that the incremental learning
of an affinity matrix in (7.5) is an incremental LSR (ILSR) approach, whose
algorithm is summarized in Algorithm 13. By obtaining the affinity matrix with
proper post-processing such as [4] to have more clear representation, we can find
cluster memberships using spectral clustering [58]. The computational complexity
for computing C,, in (7.5) is O(n?d), since we do not need to re-compute C,,_1.
Hence, the overall complexity of ILSR is O(n®d), which is higher than the batch
LSR method.
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7.2 End-to-End Scalable Subspace Clustering

7.2.1 Robust incremental summary representation

To reduce the unsatisfying complexity, we propose a new approach using the con-
cept of the widely used representative learning [121, 122]. The basic idea is derived
from the fact that a subspace can be efficiently constructed based on sparse rep-
resentative basis vectors, in other words, a sample in a subspace is represented
by linear combination of a small number of effective basis vectors constructing
the subspace. This goes along the lines of sparse representation in subspace clus-
tering [53], which reveals a data sample by other sparse essential samples. It is
interesting to note that though the proposed method is based on the ls-norm,
we can represent the features of SSC and LRR on the affinity matrix indirectly
by using a low-rank approximation matrix. From this motivation, we construct
a small-sized summary matrix which can represent most of samples instead of
constructing an overall affinity matrix, which we named summary representation
of the observed data.

The first step is to construct a summary affinity matrix, C*°, sequentially based
on incoming samples. Assume that data samples are normalized. We can construct
the summary matrix using a small subset or summary set S of data matrix X as

follows:

CS=arngiHIIS—SCII%Jr)\IICH%? (7.6)

where S = [x;]ico is a matrix constructed by stacking x;, the i-th sample (or
column) of X, for all i € Q. Q is defined as a set of indices where i is selected by
examining the correlation of x; and the previous samples indexed by the current
Q to ensure that Q includes diverse samples. Note that this can be interpreted as a

sparse coding [34] or a vector quantization procedure, but our selection procedure
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does not involve a time-consuming task such as LASSO [34]. This is motivated by
[123, 63|, viewing a sparse coding problem as a linear coding problem. However,
this strategy can be vulnerable to outliers due to the I error term. As a remedy
of the issue, we add a simple but powerful stochastic outlier detection step to the
procedure. The overall procedure is described below.

Let S; be a matrix consisting of samples used for a summary matrix until time
i. Then, x; is included in S; if it passes a thresholding test using the median of
the coded vector computed from the linear coding scheme, i.e., med(S ;) < 6,
where 0 is a threshold which will affect the size of S; and med(:) is a median
operator. This step will maximize the diversity of Q. To eliminate the outlying
samples during the step, we can further check the correlation with a small set,
Ri, randomly sampled from previously unselected samples R;. If the correlation
between the current sample @; and the sampled set R; is low, i.e., med(RZT:ci) <
0o, where 6y is a minimum threshold value to detect outliers, we regard x; as an
outlier. We have found that this simple strategy is highly efficient and provides
excellent performance in several scenarios with outliers. (See section 7.3.1 for
more details.) By varying 6, we can control the size of the summary matrix and
the representation capability of the summary matrix. Hence, when i € O, we

update a new summary matrix C° as follows:
C5 = (ST'S; + AL)'S]'S;

SESii+ A ST (7.7)

= -STs;.

Otherwise, we do not modify C**. The remaining samples are held and later used
to construct the overall affinity matrix in order to assign cluster memberships to

all samples.

Note on the summary representation. To check how the summary rep-
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Figure 7.2: Summary ratio and clustering accuracy according to the thresholding

6 for face clustering. (a) Summary ratio (%). (b) Clustering accuracy (%).

resentation works, we performed the proposed method on the Extended Yale B
dataset [78], where the number of clusters is 5 for a face clustering task. We
varied the value 6 from 0.1 to 1. Figure 7.2 shows the summary ratio and its
corresponding clustering accuracy using the proposed method, which will be de-
scribed in Section 7.2.3, according to #. From the figure, we can observe that the
summary ratio increases gradually when 6 increases and the clustering accuracy
converges to a stationary point when 6 is larger than 0.5 (summary ratio is larger
than 15%), which is not sensitive to the choice of 6 once the accuracy reaches
at a stationary point. Selected summary samples (by varying ) are represented
in Figure 7.3, which reveals that the proposed summary representation selects

diverse samples in every class by its sparse selection nature.

7.2.2 Efficient affinity construction

The next step is to develop an affinity matrix based on the summary matrix C*°

and the remaining set R. Let the size of the summary matrix be r. Then, we
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Figure 7.3: Graphical representation of selected summary samples (represented
by 1) of the proposed method according to @ for face clustering (# cluster is 5).
Each class in the dataset has 64 samples and the samples are in general position.

(+) denotes the summary ratio for the corresponding threshold value.

form an aggregation matrix, C499 € R™*", which consists of a summary matrix,
C® € R™", and a latent matrix, C® € R™*("=") computed using the remaining

set R:

CcA99 — [CS7CR]T st. CR = I:Ck:lk¢g’vk) (7.8)

where ¢, = (STS 4+ M)~1STx;, is a latent vector with x; € R. Now, we can
obtain an overall affinity matrix as C = Cc4905 TCAQQT, where Af is the pseudo-
inverse of a matrix A. Note that the subspace clustering based on the summary
representation using a small number of representative samples can be guaranteed

under mild conditions:

Theorem 6. Suppose that noiseless data samples are sufficiently collected from
a union of k independent linear subspaces and basis vectors constructing the sum-
mary matriz cover the remaining samples. Let us define a function f which satis-
fies f(C) = f(CP) for any permutation matriz P. Then, the problem (7.1) based
on the summary representation solves the subspace clustering problem exactly with

a block-diagonal structure of C.
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Proof. See Appendix G.1. O

As mentioned earlier, however, we may consider another important step to
make a final affinity matrix, i.e., post-processing to reduce noisy representa-
tions of affinity matrices. Most of the subspace clustering methods utilize a post-
processing step to reduce the effect of noise before performing spectral clustering.
One of popular post-processing techniques is described in [4], which acts like a
singular value shrinkage [108] over a latent matrix by discarding low-impact sin-
gular values. In this post-processing step, the main computational cost is from
singular value decomposition (SVD), which has O(n3) complexity and thus is not
suitable for scalable learning. To reduce the complexity, instead of conducting
post-processing on C , we directly conduct SVD on the n X r rectangular matrix
CRec 2 CAgg[] , Where U2US: € R s computed from eigenvalue decom-
position (EVD) over 5" such that ¢S = UUT 3 whose complexity is O(nr?),
and follow the steps stated in [4] (please see the paper for more details). Thus,
we can reconstruct an affinity matrix using outer product of U , l.e., C =00 T
where U € R"*" is the post-processed matrix made from C*¢. Then, we obtain

the post-processed affinity matrix CPP where

[CP);; = [C © Clyy = ([UUT];)?, (7.9)

where ©® is the Hadamard product. In the next section, we explore for a scalable
algorithm giving an equivalent solution to (7.9) whose time complexity of the

entire task is linear in the number of samples.

3In practice, we first compute EVD over C¥ = USUT, and then perform inversion on 3 for

computational efficiency.
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7.2.3 An end-to-end scalable learning pipeline

Until now, we have discussed how to construct an overall affinity matrix effi-
ciently. But, in order to obtain the cluster membership, we need to perform spec-
tral clustering [58] after obtaining the affinity matrix with post-processing. It is
important to note here that constructing an overall affinity matrix based on the
thin rectangular matrix U followed by conducting EVD to obtain a new skinny
rectangular matrix in spectral clustering is quite wasteful, since handling a full
affinity matrix involves heavy computational tasks. Specifically, it is important to
maintain a thin matrix structure taking the effect of EVD without constructing
a full affinity. to reduce the overall complexity to linear in the number of sam-
ples. To do so, we devise a unified framework by integrating the overall procedure
from constructing an aggregation matrix to spectral clustering, without building
an overall affinity matrix. As discussed before, we perform post-processing [4],
which involves element-wise square operation in (7.9), i.e., Ccrr = ([U U T3,
to make a clear affinity and thus enhance the clustering performance. To con-

sider the effect of the element-wise square operation in a decomposed matrix, we

present a new matrix V' using the following result:

Theorem 7. Suppose that C = UUT € R™™ with a matriz U € R"™". Then,
for a matriz V e Rnxr? satisfying [CN'pp]ij = ([(~](~]T]U)2 = [f/f/T]ij, the following
holds:

V=[heU) Ol - (U,o0,)"", (7.10)

where U; is the i-th row of U and ® is the Kronecker product.

Proof. See Appendix G.2. O

From Theorem 7, we have an efficient representation of a decomposed matrix

considering post-processing and it bridges among the tasks in subspace clustering
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for scalability. Now, we are ready to perform spectral clustering on small V instead
of performing on cre. Here, we assume that we use V when n > 72, which is
common for large-scale problems. In the spectral clustering step, we first compute
a degree matrix as D = diag(V (V71)) € R™*", which can be computed efficiently
with linear complexity. Based on D, a normalized Laplacian matrix L satisfies

the following relation:
L=I-D32C"D 2 =]—DDT, (7.11)

where D = D73V is a decomposed Laplacian matrix. Let D =UsVT be SVD
of D, then, L = Ul — ¥2)UT. It is important to note here that the k largest
singular vectors of D is the same as the k smallest eigenvector of L. Hence,
we can also reduce the complexity by directly conducting SVD on D, instead
of computing the square matrix L and then performing EVD over L, whose
complexity is O(n?), occupying the main complexity of spectral clustering. Then,
we perform k-means over the singular vectors to obtain the final segmentation
result. The overall procedure of the proposed method, named scalable low-rank
representation (SLR), is summarized in Algorithm 14. It is recommended that
the former approach described in 7.2.2 with spectral clustering can be used for
small-scale problems (n < 1,000, in general) and the solution proposed here is

used for large-scale problems.

Proposition 2. Suppose that we can observe clean data X, where rank(X) =

r* <r. Then, SLR finds cluster memberships of samples exactly in O(n) time.

Proof sketch. SLR gives an equivalent solution to al clustering problem with (7.9)
followed by spectral clustering, where the block diagonal structure of (7.9) based
on the rank-r approximation using X is guaranteed based on Theorem 6 and

the work in [111]. Therefore, SLR solves the subspace clustering problem exactly
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Algorithm 14 Scalable low-rank representation (SLR)

1: Input: normalized streaming data X,, = [x1, ..., ;]
2: fori=1,..,ndo
3. if med(S{z;) < 0 and 6y < med(R!z;) then

4: SZ < [Sz, .’131]

o

Update the summary matrix C° using S;

6: else if § < med(S]x;) and 6y < med(R! x;) then

7: R; < [R;, x4

8 else

9: Regard x; as an outlier
10: end if

11: end for

12: Construct C499 = [C¥, CT|T by (7.8)
13: Compute a post-processed matrix 1% by (7.10)
14: Compute D = D2V where D is a degree matrix

15: Apply k-means to the k largest singular vectors of D

with linear time complexity. O

Complexity analysis. The computational complexity of the subspace clus-
tering algorithms depends on the following three main tasks: (1) construction of
an affinity matrix, (2) post-processing, and (3) spectral clustering. The proposed
framework, SLR along with SSSC [63] do not perform the conventional spectral
clustering step. Moreover, the proposed algorithm as well as LSR do not learn an
affinity matrix iteratively (that is, their solutions are computed in closed form).
The computational complexity of the proposed unified framework is O(nr*). This

takes the linear complexity over n if r is considered as a constant over various-
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size samples. In other words, if the number of samples dominates the summary
size, i.e., n > r, we can dramatically reduce the computational complexity (for
example, see Table 7.5). The computational complexity of SSSC to O(tg> + ng?)
where t is the number of iterations and ¢ is the in-sample size.* Even though
the complexity of SSC-OMP [65] is O(ndk), where k is the size of the support
set used in OMP, it still suffers from the heavy computational complexity due to
the spectral clustering task. The memory complexity of the proposed framework
is O(nr?), whereas the memory complexity of existing methods is O(n?), except
SSSC, which has O(g?) complexity. The time and memory complexities of the

proposed method along with existing algorithms are summarized in Table 7.1.

7.2.4 Nonlinear extension for SLR

The proposed framework is applied to more challenging problems where samples
lie in a union of nonlinear manifolds, since conventional linear subspace clustering
methods are hard to apply for the nonlinear subspace structure. Fortunately, the

proposed framework is easy to extend to nonlinear subspace clustering as follows:
min [|¢(X) — ¢(X)C[F + A|CII%, (7.12)

where ¢(-) : R? — H is a nonlinear mapping function to a reproducing kernel
Hilbert space H. The optimal solution of the problem (7.12) is computed by using
the kernel trick:

Cn = (Kxx + M) 'Kxx, (7.13)

where Cxx € R™" is a kernel matrix such that [Kxxlij = (é(x:), d(x;))n =

k(xi, ;). Note that the proposed summary representation with the unified scal-

“We have found that ¢ is normally larger than r or similar to 72 to get the reasonable
performance for most problems in Section 4.1.1. Even worse, such a choice still shows unsatisfying

performance compared to the proposed method.
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able pipeline can be straight-forwardly applied to the kernelized formulation. In
this section, we consider two kernel functions: radial basis function (RBF) ker-
nel function, k(x,y) = exp(—||z — y|?/20?), and polynomial kernel function,

k(x,y) = (x7y + a)?, where o, a, and 3 are parameters of the kernel functions.

7.3 Experimental Results

In this section, we apply the proposed method, SLR, to five datasets: synthetic
data, Hopkins 155 dataset [55] for motion segmentation, Extended Yale B dataset
[78] for face clustering, USPS dataset [113] for handwritten digits clustering, and
HARUS dataset [124] for action clustering. Selected examples of the datasets are
illustrated in Figure 7.4. We compare with well-known batch subspace cluster-
ing algorithms, SSC [16], LRR [4], and LSR [111], a nonlinear subspace cluster-
ing method, KSSC [125], and scalable methods, SSSC [63] and SSC-OMP [65],
and the incremental approach of LSR (ILSR) described in Section 7.1, with re-
spect to clustering accuracy and execution time. Furthermore, we compare with
two large-scale spectral clustering algorithms: a spectral clustering method us-
ing the Nystrom method with orthogonalization (Nystrom) [126, 127] and the
landmark-based spectral clustering method (LSC) [128] to demonstrate the pro-
posed method with spectral clustering algorithms.
The clustering accuracy is computed as follows:
1
Accuracy = - ; d(pi, map(q;)), (7.14)
where p; and ¢; are the i-th true and obtained labels, respectively, d(a,b) is the
Kronecker delta function, and map(-) is a mapping function to permute the ob-
tained labels to match with the true labels, which is computed by Kuhn-Munkres

algorithm [77]. In the experiments, we compute execution times of tested meth-
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Figure 7.4: Typical examples from three datasets. (a) Hopkins 155 dataset for
motion segmentation, (b) USPS dataset for handwritten digits clustering, and

(c) Extended Yale B dataset for face clustering.

ods for whole tasks in subspace clustering, unless stated otherwise. We use the
codes of compared methods provided by authors. For fair comparison, we set the
parameters of all tested methods to achieve the best performance, unless stated

otherwise.

7.3.1 Synthetic data

We first evaluated the performance of the proposed method compared with ILSR
and SSSC according to various summary ratios or in-sample ratios, in order to
verify the proposed summary representation. We generated an example which has
five clusters, where each cluster has 50 samples with dimension of 50 and added
Gaussian noises from A(0,0.1). Figure 7.5 shows the average clustering accuracy
and execution time according to the summary ratio for 50 different examples. We
varied the summary and in-sample ratio from 5% to 95%. As shown in Figure
7.5(a), SLR outperforms SSSC for all cases. Furthermore, it gives higher accuracy

than ILSR when the summary ratio is larger than about 10%. One possible reason
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Figure 7.5: Performance comparison on a synthetic example according to sum-
mary ratio. The example size is 50 x 250 with 5 clusters where each cluster has

50 samples. (a) Clustering accuracy. (b) Execution time.

is that the summary representation has a denoising effect by discarding noisy or
meaningless samples as existing low-rank and sparse representation algorithms
do in noisy scenarios. For execution time, the proposed method is much faster
than SSSC and the difference gets larger when the summary ratio increases as
shown in Figure 7.5(b). From the figures, the proposed summary representation

shows its efficiency with excellent performance.

Then, we conducted our proposal, SLR, compared with ILSR and existing
algorithms, SSC [16], LRR [16], LSR [111], SSSC [63], and SSC-OMP [65], to
verify the efficiency of the proposed algorithms for large-size datasets when the
number of samples dominates the summary size. We tested the proposed method
on synthetic examples. We constructed a data matrix whose samples are randomly
collected from five linear subspaces, where the number of randomly chosen basis
vectors in each subspace is five. Then, we added a Gaussian noise matrix whose

elements are generated from A(0,0.1). We set the summary size to 25 and the
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Table 7.2: Average clustering accuracy (%), execution time (sec), and speed-up
gain over each compared method for SLR on synthetic problems with a large

number of samples.

n=15,000 n=30,000
Method Accuracy | Time | Speed-up | Accuracy | Time | Speed-up
SSC 94.0 >5.5h | 7,071x 95.3 >11.9h | 11,577x
LRR 96.6 3,279.1 | 1,171x 99.2 8,617.2 | 2,329x
LSR 97.5 3,706.8 | 1,324x 99.5 7,420.1 | 2,005
SSSC 90.4 15.9 5.7x 92.8 43.2 11.7x
SSC-OMP 94.1 1,436.9 |  513x 96.1 5479.7 | 1,481x
SLR 97.5 2.8 — 99.0 3.7 —

in-sample size of SSSC to 500 to get reasonable performance. The parameter A
of the proposed method is set to 500. We performed the proposed method for
two scenarios, where n = 15,000 and n = 30,000. Table 7.2 shows the average
performance of different methods from 10 independent runs. From the table,
SLR gives the order-of-magnitude speed-up (roughly thousands of times faster for
n = 30,000) over other methods including SSSC. SSSC is faster than other state-
of-the-art algorithms, but it is slower than SLR with relatively poor performance.
Even though SSC-OMP shows faster running time than SSC based on the basis
pursuit formulation, it still fairly slow compared to ours, making it less applicable

for large-scale problems.

In addition, we provide an experiment on robustness of the proposed summary
representation. We generated an example with 5 classes each of which has 50

samples with dimension of 100 and added Gaussian noises from A(0, 10~2). In the
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Table 7.3: Performance comparison on synthetic problems with outliers.

Method SSC | LRR | LSR | SSSC | SLR

Accuracy (%) || 96.6 | 91.6 | 94.9 | 51.5 | 99.7

Time (sec) 0.90 | 1.79 | 0.02 | 0.13 | 0.02

example, we replaces 10% randomly selected samples to outliers whose elements
are uniformly generated from [—25,25]. We set the summary ratio to roughly
20% (6 = 0.45) and the minimum threshold 6y to 0.13 for the example. Table 7.3
shows the average performance of the methods from 30 different examples and
Figure 7.6 illustrates the selected samples used for constructing the summary
matrix. From the results, we can observe that the proposed method is robust

against outliers by eliminating them and thus gives satisfactory performance.

7.3.2 Motion segmentation

Motion segmentation [55] is a task for clustering trajectories of rigidly moving
objects based on tracked points along the frames. We applied the proposed al-
gorithm to the Hopkins 155 database [55], which consists of 155 video sequences
where there exist two or three motions. We compared SLR with other methods in
terms of clustering performance and execution time for all sequences. Since this
task is a small-scale problem, we solve SLR based on the reconstruction approach
in (7.9), and we compute execution times of tested algorithm for the affinity con-
struction task. We set the summary ratio of SLR to about 25% and the in-sample
ratio of SSSC to 25%. We set the parameter A of SLR to 5 x 10~%. In the dataset,
we use four measures over the clustering performance (mean, standard deviation

(Std.), minimum, and median) motivated by the work in [53]. The average results
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Figure 7.6: Selected samples (represented by 1) in the proposed summary rep-
resentation to construct the summary matrix for a synthetic example with 10%

outliers. A magenta circle indicates an outlier.

of the compared methods are shown in Table 7.4. From the table, we observe that
most of the algorithms give the similar performance except SSSC which gives un-
satisfactory performance for this problem. The execution time of SLR is much
faster than that of SSC and LRR and is relatively faster than that of SSSC and
ILSR. While LSR and SSC-OMP run slightly faster than SLR for this small-scale
dataset, SLR is much faster than LSR for larger datasets on average as shown in

other experiments.

7.3.3 Face clustering

We evaluated our proposal for face clustering on the Extended Yale B dataset
[78], which consists of 38 subjects and each subject has 64 frontal face images un-
der various illumination changes. In the dataset, we used the first ¢ classes, where
c € {3,5,8,10} with samples of 64 for each class. Then, we reduced each image
to a 9¢ dimensional vector using PCA. Similar to the previous problem, this task

is also a small-scale problem. We solve SLR by the reconstruction approach with

220



Chapter 7. Scalable Low-Rank Subspace Clustering

Table 7.4: Performance comparison with respect to clustering accuracy (%) and

execution time (sec) on the Hopkins 155 dataset for motion segmentation.

Method Mean | Std. | Min | Median | Time

SSC 96.46 | 9.1 | 52.8 100 1.36
LRR 96.53 | 8.0 | 58.2 99.7 1.03
LSR 95.96 | 104 | 52.1 99.8 0.04
SSSC 80.80 | 18.0 | 41.3 84.9 0.18
SSC-OMP || 96.33 | 8.53 | 58.7 99.8 0.04

ILSR 95.96 | 104 | 52.1 99.8 0.30

SLR 95.98 | 8.7 | 61.9 100 0.06

the same summary ratio and execution time as described in the previous subsec-
tion. We set the parameter A\ of SLR to 10~2. Figure 7.7 shows the clustering
accuracy of all methods at different numbers of clusters with average clustering
accuracy. The proposed method performs competitively compared to other meth-
ods on average as described in the results. SSC-OMP gives better performance
than ours when the number of clusters is small, its results drop sharply when
¢ > 8. The performance of SSSC gets worse considerably than other algorithms
when the number of clusters increases for the in-sample ratio of 25%. Figure 7.8
shows the execution times of different methods for the case when ¢ = 10. As
shown in Figure 7.8(a), ours shows satisfying execution time for this small-size
problem and comparable to SSC-OMP. In addition, we compared the proposed
method with the naive algorithm, ILSR, with respect to the time as more sam-
ples are introduced sequentially. As shown in Figure 7.8(b), the proposed method

runs in real-time, whereas ILSR gets slower rapidly when the number of samples
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Figure 7.7: Clustering accuracy (%) on the Extended Yale B dataset.

increases.

7.3.4 Handwritten digits clustering

We tested the performance of the proposed method for clustering handwritten
digits. We used the USPS dataset [113], which consists of 9,298 gray-scale images
with 10 classes where each image is represented using a 16x16 matrix. In the
dataset, we selected the first 1,000, 3,000, 5,000, and 9,298 samples to verify
the performance of the methods with regard to the number of samples from
small-scale to large-scale. In addition, we augmented the dataset by duplicating
the dataset and shuffling samples in the augmented dataset (a total of 18,596
samples) to perform on a larger dataset. We set the summary size of SLR to
30 which results in V € R0 in (7.10) and the in-sample ratio of SSSC to
min([0.1n],900) to get reasonable performance. We set \ = 3.

Table 7.5 shows the performance of different methods. The proposed algorithm
outperforms other methods on average in terms of clustering accuracy and exe-

cution time. It gives an accuracy of over 70% on average and is much faster than
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Figure 7.8: Execution time (sec) on the Extended Yale B dataset. Time was
computed when the number of clusters is 10. (a) Accumulated run time (log

scale). (b) Time at each iteration.

existing algorithms with an order-of-magnitude speed-up. Even though SSSC is
faster than existing algorithms, it performs poorer than others. Likewise, SSC-
OMP give poorer performance than the others in this problem, and even its
execution time increases sharply compared to the proposed method. Here, we
have found that the clustering accuracy of SSC decreases substantially when the
number of samples is 18,596 for a fixed parameter. The reason is that the spars-
est representation of SSC may not cover all samples in a subspace, leading to
fractions in a subspace. Whereas, our approach provides excellent performance
mainly due to its grouping effect with robust representation generated from sparse

and low-rank connections.

7.3.5 Action clustering

We also provide the experimental results on more challenging problem, action

clustering [124]. We evaluated the proposed method on the HARUS dataset
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[124], which consists of 10,299 samples over six action classes (walking, walk-
ing up/down-stairs, sitting, standing, laying). Since a sample in the dataset may
not be represented by a linear combination of other samples, we applied the
nonlinear extensions of the proposed algorithm: KSLR(P) and KSLR(G) using
polynomial kernel and RBF kernel functions, respectively, described in Section
7.2.4. We also tested kernel SSC (KSSC) [125], a recently proposed nonlinear
subspace clustering algorithm, and two spectral clustering algorithms, Nystrom
[126, 127] and LSC [128]. We made three scenarios by selecting first 5,000 and
10,299 samples and augmenting additional scenario, where the number of samples
is 20,598. We set the summary and in-sample size to the same value stated in
the previous problem. The parameters of the kernel functions are set to o = 1,

a =0, and f=5. We set A = 103 for SLR and A = 1 for KSLR.

Table 7.6 shows the clustering accuracy and execution time of the compared
algorithms for the action clustering tasks. From the table, the proposed linear
method, SLR, gives better performance than other methods except its nonlinear
extensions. Even, they perform better than KSSC for all scenarios. The nonlinear
extensions of the proposed method outperform the existing methods. Especially,
the extension based on the polynomial kernel function gives the best performance.
As for the execution time, existing subspace clustering methods are hundreds or
thousands times slower than the proposed method and also SSSC is 14 times
slower than SLR when n = 20,598. Another scalable subspace clustering al-
gorithm, SSC-OMP, gives unsatisfying results for both clustering accuracy and
execution time (290x slower). Even if Nystrom and LSC give the competitive
execution time, they perform poorer than the proposed method. From the table,
we can observe that the proposed framework is scalable, efficient, and can be used

for large-scale problems.
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7.4 Summary

In this chapter, we have proposed an end-to-end scalable learning algorithm for
large-scale subspace clustering based on the summary representation and an effi-
cient integrated pipeline with post-processing and spectral clustering. The sum-
mary representation accelerates learning of an affinity matrix efficiently and ro-
bustly with excellent performance and the efficient integration with post-processing
and spectral clustering achieves linear time complexity, making it suitable for
large-scale problems. The proposed framework has been applied to various prob-
lems with different scales and shown its excellent performance and efficiency for

large-scale problems.
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Chapter 8

Conclusion and Future Work

From recent advances in digital technology, demands for processing power of a
computing device have been highly increased. However, the advancement of pro-
cessing power does not follow the geometric growth of the amount of data, called
big data. What is more, the curse of dimensionality even makes an algorithm
difficult to handle such massive data, making it less applicable. Fortunately, we
can exploit key information from data by the blessing of dimensionality from the

concept of sparsity or low-rank-ness.

One of the efficient exploitation tools, sparse representation has been widely
used to select informative entries in a bunch of data. However, most of the suc-
cessful algorithms are based on the convex relaxed approach using the [;-norm,
which is only efficient for convex problems and can lose its significance when
conducting on inherently nonconvex problems. As a remedy of the weakness of
existing problems, we have presented a new nonconvex sparsity measure for many
nonconvex problems. The proposed measure embraces both [3- and [{-norms and
possesses slowly vanishing gradients to help drawing solutions of an optimization

algorithm to sparse points. Experiments on three important sparse representa-
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tion problems have verified that the proposed method performs favorably against

those of state-of-the-art algorithms.

Low-rank representation, another efficient exploitation tool, has been also very
popular method to reduce the dimension of data safely without much losing its
original information. But, the conventional algorithms are vulnerable to corrup-
tions and algorithms handling outliers are quite slow to get a reasonable solution,
making them not applicable for practical application in the presence of outliers.
To address the issue of robustness and efficiency, we have first proposed an effi-
cient algorithm based on the robust measure, the /;-norm, and solved it using the
alternating rectified gradient method, which finds a gradient to reach a stationary
point quickly. Then, we have presented a regularized formulation with an orthog-
onality constraint to cope with overfitting and running speed of an algorithm
and solved it under the augmented Lagrangian framework. It can handle a rank
uncertainty issue flexibly by a rank estimation strategy for practical real-world
problems. In addition, we have studied a structured matrix approximation prob-
lem which is used in a nonparametric Bayesian approach. Numerical experiments
have demonstrated the robustness and efficiency of the proposed algorithms for

several benchmark data sets.

The above low-rank representation methods assume that the rank of data is
fixed. In order to address the rank uncertainty issue with the fixed-rank prob-
lem, we have studied the well-known elastic-net regularizer which compromises
both ridge and lasso regressions and is used to analyze the rank of a matrix by
regularizing singular values. We have developed a robust and stable algorithm
with automatic rank estimation from the maximum rank defined by users. The
strong convexity from the regularizer alleviates the instability problem by shrink-

ing and correcting inaccurate singular values in the presence of unwanted noises.
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It is extended to a joint optimization problem to handle data lying in a union
of multiple subspaces based on the elastic-net regularization of singular values.
Experimental results on several benchmark problems have proved the superiority

of the proposed algorithm using the regularizer.

Motivated from the previous elastic-net regularizer, we have applied the reg-
ularizer to a subspace clustering task, where we regularize a coefficient matrix
which reveals a subspace structure for grouping effect among highly correlated
samples. Hence, we have proposed two robust group subspace clustering algo-
rithms by extending conventional sparse and low-rank representation algorithms
with explicit subspace grouping. We have shown that the proposed methods cap-
ture the similarities among data samples collected from the same subspace, the-
oretically and empirically. While the subspace clustering algorithms successfully
applied to a number of problems, they are still not applicable for large-scale
or streaming data due to their expensive computational cost. As a remedy for
the high computational requirement, we have presented an end-to-end solution
to reduce the complexity of all tasks in subspace clustering, by assuming the
low-rank-ness of data. The proposed algorithms have been applied to well-known

clustering tasks, outperforming other state-of-the-art algorithms.

For future work, more theoretical analysis of the proposed algorithms on the
convergence rate and error bound will be studied. Furthermore, we will apply
the concept of sparsity and low-rank-ness to other challenging applications to be
explored in computer vision and robotic fields. In addition, we will extend the
nonconvex sparsity measure to a 2D sparsity problem, that is, low-rank repre-
sentation problem, because the ideal rank function is nonconvex and most of the
low-rank matrix approximations are also nonconvex. Due to the unfavorable com-

putational complexities of the conventional methods including our proposals for
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the low-rank representation, we will explore scalable approaches to reduce both
time and memory complexities for a practical use. Lastly, following the recent
advances in deep learning, we will apply the sparse and low-rank representation
to deep learning architectures in order to represent the architectures concisely

with considerably low number of parameters.
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Appendix A

Derivations of the LRA

Problems

For the LRA problem, we apply SVG for modeling sparse errors, whose problem

formulation, termed LRA-SVG, is constructed as follows:
nin |Pax (E)|lsvg, st. E=X — M, rank(M) <r. (A.1)

The augmented Lagrangian of (A.1) is constructed as

L(E, M,II) = |[Pax (E)|[sve (A2)
Y (ILE - X+ M)+ %||E—X+M||2F,
such that rank(M) < r. Based on (A.2), we obtain an algorithm based on the

following steps:

. . v 11

E; < min |[Pox (E)lsve + 51D + ;H%, (A.3)
- . IT
M 2D+ = A4

cminSIlD+ il (A-4)
M, +U,S.[=, VL, (A.5)

Y

I, « I1+ 4D, (A.6)
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where D 2 E — X + M, II denotes the Lagrange multiplier, and « is a positive
penalty parameter. For (A.5), we collect r largest singular values and their corre-
sponding singular vectors computed by the singular value decomposition (SVD)

on M obtained from (A.4), i.e., [U, X, V] = svd(M). To solve for E, we consider

the following optimization problem for each element e;; indexed by €2x:

7Tij

Tij\2
S ) (A.7)

min 7| €l
cij |eij| +€

+ %(eij = Tij + mi; +
where x;;, m;;, and m;; are the (3, §)" elements of X, M, and II, respectively.
The solution of (A.7) can be found by an efficient computation for each element
separately as explained in Chapter 3. For another element ej; indexed by Qx,
where Qx is a complementary support set of X, we obtain ey < xn —mp — %

For the tested algorithms based on the same ADMM framework, such as LRA-
L1, LRA-CapL1, and LRA-MCP, we simply switch the penalty function || - [|§yq
in (A.1), (A.2), and (A.3) to a nonconvex penalty function and solve its corre-
sponding optimization problem. As an example, LRA-L1 compared in Chapter
3 considers the following optimization problem when solving E in the ADMM

framework:

. v II
B min [Pox (B) |1 + 51D + 3 (A8)

and its solution is computed as follows:

E ¢ Pay(S:(Y)) +Pg (Y), (A.9)

1
5

where Y £ X — M — % and S,(t) = sign(t) max(|t| — v,0) is the shrinkage

operator [43] for a scalar variable ¢. Other problems based on the nonconvex

penalty functions described in Chapter 3 to solve for E can be solved efficiently

by the work in [33].
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Proof of Lemma 1

The first two assumptions in Assumption 2 are similar to some of our criteria:
Symmetry and Monotonicity, respectively. Thus, it is straightforward to show the

symmetry of SVG. By taking a derivative of ¢y for z > 0, ¢, = W > 0,

we can check the nondecreasing nature on the nonnegative real-line. For the third

assumption, i.e., (‘”T(z))’ < 0, we can verify based on the following relation for

x> 0:

AA(x)

x

( ) <0 & ag)(z)—da(z) <0. (B.1)

Let hy(z) £ z¢)(z) — ¢r(x) which should be proved as a decreasing function.

If h)(0) < 0 and h)(x) < 0, then hy(z) < 0 for > 0. Since we have hy(0) =
0-¢,(0) —#x(0) = 0 and b\ (z) = ¢ (x) + 29} (z) — ¢\ () = ¢} (x) < 0 from our

Smoothness criterion, hy(z) < 0 is satisfied for x > 0, and thus (%T(x))' < 0. For
A

= 2 using the following

the fourth assumption, we can easily check lim,_,o+ ¢\ ()

equation described in Chapter 3,
Pr=1(z) =1~

ae
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for @ > 0, thus we obtain L = % For the last condition, we take another derivative:

Since ¢4 (x) has lower bound of —

(a+ 1)\ 1 .
. f 0
ae? (1+ )t A
(a+1)A )
_ =7 = B.3
o T H if z=0, (B.3)
(a+ 1)\ 1 .
. iz <.
ae? (14 ZE)at2 M
(@D it i true that there exists u = @02 5
ae ae

satisfying the convexity of py , ().
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Appendix C

Proof of Proposition 1

Since the proposed measure, SVG, is one of our representative family, we show
by proving the properties in Proposition 1 for our family. We redefine the family
of curves, called SVGF, as follows:

a,e A 1 1
svaer = y(®) =1 s B (C.1)

[k

where a and € are parameters of the family as defined in Chapter 3. If ¢ = 1, it

becomes the proposed measure.
Proposition 3. SVGF satisfies the following properties:
L zlsvar < llzlo Va, e and |||syqr — [llo if € — 0.
2. eHwH(g‘e,GF < |lz||1 Ya,e and eHmH?f/GF — ||lx||1 if € > 0.

Proof. Assume a and € in ||x||G o are positive. We simply show the proposition
for a scalar case, but its extension to a vector case is straightforward. It is easily
checked that y(z) =0 if z = 0 and y(x) < 1 if x # 0, thus we verify that SVGF

always lower than or equal to the lg-norm for all z regardless of €. If € goes to
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ZE€ro, — 0 when x # 0, then y(z) — 1 and the asymptotic convergence

1
(1+2)e
to the lp-norm holds.

Note that both y(z) and the [;-norm are symmetric around zero and nonneg-
ative (with y(0) = 0). Then, ey(z) is lower than or equal to the /;-norm, since
ey (z) = W < 1 for all nonnegative x. This also holds for < 0. Finally,

in order to show that ey(x) asymptotically converges to |z| if € — oo, we use the

following relation:

1
Blz|
(1+57)

N—
>

—
=

—~
Q
)

N~—

li = lim = (1 —
Jim ey = lim 5 (

(1+22h)a
0, ¢'(B) =1 # 0, and limg_, % exists, we have the following results by the

where f(8) = 1— —4—— and g(8) = 8 £ L. Since limg_,q f(8) = limg_, g(B) =

L’Hospital’s rule:

’ || Blz|\—a—
FE) oy IB) B+

550 g(B) A0 g(B) Ao 1

which completes the proof. ]
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Proof of Theorem 1

Theorem 1. [1-ARGp converges to a subspace-wise local minimum irrespective

of the initial point under the three conditions.

We will show that [1-ARG p satisfies these conditions in order to prove its global
convergence. We prove the conditions only for the case of updating X while P is
orthogonal, without loss of generality, and the condition for updating P can be

proved similarly.

Proposition 4. The sequence (P, X)) produced by l1-ARGp is contained in a

compact set.

Proof. Since l1-ARGp is a descent algorithm, it only chooses a point that does not
increase the cost function, and always satisfies the relation ||Y — P Xi||1 < [|Y |11
for an appropriate choice of Py and Xj. Since Py is orthogonal,

Y[ > [|Y = PXil[f > [|Y — PuXgl[F
(D.1)

> (IIYllr = 1PeXkll7)? = (1Y [lF = [ Xkll)?.
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From this, we obtain the following relation:
IVl[r = Y[ < [[Xkllr < (Y7 + Y]] (D.2)

Therefore, X, is contained in a bounded and closed set, i.e., a compact set.
Similarly, we can show Py is contained in a compact set. Therefore, (Py, Xj) is

contained in a compact set. O
Condition 2 can also be proved as follows.

Proposition 5. J(Py, X}) is strictly decreasing for (Py, X)) that is not subspace-

wise local minimum.

Proof. If (P, X) is not a subspace-wise local minimum, ||Y — P(X + AX)||; <
||Y — PX]||; for some AX. Since J(P, X) is a convex function for a fixed P, the

following relation is satisfied for any constant v, 0 < v < 1:

|Y — P(X +vAX)||

(D.3)
<(A=v)|IY = PX|1 +v||]Y = P(X + AX)||1.
Now we consider the following equation:
fn(X,0) — fr(X, vAX)
2
v
=[lY = PX|[s = [IY = P(X +vAX)[s — %HAXH%
> Y = PX[L = (1 =»)|IY = PX|)x
(D.4)

2
1%
—v[[Y = P(X + AX)[|x - %HAXII%

2
v
=llY = PX|[i = |[Y = P(X + AX)[[1} - %HAXH%

V2

=vrvay — ?GQ’

where a; = ||Y = PX||; —||Y = P(X+AX)||; and ay = %HAXH% fo<v< %,
fn(X,0) — f,(X,vAX) is larger than 0, which means that there exists vAX that
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satisfies fp(X,0) > fp(X,vAX) > fp(X,AX"). Therefore, according to (4.44),
[1-ARGp will find a direction AX'(= vAX) that satisfies
fa(X,0) = (X, AX") > B(f(X,0) = fr(X,AX7)) >0,

D.5)
X (
IV = PX|ly > [[Y = POX + AX') s + 5 |AX

which is a strictly descending direction when (P, X}) is not in the solution set.

O]

Now, in order to prove the condition 3, we first show that AX™ is a continuous

function w.r.t. X and 7.

Proposition 6. If X;, — X andn; — 7, then AX} — AX" = argmina x (X, AX).

Proof. We first state some facts in order to prove the proposition. First, the
optimal sequence {AX}} is obviously contained in a bounded and closed set, i.e.,

A < fo (X0 AXD) < £y (X,0) -

=[IY = PXly < [[Y]]1-

(This can also be deduced from the fact that the domain of X}, is compact.) Sec-
ond, AX} satisfies the relation f,, (Xi, AX}) < fi, (Xi, AX) for any AX which
is the very definition of AX;. Third, f,(X,AX) is a strictly convex function
w.r.t. AX for a given (X, 7n) because of the term %HAXH% Hence, f,(X,AX)
has a unique optimal AX*. Since {AX}} is bounded, there must exist a conver-
gent subsequence {AX,:H}, Le, AX; — AX. Then, for any AX, we can obtain

the following relation:
F(XAX) = Jim fy, (Xp, AX,)
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The only AX that satisfies the relation is AX . Thus, any convergent subsequence
of {AX;} has the same limit AX". Since AX i is bounded and all the convergent

subsequences has the same limit, AX; converges to the limit AX". O

Next, we define a function K(X,n, AX) assuming that X is not a local mini-

mum:
A fn(Xa 0) — fn(Xv AX)

KX A0 = 5 (%.0) — Fo(X.AX)

(D.8)
Proposition 7. K(X,n, AX) is continuous for non-local-minimum X .

Proof. K(X,n,AX) is composed of f,(X,0), f,(X,AX), and f,(X,AX*) with
subtraction and division operations. Also f,(X,0) and f,(X, AX) are continuous
functions w.r.t. X, AX, and 7 (Nmin < 17 < Nmax), and so is f, (X, AX™) by
Proposition 3. Moreover, f,(X,0) > f,(X, AX*) when X is not a local minimum.
Therefore K(X,n, AX) is also continuous. O]

Now finally, we prove that [1-ARGp satisfies condition 3. Since [;-ARGp uses
an exact line-search, which is a closed mapping [83], we only need to prove that
the procedure for finding a descent direction is a closed mapping at a non-local
minimum. To do this, we define two point-to-set mappings G and H. AX €
G(X,n) determines the descending direction, and 1’ € H(n) determines 7, where
n' is the value of 7 in the next iteration. H(n) is defined as H(n) = [Nmin, Nmax]

(1’ is determined independently, regardless of ), and G(X,n) is defined as

G(X,n) = {AX‘fn(Xa 0) — fn(Xv AX) > /B(fn(Xv 0) — Qn(v))}~

If X is not a local minimum, then this is the same as G(X,n) = {AX|K(X,n, AX)
B}

Proposition 8. Let Q) be a point-to-set mapping defined as (AX,n') € Q(X,n)
where AX € G(X,n') andn' € H(n). Then, Q is a closed mapping.
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Proof. Here, H is obviously a closed mapping and the domain of 7 is a bounded
set, hence Q(X,n), which is a composition of G and H, is a closed mapping
if G is a closed mapping. Since K is a continuous function w.r.t. (X,n, AX),
K(X,n,AX) = limy_y00 K(Xg,n, AXg) > B if Xp — X, — 7, and AX —

AX. Therefore, G is a closed-mapping. O

@ describes the behavior of finding the descent direction in [1-ARGp. The

proposed method is globally convergent by the proofs for the three conditions.
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Proof of Theorem 2

Theorem 2. Let G = (P, X, D, ﬁ,Al, Ao) and {GY 521 be generated by FactEN.
Assume that {G7 72 is bounded and limj 0o {G'T — GI} = 0. Then, any accu-
mulation point of {Gj};-";l satisfies the KKT conditions. In particular, whenever

{GI 521 converges, it converges to a KKT point.

Proof. First, we get the Lagrange multipliers Aj,, Ao, from (5.20)

A1, = Ay + B(D — PX)
(E.1)

Asy = Ao+ B(D - D),

where A;, is a next point of A; in a sequence {Az g If sequences of variables
{A{ 22, and {AJ2 72, converge to a stationary point, i.e., (A1y — A1) — 0 and
(Aay —A2) — 0, then (D—PX) — 0 and (D—D) — 0, respectively. This satisfies
the first two conditions of the KKT conditions.

Second, from P, derived in the algorithm, we get
P, —P= (A +BD)XT(\MI+B8XXT)™ — P, (E.2)

where I denotes an identity matrix and it can be rewritten by multiplying (A1 +
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BXXT) to both sides in (E.2) as

(Py — P)(MI+BXXT)
= (A +BD)XT — P(\MT + X XT) (E.3)
= MXT - NP+ 8D -PX)XT.
From the first condition, we can derive A; X7 — \; P — 0 when (Py — P) — 0.
Third, using X, = (A I + BPTP)~'PT (A + BD) derived from the algorithm,
we can obtain the following:
(MI+BPTP)(Xs — X)
= PT(Ay + BD) — (\MI + BPTP)X (E.4)
=PTAy — M X 4+ 8P (D - PX).
If (X3 — X) — 0, then (PTA; — A\ X) — 0 as well.
Likewise, we can get the following equation using Dy from the proposed algo-
rithm,
(A2 +28)(Dy — D)
— B(PX + D) — Ay + Ay — \oD — 28D (E.5)
:lB(PX—D+ﬁ—D)—A1+A2—)\2D.
Since PX — D and D — D converge to zero from the previous analysis, we obtain

A1 — Ao + Ao D = 0 whenever Dy —D—0.

Lastly, from (5.24), we obtain the following equation:

lA)+—lA)—Y—S(Y—D+%2,B>—D. (E.6)

Since {G7}52, is bounded by our assumption, {X+XI}]°-';1 and {PIPJF}JO»‘;I in
(E.3) and (E.5) are bounded. Hence, lim;_,o(G’T! — G7) = 0 implies that both

side of the above equations (E.3), (E.4), (E.5), and (E.6) tend to zero as j — oc.
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Therefore, the sequence {G7 };‘;1 asymptotically satisfies the KKT condition for

(5.21):
D—PX -0, D—D—0, MP—MAX" =0,

X — PTA1 —0, D +A1—Ay— 0, (E?)
~ Ao 1>
Y-D-S|{Y-D+—,-]—=0.

-0+
This completes the proof. O
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Proof of Theorems in

Chapter 6

F.1 Proof of Theorem 3

Theorem 3. Suppose that the data sampling is sufficient and samples are drawn
from a union of k independent linear subspaces. Let us define a function f satis-
fying f(Z) = f(ZP), for any permutation matriz P. Then, the optimal solution

Z* € R™" to the problem (6.1) is block-diagonal.

Proof. The proof is analogous to that of Theorem 2 in [111]. Nonetheless, we give
the proof for the sake of completion of Theorem 3. Assume that samples are in
general position, i.e., X = [X1,..., X}] € R¥™*™. Let Z* € R™™ be an optimal
to the problem (6.1) or (6.14) and let ZB € R™"*" be a block-diagonal matrix,
whose (i, j)-th element has a value of Z; if z; and z; lie in the same subspace,
otherwise 0. Let us define an off-block-diagonal matrix Z¢ = Z* — ZB ¢ R»*",
Now, suppose that [X]|; = [XZ*]; € S where [A]; is the j-th column of A.

Then, we have [X ZP]; € S; and [X Z9]; € @©;4S;, where @ is the direct sum. But,
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[(XZ*); —[XZP); = [XZC]; € S;. Hence, [X Z9]; = 0 because of the independent
assumption among the subspaces. Thus, Z” is a feasible solution to (6.1) and

(6.14). Then, we use Lemma 3.1 in [54], which has the following relation:

1270 = =125,

D *
for any matrices B and C with compatible dimension, and this relation can also
apply other functions, such as ||Z||; and ||Z||r. Since Z* is the optimal, i.e.,
12|« < |Z®||«, we have ||Z*||« = ||ZP]|«+ meaning that Z* is block-diagonal.
Likewise, we have >, Aif;(Z*) = 3., \ifi(ZP), where f; can be a norm in (6.1)

or (6.14) and \; > 0. O]

F.2 Proof of Theorem 4

R™"  and parameters

Theorem 4. Given a sample x;, € R%, a dataset X €
(A1, A2), and assume that X is normalized. Let z* € R™ be the optimal solution

to following problem:
.1 A
min 2 lex — X3+ Azl + 22 2], (F.1)

where X = [T1,...,X—1,Tlt1, ..., Tnt1]. Supposed that zz; > 0, we have the
following relation:

ulet ) < VR ) (F2)

where pu(z], 27) = [|27 — Zll2/llzkll2 and p = xl'x; is the sample correlation.
The proof is based on Theorem 1 in [104]. Note that a similar result was re-

ported in [111], in which the [;-norm regularizer was absent. Nonetheless, we

provide the proof for the sake of completeness. The problem considered in The-

orem 2 is as follows:

1 A2
H}zln§||$k—XZ||g+)\1HZ||1+3HZH2- (F.3)
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Appendix F. Proof of Theorems in Chapter 6

Proof. We first take a derivative of (F.3) with respect to z; and z;, respectively,

and replace z as z*, then we have
—xl (@), — X2%) + M\ sgn(z)) + Aoz =0, (F.4)

—a:]T(mk — X2%) + Arsgn(z)) + A2z; = 0. (F.5)

By subtracting (F.4) from (F.5), we have

1
zi— 2 = )\—2(33? - asJT)(a:k. - Xz") +c, (F.6)

where ¢ = a(sgn(z]) —sgn(z})) and « is a constant value. Since we assumed that
zizj > 0, it gives sgn(z;) = sgn(z}). Hence, the constant ¢ in (F.6) disappears.
Since X is normalized, ||z; — x;||3 = 2(1 — ] z;). Finally, we have the following
relation:
* * 1 T T *
15 = 2712 = -l — 25 ll2f|we — X272,
2
1
= )\—2\/2(1—p)- ek — X 2%]|2, (F.7)
1
<5, V2 =0 @kl
Therefore, we have [|2] — 27[l2 < % 2(1 —p) - ||lzk||2, where p = zlx;. In
a case where x; and x; are negatively correlated, we can consider —x;, then

l2f = 25ll2 < 5520+ p) - k|2, where p = —af ;. =

F.3 Proof of Theorem 5

Theorem 5. The optimal solution of GLR has grouping effect, i.e., given a set of
data samples X = [x1,...,xp] € R¥X™ and a subspace representation matriz Z €
R™ "™, a solution to the optimization problem of GLR using X, if ||x; — ;|| — 0,

then ||z; — z;|| = 0 for all i # j.
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Before proving Theorem 3, we need to know the following enforced grouping
effect (EGE) conditions [59]. Here, we reduce the conditions by focusing on the
GLR problems.

Definition 4 (Enforced Grouping Effect conditions [59]). The enforced grouping
effect (EGE) conditions are as follows:
(1) f(Z) = ||Z]|« is continuous with respect to Z.

(2) The following problem has a unique solution Z*.

1
min || X XZ|3+ f(2). (F.8)
(3) f(Z) = f(ZP), for all permutation matriz P.

Proof. From Proposition 1 in [59], if GLR satisfies all the EGE conditions in
Definition 4, the optimal solution Z* to the problem of GLR has grouping effect. It
is obvious that EGE conditions (1) and (3) are satisfied for GLR. Now, we need to
show that the uniqueness of the solution of GLR, where f(Z) = A\1||Z].+22(|Z|2.
Due to the Frobenius norm regularizer, the GLR problem is strong convex for
Z [104]. If Ay = 0, it is reduced to the LRR problem [4]. Although the LRR
problem is not strong convex, the unique optimal solution of LRR was proved in
[59]. Hence, the problem of GLR has always a unique solution except the case
when A1 = A2 = 0, which is not a subspace clustering problem. This means that

GLR has the grouping effect. O
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Appendix G

Proof of Theorems in

Chapter 7

G.1 Proof of Theorem 6

Theorem 6. Suppose that noiseless data samples are sufficiently collected from
a union of k independent linear subspaces and basis vectors constructing the sum-
mary matriz cover the remaining samples. Let us define a function f which satis-
fies f(C) = f(CP) for any permutation matriz P. Then, the problem (7.1) based
on the summary representation solves the subspace clustering problem exactly with

a block-diagonal structure of C.

Proof. The block-diagonal structure of ILSR described in Section 7.1 for a noise-
less case can be proved straight-forwardly since ILSR has an equivalent solution

to the following LSR problem [111]:
m(/iyn ICllF, st. X=XC, (G.1)

whose block-diagonal structure was proved in [111]. Likewise, the block-diagonal
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structure of the summary matrix C*¥ with k block matrices can be easily proved
by reducing the ILSR problem to a problem with a subset S of dataset X used
in ILSR. Since we assumed that remaining samples can be represented by basis
vectors of the summary matrix, C* also has a block-diagonal structure with &
block matrices. Specifically, the rule of the summary representation is to collect
samples having low correlation with other samples to enlarge the diversity of a
summary matrix. Hence, if our basis vectors cover the true basis vectors rep-
resenting a subspace, we can represent the remaining samples. Suppose we can
permutate an aggregation matrix C499 which consists of C° and C'®. Then, the
aggregation matrix contains k nonzero block matrices. Since the Nystrom-type
reconstruction involves a multiplication of three block matrices with matching

nonzero blocks, the final affinity matrix has the block-diagonal structure. O

G.2 Proof of Theorem 7

Theorem 7. Suppose that C = UUT € RV with a matriz U € R, Then,
for a matriz V€ R™" satisfying CPP = ([OUT];;)? = CoC=VVT, where ®
is the Hadamard product, the following holds:

‘7: [ﬁ1®01;02®02;...;Ur®ﬁr], (GQ)
where U; is the i-th row of[j' and ® 1is the Kronecker product.

Proof. Let, M = diag(vec(I,)) where I,, is the n x n identity matrix and diag(-)
and vec(-) are the diagonal and vectorization operators, respectively. Then, we
have the following relation:
CoC=M'(UU") e @UT)M
S - (G.3)
=M'UeU)UU)"M=VVT,
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where V = [(U1@0))T (Uy@0)T -+ (U, @U,)T]T € R and M = [My)ien €
R™ %" where H = {k : >_j Mji, # 0} and M; is an i-th column vector of M, is a

matrix constructed by stacking n column vectors of M. O
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