24 research outputs found

    Matrix Methods for the Dynamic Range Optimization of Continuous-TimeGm-CFilters

    Get PDF
    This paper presents a synthesis procedure for the optimization of the dynamic range of continuous-time fully differential G m - C filters. Such procedure builds up on a general extended state-space system representation which provides simple matrix algebra mechanisms to evaluate the noise and distortion performances of filters, as well as, the effect of amplitude and impedance scaling operations. Using these methods, an analytical technique for the dynamic range optimization of weakly nonlinear G m - C filters under power dissipation constraints is presented. The procedure is first explained for general filter structures and then illustrated with a simple biquadratic section

    Nonlinearity and noise modeling of operational transconductance amplifiers for continuous time analog filters

    Get PDF
    A general framework for performance optimization of continuous-time OTA-C (Operational Transconductance Amplifier-Capacitor) filters is proposed. Efficient procedures for evaluating nonlinear distortion and noise valid for any filter of arbitrary order are developed based on the matrix description of a general OTA-C filter model . Since these procedures use OTA macromodels, they can be used to obtain the results significantly faster than transistor-level simulation. In the case of transient analysis, the speed-up may be as much as three orders of magnitude without almost no loss of accuracy. This makes it possible to carry out direct numerical optimization of OTA-C filters with respect to important characteristics such as noise performance, THD, IM3, DR or SNR. On the other hand, the general OTA-C filter model allows us to apply matrix transforms that manipulate (rescale) filter element values and/or change topology without changing its transfer function. The above features are a basis to build automated optimization procedures for OTA-C filters. In particular, a systematic optimization procedure using equivalence transformations is proposed. The research also proposes suitable software implementations of the optimization process. The first part of the research proposes a general performance optimization procedure and to verify the process two application type examples are mentioned. An application example of the proposed approach to optimal block sequencing and gain distribution of 8th order cascade Butterworth filter (for two variants of OTA topologies) is given. Secondly the modeling tool is used to select the best suitable topology for a 5th order Bessel Low Pass Filter. Theoretical results are verified by comparing to transistor-level simulation withCADENCE. For the purpose of verification, the filters have also been fabricated in standard 0.5mm CMOS process. The second part of the research proposes a new linearization technique to improve the linearity of an OTA using an Active Error Feedforward technique. Most present day applications require very high linear circuits combined with low noise and low power consumption. An OTA based biquad filter has also been fabricated in 0.35mm CMOS process. The measurement results for the filter and the stand alone OTA have been discussed. The research focuses on these issues

    Design of a 125 mhz tunable continuous-time bandpass modulator for wireless IF applications

    Get PDF
    Bandpass sigma-delta modulators combine oversampling and noise shaping to get very high resolution in a limited bandwidth. They are widely used in applications that require narrowband high-resolution conversion at high frequencies. In recent years interests have been seen in wireless system and software radio using sigma-delta modulators to digitize signals near the front end of radio receivers. Such applications necessitate clocking the modulators at a high frequency (MHz or above). Therefore a loop filter is required in continuous-time circuits (e.g., using transconductors and integrators) rather than discretetime circuits (e.g., using switched capacitors) where the maximum clocking rate is limited by the bandwidth of Opamp, switchÂs speed and settling-time of the circuitry. In this work, the design of a CMOS fourth-order bandpass sigma-delta modulator clocking at 500 MHz for direct conversion of narrowband signals at 125 MHz is presented. A new calibration scheme is proposed for the best signal-to-noise-distortion-ratio (SNDR) of the modulator. The continuous-time loop filter is based on Gm-C resonators. A novel transconductance amplifier has been developed with high linearity at high frequency. Qfactor of filter is enhanced by tunable negative impedance which cancels the finite output impendence of OTA. The fourth-order modulator is implemented using 0.35 mm triplemetal standard analog CMOS technology. Postlayout simulation in CADENCE demonstrates that the modulator achieves a SNDR of 50 dB (~8 bit) performance over a 1 MHz bandwidth. The modulatorÂs power consumption is 302 mW from supply power of ± 1.65V

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35ÎŒm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74ÎŒW power consumption from 2V power supply

    Realization of Integrable Low- Voltage Companding Filters for Portable System Applications

    Get PDF
    Undoubtedly, today’s integrated electronic systems owe their remarkable performance primarily to the rapid advancements of digital technology since 1970s. The various important advantages of digital circuits are: its abstraction from the physical details of the actual circuit implementation, its comparative insensitiveness to variations in the manufacturing process, and the operating conditions besides allowing functional complexity that would not be possible using analog technology. As a result, digital circuits usually offer a more robust behaviour than their analog counterparts, though often with area, power and speed drawbacks. Due to these and other benefits, analog functionality has increasingly been replaced by digital implementations. In spite of the advantages discussed above, analog components are far from obsolete and continue to be key components of modern electronic systems. There is a definite trend toward persistent and ubiquitous use of analog electronic circuits in day-to-day life. Portable electronic gadgets, wireless communications and the widespread application of RF tags are just a few examples of contemporary developments. While all of these electronic systems are based on digital circuitry, they heavily rely on analog components as interfaces to the real world. In fact, many modern designs combine powerful digital systems and complementary analog components on a single chip for cost and reliability reasons. Unfortunately, the design of such systems-on-chip (SOC) suffers from the vastly different design styles of analog and digital components. While mature synthesis tools are readily available for digital designs, there is hardly any such support for analog designers apart from wellestablished PSPICE-like circuit simulators. Consequently, though the analog part usually occupies only a small fraction of the entire die area of an SOC, but its design often constitutes a major bottleneck within the entire development process. Integrated continuous-time active filters are the class of continuous-time or analog circuits which are used in various applications like channel selection in radios, anti-aliasing before sampling, and hearing aids etc. One of the figures of merit of a filter is the dynamic range; this is the ratio of the largest to the smallest signal that can be applied at the input of the filter while maintaining certain specified performance. The dynamic range required in the filter varies with the application and is decided by the variation in strength of the desired signal as well as that of unwanted signals that are to be rejected by the filter. It is well known that the power dissipation and the capacitor area of an integrated active filter increases in proportion to its dynamic range. This situation is incompatible with the needs of integrated systems, especially battery operated ones. In addition to this fundamental dependence of power dissipation on dynamic range, the design of integrated active filters is further complicated by the reduction of supply voltage of integrated circuits imposed by the scaling down of technologies to attain twin objective of higher speed and lower power consumption in digital circuits. The reduction in power consumption with decreasing supply voltage does not apply to analog circuits. In fact, considerable innovation is required with a reduced supply voltage even to avoid increasing power consumption for a given signal to noise ratio (S/N). These aspects pose a great hurdle to the active filter designer. A technique which has attracted the attention of circuit designers as a possible route to filters with higher dynamic range per unit power consumption is “companding”. Companding (compression-expansion) filters are a very promising subclass of continuous-time analog filters, where the input (linear) signal is initially compressed before it will be handled by the core (non-linear) system. In order to preserve the linear operation of the whole system, the non-linear signal produced by the core system is converted back to a linear output signal by employing an appropriate output stage. The required compression and expansion operations are performed by employing bipolar transistors in active region or MOS transistors in weak inversion; the systems thus derived are known as logarithmic-domain (logdomain) systems. In case MOS transistors operated in saturation region are employed, the derived structures are known as Square-root domain systems. Finally, the third class of companding filters can also be obtained by employing bipolar transistors in active region or MOS transistors in weak inversion; the derived systems are known as Sinh-domain systems. During the last several years, a significant research effort has been already carried out in the area of companding circuits. This is due to the fact that their main advantages are the capability for operation in low-voltage environment and large dynamic range originated from their companding nature, electronic tunability of the frequency characteristics, absence of resistors and the potential for operations in varied frequency regions.Thus, it is obvious that companding filters can be employed for implementing high-performance analog signal processing in diverse frequency ranges. For example, companding filters could be used for realizing subsystems in: xDSL modems, disk drive read channels, biomedical electronics, Bluetooth/ZigBee applications, phaselocked loops, FM stereo demodulator, touch-tone telephone tone decoder and crossover network used in a three-way high-fidelity loudspeaker etc. A number of design methods for companding filters and their building blocks have been introduced in the literature. Most of the proposed filter structures operate either above 1.5V or under symmetrical (1.5V) power supplies. According to data that provides information about the near future of semiconductor technology, International Technology Roadmap for Semiconductors (ITRS), in 2013, the supply voltage of digital circuits in 32 nm technology will be 0.5 V. Therefore, the trend for the implementation of analog integrated circuits is the usage of low-voltage building blocks that use a single 0.5-1.5V power supply. Therefore, the present investigation was primarily concerned with the study and design of low voltage and low power Companding filters. The work includes the study about: the building blocks required in implementing low voltage and low power Companding filters; the techniques used to realize low voltage and low power Companding filters and their various areas of application. Various novel low voltage and low power Companding filter designs have been developed and studied for their characteristics to be applied in a particular portable area of application. The developed designs include the N-th order universal Companding filter designs, which have been reported first time in the open literature. Further, an endeavor has been made to design Companding filters with orthogonal tuning of performance parameters so that the designs can be simultaneously used for various features. The salient features of each of the developed circuit are described. Electronic tunability is one of the major features of all of the designs. Use of grounded capacitors and resistorless designs in all the cases makes the designs suitable for IC technology. All the designs operate in a low-voltage and low-power environment essential for portable system applications. Unless specified otherwise, all the investigations on these designs are based on the PSPICE simulations using model parameters of the NR100N bipolar transistors and BSIM 0.35ÎŒm/TSMC 0.25ÎŒm /TSMC 0.18ÎŒm CMOS process MOS transistors. The performance of each circuit has been validated by comparing the characteristics obtained using simulation with the results present in the open literature. The proposed designs could not be realized in silicon due to non-availability of foundry facility at the place of study. An effort has already been started to realize some of the designs in silicon and check their applicability in practical circuits. At the basic level, one of the proposed Companding filter designs was implemented using the commercially available transistor array ICs (LM3046N) and was found to verify the theoretical predictions obtained from the simulation results

    1.0 v-0.18 ”m CMOS tunable low pass filters with 73 db dr for on-chip sensing acquisition systems

    Get PDF
    This paper presents a new approach based on the use of a Current Steering (CS) technique for the design of fully integrated Gm–C Low Pass Filters (LPF) with sub-Hz to kHz tunable cut-off frequencies and an enhanced power-area-dynamic range trade-off. The proposed approach has been experimentally validated by two different first-order single-ended LPFs designed in a 0.18 ”m CMOS technology powered by a 1.0 V single supply: a folded-OTA based LPF and a mirrored-OTA based LPF. The first one exhibits a constant power consumption of 180 nW at 100 nA bias current with an active area of 0.00135 mm2 and a tunable cutoff frequency that spans over 4 orders of magnitude (~100 mHz–152 Hz @ CL = 50 pF) preserving dynamic figures greater than 78 dB. The second one exhibits a power consumption of 1.75 ”W at 500 nA with an active area of 0.0137 mm2 and a tunable cutoff frequency that spans over 5 orders of magnitude (~80 mHz–~1.2 kHz @ CL = 50 pF) preserving a dynamic range greater than 73 dB. Compared with previously reported filters, this proposal is a competitive solution while satisfying the low-voltage low-power on-chip constraints, becoming a preferable choice for general-purpose reconfigurable front-end sensor interfaces

    The design of active resistors and transductors in a CMOS technology

    Get PDF
    Merged with duplicate record 10026.1/2618 on 07.20.2017 by CS (TIS)This thesis surveys linearisation techniques for implementing monolithic MOS active resistors and transconductors, and investigates the design of linear tunable resistors and transconductors. Improving linearity and tunability in the presence of non-ideal factors such as bulk modulation, mobility-degradation effects and mismatch of transistors is a principal objective. A family of new non-saturation-mode resistors and two novel saturation-mode transconductors are developed. Where possible, approximate analytical expressions are derived to explain the principles of operation. Performance comparisons of the new structures are made with other well-known circuits and their relative advantages and disadvantages evaluated. Experimental and simulation results are presented which validate the proposed linearisation techniques. It is shown that the proposed family of resistors offers improved linearity whilst the transconductors combine extended tunability with low distortion. Continuous-time filter examples are given to demonstrate the potential of these circuits for application in analogue signal-processing tasks.GEC Plessey Semiconductors, Plymout
    corecore