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Abstract

Undoubtedly, today’s integrated electronic systems owe their remarkable performance 

primarily to the rapid advancements of digital technology since 1970s.  The various 

important advantages of digital circuits are: its abstraction from the physical details of 

the actual circuit implementation, its comparative insensitiveness to variations in the 

manufacturing process, and the operating conditions besides allowing functional 

complexity that would not be possible using analog technology.  As a result, digital 

circuits usually offer a more robust behaviour than their analog counterparts, though

often with area, power and speed drawbacks.  Due to these and other benefits, analog 

functionality has increasingly been replaced by digital implementations.

In spite of the advantages discussed above, analog components are far from 

obsolete and continue to be   key components of modern electronic systems.  There is 

a definite trend toward persistent and ubiquitous use of analog electronic circuits in 

day-to-day life.  Portable electronic gadgets, wireless communications and the 

widespread application of RF tags are just a few examples of contemporary 

developments.  While all of these electronic systems are based on digital circuitry, 

they heavily rely on analog components as interfaces to the real world.  In fact, many 

modern designs combine powerful digital systems and complementary analog 

components on a single chip for cost and reliability reasons.  Unfortunately, the design 

of such systems-on-chip (SOC) suffers from the vastly different design styles of 

analog and digital components.  While mature synthesis tools are readily available for 

digital designs, there is hardly any such support for analog designers apart from well-

established PSPICE-like circuit simulators.  Consequently, though the analog part 

usually occupies only a small fraction of the entire die area of an SOC, but its design 

often constitutes a major bottleneck within the entire development process. 

Integrated continuous-time active filters are the class of continuous-time or 

analog circuits which are used in various applications like channel selection in radios, 

anti-aliasing before sampling, and hearing aids etc. One of the figures of merit of a 

filter is the dynamic range; this is the ratio of the largest to the smallest signal that can 

be applied at the input of the filter while maintaining certain specified performance. 

The dynamic range required in the filter varies with the application and is decided by 

the variation in strength of the desired signal as well as that of unwanted signals that 
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are to be rejected by the filter. It is well known that the power dissipation and the 

capacitor area of an integrated active filter increases in proportion to its dynamic 

range. This situation is incompatible with the needs of integrated systems, especially 

battery operated ones. In addition to this fundamental dependence of power dissipation 

on dynamic range, the design of integrated active filters is further complicated by the 

reduction of supply voltage of integrated circuits imposed by the scaling down of 

technologies to attain twin objective of higher speed and lower power consumption in 

digital circuits. The reduction in power consumption with decreasing supply voltage 

does not apply to analog circuits. In fact, considerable innovation is required with a 

reduced supply voltage even to avoid increasing power consumption for a given signal 

to noise ratio (S/N).  These aspects pose a great hurdle to the active filter designer.

A technique which has attracted the attention of circuit designers as a possible 

route to filters with higher dynamic range per unit power consumption is 

“companding”. Companding (compression-expansion) filters are a very promising 

subclass of continuous-time analog filters, where the input (linear) signal is initially 

compressed before it will be handled by the core (non-linear) system. In order to 

preserve the linear operation of the whole system, the non-linear signal produced by 

the core system is converted back to a linear output signal by employing an 

appropriate output stage. The required compression and expansion operations are 

performed by employing bipolar transistors in active region or MOS transistors in 

weak inversion; the systems thus derived are known as logarithmic-domain (log-

domain) systems. In case MOS transistors operated in saturation region are employed, 

the derived structures are known as Square-root domain systems. Finally, the third 

class of companding filters can also be obtained by employing bipolar transistors in 

active region or MOS transistors in weak inversion; the derived systems are known as 

Sinh-domain systems. 

During the last several years, a significant research effort has been already 

carried out in the area of companding circuits. This is due to the fact that their main 

advantages are the capability for operation in low-voltage environment and large 

dynamic range originated from their companding nature, electronic tunability of the 

frequency characteristics, absence of resistors and the potential for operations in varied 

frequency regions. 
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Thus, it is obvious that companding filters can be employed for implementing 

high-performance analog signal processing in diverse frequency ranges. For example, 

companding filters could be used for realizing subsystems in: xDSL modems, disk 

drive read channels, biomedical electronics, Bluetooth/ZigBee applications, phase-

locked loops, FM stereo demodulator, touch-tone telephone tone decoder and 

crossover network used in a three-way high-fidelity loudspeaker etc.

A number of design methods for companding filters and their building blocks 

have been introduced in the literature. Most of the proposed filter structures operate 

either above 1.5V or under symmetrical (1.5V) power supplies. According to data that 

provides information about the near future of semiconductor technology, International 

Technology Roadmap for Semiconductors (ITRS), in 2013, the supply voltage of digital

circuits in 32 nm technology will be 0.5 V. Therefore, the trend for the implementation of 

analog integrated circuits is the usage of low-voltage building blocks that use a single 

0.5-1.5V power supply. 

Therefore, the present investigation was primarily concerned with the study and 

design of low voltage and low power Companding filters.  The work includes the 

study about: the building blocks required in implementing low voltage and low power 

Companding filters; the techniques used to realize low voltage and low power 

Companding filters and their various areas of application.

Various novel low voltage and low power Companding filter designs have been 

developed and studied for their characteristics to be applied in a particular portable 

area of application.  The developed designs include the N-th order universal

Companding filter designs, which have been reported first time in the open literature.  

Further, an endeavor has been made to design Companding filters with orthogonal 

tuning of performance parameters so that the designs can be simultaneously used for 

various features. The salient features of each of the developed circuit are described. 

Electronic tunability is one of the major features of all of the designs.  Use of 

grounded capacitors and resistorless designs in all the cases makes the designs suitable 

for IC technology. All the designs operate in a low-voltage and low-power 

environment essential for portable system applications.

Unless specified otherwise, all the investigations on these designs are based on the 

PSPICE simulations using model parameters of the NR100N bipolar transistors and 
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BSIM 0.35µm/TSMC 0.25µm /TSMC 0.18µm CMOS process MOS transistors.  The 

performance of each circuit has been validated by comparing the characteristics

obtained using simulation with the results present in the open literature.  

The proposed designs could not be realized in silicon due to non-availability of 

foundry facility at the place of study. An effort has already been started to realize 

some of the designs in silicon and check their applicability in practical circuits. At the 

basic level, one of the proposed Companding filter designs was implemented using the 

commercially available transistor array ICs (LM3046N) and was found to verify the 

theoretical predictions obtained from the simulation results.
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INTRODUCTION

1. 1. State-of-the-Art Low-Voltage Low-Power Analog Design and its 

Applications 

ndoubtedly, the remarkable performance of contemporary integrated electronic 

systems is attributed to the rapid advancements achieved in digital technology.  

The main advantage of digital circuit design is its abstraction from the physical details 

of the actual circuit implementations. Furthermore, digital circuitry is comparatively 

insensitive to the variations in the manufacturing process and the operating 

conditions.  Consequently, digital circuits frequently offer a more robust behaviour 

than their analog counterparts, albeit often with area, power and speed drawbacks.  

Last but not the least, digital designs allow functional complexity that may not be 

possible in analog technology based circuits.  Due to these and other benefits, analog 

functionality has been increasingly replaced by digital implementations.

In spite of the trends discussed above, analog components are far from 

obsolete.  In fact, a closer look reveals that they are key components of modern 

electronic systems.  There is a definite trend toward pervasive and ubiquitous use of 

electronic circuits in everyday life.  In fact, analog circuits are needed in many VLSI 

systems such as filters, D/A and A/D converters, voltage comparators, current and 

voltage amplifiers, etc. Moreover, new applications continue to appear where new 

analog topologies have to be designed to ensure the trade-off between speed and 

power requirements. Wearable and Biomedical Electronics, wireless communications 

and the widespread application of RF tags are just some examples of current 

developments.  While all of these electronic systems are based on digital circuitry, but 

they heavily rely on analog components as interfaces to the “real”, i.e. analog world.  

In fact, many modern designs combine powerful digital systems and complementary 

analog systems on a single chip for cost and reliability reasons.  

Further, the rapid improvement of circuit functionality has only been possible 

due to dramatic increase in the achievable integration densities.  The corresponding 

permanent shrinkage of realizable circuit structures, however, is a mixed blessing.  

While it is desirable from the integration point of view, but it promotes more and 

more nonlinear physical phenomena which have only had minor impact so far.  

Therefore, many simplifying assumptions no longer hold, which complicates the 

U
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design of electronic circuits.  In fact, not only the analog domain is affected, but 

digital design is also increasingly becoming aware of physical effects.  

Therefore, the development of monolithic VLSI technology, has led to 

renewed interest in analog circuit design, especially concerning integrated circuits. 

The main aim of analog integrated circuits (AICs) is to satisfy circuit specifications 

through circuit architectures with the required performance. Thus, the Low-voltage 

(LV) low-power (LP) AICs design has been the focus of the contemporary research‚ 

especially in the areas of portable systems where a low voltage single-cell battery 

with longer lifetime has to be used. Portable and miniaturized system-on-chip 

applications exhibit an increasing demand in the microelectronics market and, 

particularly, in the biomedical field with products such as hearing aids, pacemakers or 

implantable sensors. System portability usually requires battery supply, except in 

some special cases such as RF-powered telemetry systems. Unfortunately, battery 

technologies do not evolve as fast as applications demand, so the combination of 

battery supply and miniaturization often turns into a low-voltage and/or low-current 

circuit design problem. In particular, these restrictions affect more drastically the 

analog part of the whole mixed system-on-chip. As a result, specific analog circuit 

techniques are needed to cope with such power supply limitations. 

A short description of the specific circuit approaches for low-voltage operation 

is listed below:

Rail-to-Rail includes all strategies oriented to extend the signal voltage range up to 

the available room between supply rails. Most of them are mainly based on the 

redesign of the input and output stages in order to increase their linear range [1-5].

Multistage stands for multiple but simple cascaded stages instead of single cascoded 

structures. Efforts are then focused on their frequency stabilization with nested 

compensating loops [6, 7].

Bulk-Driven strategies make use of the MOSFET local substrate as an active signal 

terminal to obtain lower equivalent threshold voltages [8, 9].

Supply Multipliers bypass the low-voltage restriction by performing a step-up 

conversion of supply voltage through charge pumps [10-17], typically from 1.5V to 

3V.

The said low-voltage techniques have the following drawbacks:
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 All the low-voltage strategies except those using supply multipliers are 

actually partial solutions since they are addressed mainly to the design of 

operational amplifiers only.

 The bulk-driven option is also in opposition to general anti-latch-up rules of 

any standard CMOS process.

 Although supply multipliers are the only global and perhaps the most used 

solution for very low-voltage operation, they need large capacitive

components, take an important Si area overhead and exhibit high extra current 

consumption, which make them not suitable for small package and low-

current applications.

In a similar way, the main circuit techniques for low-current consumption applications 

are enumerated as follows:

Adaptive Biasing is based on non-static current bias to optimize consumption 

according to signal demands. Bias dynamics are defined either by local positive 

feedback [18, 19] or by feedforward [20, 21] controls.

Subthreshold Biasing of classic topologies by operating their MOS transistors in the 

weak inversion region at very low-current levels [22].

In addition to the techniques mentioned above, LV LP AICs have been achieved by 

substituting traditional voltage-mode techniques by the current-mode techniques‚ 

which have the recognized advantage to overcome the gain-bandwidth product 

limitation. Therefore, many current-mode techniques came into existence and 

Companding-mode design is one such technique for AICs.

1.2. Active Filter Design: An Introduction

An electric filter is a two port frequency selective network that shapes the 

spectrum of the input signal in such a manner that desired frequency content is 

achieved in the output signal.  It is used to separate, pass or suppress a group of 

signals from a mixture of signals.  The applications of filters are to eliminate 

contamination such as noise in communication systems and to separate relevant 

frequency components from irrelevant frequency components.  Filters are also used to 

detect and demodulate signals in radio and television.  Another important application 

is to band-limit signals before sampling and to convert discrete time signals into 
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continuous time signals.  Filters are also employed for improving quality of audio 

equipment, conversion of time-domain multiplexed (TDM) signals into frequency 

domain multiplexed (FDM), speech synthesis, equalization of transmission lines and 

cables, and numerous other applications.

In the systems that interface with real word, the processed signal would be 

measured with unwanted noise. A filter is usually used to get rid of the unwanted 

noise and to reject the surrounding interface. Thus, filters are important blocks for 

specified frequency of signals and are essential for many applications. They can be 

used to band-limit signals in wireline and wireless communication systems. These 

filters operate on continuous-time fashion because the systems interface with real 

analog world. Fig. 1.1 shows the operating frequency ranges of the filter for various 

applications.

Integrated filters can in general be classified into two types: Analog and 

Digital, which in turn can be classified into various types as depicted in Fig. 1.2.  The 

analog filters process the continuous data rather than the digital data for digital filters. 

The analog filters can be further divided into passive and active filters. The elements 

of a passive filter are passive which includes resistors, capacitors, inductors, and 

transformers. Other passive elements like distributed RC components and quartz 

crystals are also used.  On the contrary, active filters include active devices with or 

without lumped passive components.  The active devices can range from single 

transistors to integrated controlled sources such as Operational Amplifier (OA), and 

more exotic devices, such as the Operational Transconductance Amplifier (OTA), 

Current Conveyor (CC) and its variants, Current Feedback Amplifier (CFA), Four 

Terminal Floating Nullor (FTFN) etc. A large area is required for the construction of 

passive filter, while active filters are more suited for CMOS technology.

The Active-RC and Switched-Capacitor filters are suitable only for low to 

medium frequency applications. For high frequencies, the settling problem of 

amplifiers would affect the filter performance since very wide bandwidth and high 

unity-gain frequency are hard to achieve. For systems in the GHz range, LC filters are 

a better choice since the required values of L and C are small. However, Q 

enhancement is needed for LC filters because of low inductor quality factors. The 

Gm-C filters, which operate on open loop topology, would be sufficient for low to 

high frequency range. Thus, the Gm-C architecture can be implemented for various 
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applications. However, the performance of Gm-C filter is highly dependent on the 

performance of the transconductor. Another issue is the automatic tuning of circuit

pertinent performance factors. The frequency response and the quality factor should 

be maintained owing to process, supply voltage and temperature variations. Thus, a 

high performance automatic tuning circuit is required for continuous-time active 

filters.

1.2.1. Filter Classification 

Depending upon the type of separation, filters are classified as Low Pass 

(LP), High Pass (HP), Band Pass (BP), Band Stop (BS), and Allpass (AP).

Depending upon the “roll off” of magnitude response in the transition 

band, filters are classified as first order, second order and High-order.   The order of a 

filter is an integer number, which defines the complexity of the filter. In filters, the 

order of the filter is the highest power of s in denominator of its transfer function. The 

order of the filter can be estimated from the number of reactive elements it contains.

Depending upon the type of filter approximations, filters are classified as Butterworth, 

Chebyshev-1, Chebyshev-2, Elliptic etc.

Depending upon the nature of input and output signals, filters are classified as 

Voltage-Mode (VM), Current-Mode (CM), Trans-Impedance Mode (TIM) and Trans-

Admittance Mode (TAM).

In order to increase the speed of circuits for analog signal processing and to 

decrease the supply voltages of integrated circuits, designers devote their attention to 

the so-called current mode.  It means-simply speaking – that the individual circuit 

elements should interact by means of currents not voltages [23]. In this mode of 

circuit description the input and output are both taken in the current form rather than 

in voltage form.  CM signal processing can be defined as the processing of current 

signals in an environment where voltage signals are irrelevant in determining circuit 

performance.  This may be the case in which circuits are designed to operate with low 

impedance nodes such that the voltage swings are small and time constants are short. 

Choosing low impedance levels, sufficiently small voltages can be achieved with the 

aim to eliminate the influence of Miller’s capacitance and other non-idealities. In CM

circuit, current is used as the active variable in preference to voltage, either 

throughout the whole circuit or only in certain critical areas.
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Fig. 1.1: The operating frequency ranges of filter for various applications.

Fig. 1.2: Classifications of Integrated Filters.

For many years, electronic engineers seem to have been subconsciously 

persuaded that the world is voltage dominated; that amps are somehow subservient to 

volts.  In electronic circuit design this is somewhat surprising, since both bipolar and 

field effect transistors are essentially devices exhibiting controlled output currents.  

The idea of voltage domination is reinforced by the fact that manufacturers produce a 
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wide range of integrated amplifiers whose aim is to reproduce a controlled voltage 

output from a voltage input.  Circuits marketed for the purpose of controlling current 

are much less useful vis-à-vis the performance of a typical integrated 

transconductance amplifier not withstanding early introduction of 741 OA.  This lapse 

is unfortunate, since experience has shown that current mode circuits synthesized 

from standard voltage operational amplifiers (VOAs) can produce better system 

performance than the original VOAs used in an equivalent voltage mode operation.

Recent advances in integrated circuit technologies aimed at state-of-the-art 

analog IC design are now able to explore the potential of current-mode analog signal 

processing, providing attractive and elegant solutions for many circuit and system 

problems.  In addition to current conveyors themselves, such circuits range from 

voltage-to- current converters through translinear circuits and current-mode rectifiers 

to neural computation and many new amplifier topologies.  For many of the 

applications, current-mode approach enables achievement of superior performance, 

even in cases where circuits have been synthesized from voltage-mode components 

due to the lack of suitable alternatives.

The current-mode circuits possess the following potential advantages 

compared with voltage-mode ones:

A. Higher bandwidth capability: bipolar junction transistors and field effect 

transistors are both current output devices.  A key performance feature of the 

current-mode processing is inherent wide bandwidth and as current amplifier the 

transistor is useful almost up to its bandwidth fT.  The stray capacitances can be 

usefully employed as gain element at higher frequencies [24], whereas they limit 

the bandwidth in voltage-mode circuits.

B. Higher operating speed:  the shrinking dimensions of integrated circuit 

techniques lead to circuits whose parasitics are predominately capacitive.  

Current-mode circuit can achieve high speed signaling at low impedance internal 

nodes and low voltage swing due to minimal capacitive charging and discharging.

C. Low circuit complexity for analog arithmetic computations: in the current 

domain, computations like addition and subtraction can be performed directly by 

joining the terminals at a single node.  With the current mirror structure, the basic 

functions of inversion, scaling and summation can be implemented conveniently. 

In contrast to the voltage-mode counterpart, this needs an operational amplifier for 
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realizing the same functions.  It is clear that current-mode realization possesses 

low circuit complexity and the possibility of low power consumption.

D. Greater operating dynamic range:  as the shrinking device feature size of 

integrated technology, the supply voltage has to be reduced in order to ensure 

device reliability.  The reduced voltage supply levels result in reduced dynamic 

range.  An attempt to overcome this problem is simply to change the signal 

representation from a voltage to current.  In this way the signal range is no longer 

directly restricted by the supply voltage but dependent on the impedance level 

chosen by the designer [25].

1. 3. Background and Motivation

Frequency filtering networks are among the most important and widely used 

electronic devices, with numerous applications in analog, digital, and mixed-signal 

consumer products. Filters generally fall into three broad categories: fully digital, 

sampled-data and continuous-time. Digital filters are suited for lower frequency 

applications and are becoming more and more popular, as they can be easily 

incorporated inside the DSP core of an integrated circuit. Sampled-data filters use 

sampling techniques to realize analog filtering. This technique is ideally beneficial for 

data converters. Sample-data filters usually use MOS technology which allows them 

to be integrated on the same chip as the digital circuit. Continuous-time filters play an 

important role in filter design; no other type of filter can be used when dealing with 

high-frequency, low-voltage systems. Consequently, analog filters have become the 

most popular choice for the wireless industry.

Integrated continuous-time active filters are the class of continuous-time or 

analog circuits which are used in various applications like channel selection in radios, 

anti-aliasing before sampling, and hearing aids etc. One of the figures of merit of a 

filter is the dynamic range; this is the ratio of the largest to the smallest signal that can 

be applied at the input of the filter while maintaining certain specified performance. 

The dynamic range required in the filter varies with the application and is decided by 

the variation in strength of the desired signal as well as that of unwanted signals that 

are to be rejected by the filter. It is well known that the power dissipation and the 

capacitor area of an integrated active filter increases in proportion to its dynamic 

range [26]. This situation is incompatible with the needs of integrated systems, 
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especially battery operated ones. In addition to this fundamental dependence of power 

dissipation on dynamic range, the design of integrated active filters is further 

complicated by the reduction of supply voltage of integrated circuits imposed by the 

scaling down of technologies to attain twin objective of higher speed and lower power 

consumption in digital circuits. The reduction in power consumption with decreasing 

supply voltage does not apply to analog circuits. In fact, considerable innovation is 

required with a reduced supply voltage even to avoid increasing power consumption 

for a given signal to noise ratio (S/N).  These aspects pose a great hurdle to the active 

filter designer.

A technique which has attracted attention as a possible route to filters with 

higher dynamic range per unit power consumption is companding [27, 28].

Traditionally companding has been applied to memoryless systems with a dynamic 

range limited channel (e.g. in telephony). The key idea is to ensure that the signal in 

the channel stays sufficiently above noise. To ensure this, pre-amplification is applied. 

However, it is necessary to avoid overloading the channel as well and for this reason, 

large signals are pre-amplified by much smaller amounts than small signals. Thus the 

entire dynamic range of input signals is amplified by appropriate amounts depending 

on their strength so that they are near the top of the channel's dynamic range. To 

restore the output of the channel to the original input levels, the opposite, i.e. small 

gain for small signals and large gain for large signals is applied. Depending on 

whether the gain is made to depend on the instantaneous value or the average value of 

the signal, the companding can be called “Instantaneous” or “Syllabic” respectively 

[29].

Merely substituting a filter in place of the channel with either type of input and 

output amplifiers described above results in a system that is not linear and time-

invariant between its input and output. This general problem of applying companding 

to filters while maintaining input-output linearity and time-invariance has been solved 

earlier [28, 30-32]. Several practical implementations have been published as well. 

While some of them have significantly improved dynamic range per unit power 

consumption compared to traditional active filters, it is thought that companding can 

do much better. It is in fact hoped that companding filters can be realized with lower 

power consumption per dynamic range than passive RC/RLC filters which are 
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assumed to be operating at the fundamental lower limit [26] of power consumption 

for a given dynamic range. 

1.4. History and state of the art of Companding filters

Instantaneous companding has been studied in detail during the last three 

decades. The earliest form of externally linear and internally nonlinear (ELIN) 

instantaneous companding filters, dubbed “Log-Domain (LD)” filters due to their use 

of logarithmic nonlinearity of diodes date back to 1978 [33]. The motivation was not 

companding, but wide tuneability of filter parameters. [31] presented a compact 

realization of first-order LD filters using translinear loops [34, 35] and through the use 

of class-AB circuits for high dynamic range, connected them to the concept of 

companding filters introduced in [27]. To date, LD filters have been the most 

thoroughly investigated species of companding filters. LD filters received a 

systematic treatment in [32] in which they were shown to be synthesizable using 

exponential mappings of state variables in the state equations of linear filter 

prototypes. Since then, several papers dealing with their analysis and synthesis based 

on the LC ladder simulation [36, 37], one-one substitution or use of new cells [38, 39]

or analysis of translinear circuits [40] have been published. A state space formulation 

for class-AB LD filters, which are a class of filters capable of large dynamic range, 

was presented in [41]. [42] presented a LD filter with syllabic companding. This was 

however still based on the formulation of [43]. [44] presented a technique for syllabic 

companding using dynamic biasing that is unique to LD filters and is much simpler to 

implement than [42]. The potential increase in the dynamic range of syllabically-

companding filters was illustrated in [45]. [46] presented a class-AB LD filter in 

BiCMOS technology which outperformed most published filters in terms of dynamic 

range per unit power consumption by a large factor. [47] deals with programmable 

LD filters. The critical issues related with the design of LD filters such transistor Non-

idealities and DC stability, are addressed in [48-52]. The above are a few examples of 

the published works in the area of LD filters. LD filters at very high frequencies of 

hundreds of MHz to a GHz are explored in [51, 52]. The field of LD multifunction or 

universal filter design is almost untouched and is one of the present research trends in 

the LD design.  In [53] a 1st-order LD multifunction filter is given.  In [54], the micro-

power LD universal biquad is discussed.  Both methods mentioned above for the 
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realization of LD multifunction filters cannot be extended to high-order multifunction 

filters as their cascade leads to single-function filters.  In [55] a systematic approach is 

given which can be extended to high-order LD multi-function filter design. In [56] a 

MISO LD multifunction filter is given. Besides this, steadfast endeavour is carried out 

on the realization of high-order LD filters [57, 58], high-order multifunctional filter 

design and improved building blocks [59, 60]. In [61-63] high-order multifunctional 

filter design is given.

The concept of “LD filtering” has been extended to the MOS transistors in 

weak-inversion, due the fact that a similar I–V exponential relationship holds. A 

number of LD filter realizations using MOS transistors have been presented in the 

literature. This is achieved by a direct transformation of the corresponding 

implementations based on bipolar transistors, into MOS transistors realizations using 

component-to-component substitution [64]. The main drawbacks of these topologies 

are the increased effect of transistor mismatches and the limited speed of operation, 

both originated from the operation mode of the MOS transistor. In order to overcome 

the above imperfections a new subclass of translinear filters, named “Square-Root-

Domain (SRD) filters,” was introduced. In this case, the main concept is based on the 

well-known quadratic I–V relationship for the MOS transistor operated in saturation 

and on the MOS translinear principle. A number of SRD circuits, including 

integrators, oscillators, etc., were presented in the literature [65]–[71]. Second-order 

SRD lowpass and/or bandpass filter topologies have been already published in the 

open literature [70, 72–76]. Besides, a novel n-th order follow-the-leader feedback 

(FLF) SRD filter topology is introduced in [77].

The final class of instantaneous companding filters is called Sinh-Domain

(SD) filter obtained through the inverse of the hyperbolic sine function realized by 

translinear loops formed by bipolar transistors in active region or MOS transistors in 

weak inversion. SD filtering is an important technique for realizing analog filters with 

inherent class-AB nature. This is originated from the fact that the required current 

splitting is simultaneously realized with the compression of the linear input current 

and its conversion into a non-liner voltage. This is not the case in the LD filters, 

where a pseudo class-AB operation is realized by establishing two identical class-AB 

signal paths and employing a current splitter at the input of the whole filter. The 

produced intermediate output currents are then subtracted in order to derive the final 
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output of the filter. Besides, SD filtering offers the benefits of companding circuits 

like electronic adjustment of their frequency characteristics because the realized time-

constants are controlled by a dc current and capability of operation under a low-

voltage environment. Compared with their corresponding LD and SRD counterparts, 

SD offer more power efficient filter realizations but price that may be paid is an 

increased circuit complexity [32, 78-85].

1.5. Companding filter design for portable system applications 

With the inception of companding filters, researchers continuously worked on their 

applications and the endeavor is still in vogue.  Since from the last two decades, there 

is an incredible attraction towards portable system applications, the companding 

filters were driven by the same force and a number of companding filter applications 

for the portable systems came into existence. The companding filters work on the 

compression-expansion principle and the compression/expansion operators are 

Log/Exponential or Square-root/Square or Sinh-1/Sinh provided by either the BJTs 

operating in active region or MOSFETs operating in weak inversion or saturation 

regions.  So, the exactness of the companding filters is restricted to that of the 

compression-expansion operators.  Unfortunately, the I-V relationships corresponding 

to the compression-expansion operators of the mentioned devices remain valid for 

low (SRD/SD) to high (LD/SD) frequencies only.  However, the companding filters 

found many applications in the said frequency range.  Towards this end, the 

companding filters were effectively used in the Biomedical and low frequency 

applications [86-92].  Mentioning few of them, companding filters were used to: 

design Cardiac Sense Amplifier for Pacemakers [93], circuit which mimics the 

oscillations observed during the biochemical process of glycolysis due to the 

phosphor fructokinase enzyme [94], gain control circuits and filters for Hearing aids 

and Cochlear Implant Channels [83, 95-98].  In addition, companding filters were 

used to design circuits for: Passive Telemetry [99], Electret Microphones [100],

Audio Filter [101] and DECT cordless transmit path applications [102].  Moreover, 

companding filters were used in telecommunication applications to reject the 

undesired image signals, caused by the down-conversion operation in low 

Intermediate-Frequency (IF) radio transceiver architectures [103, 104].

Furthermore, during the last three decades, owing to large application area, a 

significant amount of research has been carried in the artificial neural networks 
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(ANNs) and Cellular Neural Networks (CNNs). The key features of neural networks 

are asynchronous parallel processing, continuous-time dynamics, and global 

interaction of network elements.  Unfortunately, most of these features are not met by 

their software designs.  Therefore, there has been considerable interest in the 

hardware based designs of ANNs and CNNs [105, 106].  Towards this end, 

companding filters were used to give the LV LP designs of Neuron models [107-110].  

Last but not the least, companding filters have been used to design complex 

Temporal-Derivative-Cellular-Neural-Networks (TDCNNs). TDCNN initiates time 

derivative ‘diffusion’ between CNN cells for non-separable spatiotemporal filtering 

applications, where the input to the CNN is an image that changes over time [111].

1.6. Thesis Outline

This thesis will describe the synthesis of low-voltage low-power companding filters

and their possible applications in the portable systems. The contents of this work have 

been organized as follows:

Chapter 1 presents an overview of the low-voltage low-power analog 

integrated circuits and their applications, context of the work and its motivations.

Chapter 2 presents a review of companding filters.  The three main

classifications of the companding filters i.e. LD, SRD and SD, are fully discussed.  

Towards this end, the operators and building blocks required to design three 

classifications are discussed in detail and the translinear principle used to implement 

these blocks is also discussed.  

Chapter 3 discusses the six techniques used to implement the companding 

filters.  The steps to obtain a companding filter through either of these techniques are 

discussed in detail.  Most of the techniques are concluded with the introduction of the 

contributions in the various International Journals of repute.

Chapter 4 includes conclusions of the thesis and scope for future work.
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COMPANDING FILTERS

2.1. Introduction 

onsumer Electronics industry is driving the IC technology and designers 

towards low-voltage and low-power technologies, in order to accommodate the 

strong requirements of portable equipment such as mobile phones, portable computers 

and so on. This situation is particularly affecting the analog circuitry where the 

voltage level reduction has a clear impact on the dynamic range of the circuits if 

traditional architectures and design styles are maintained. Thus, alternative design 

techniques must be developed in order to cope with all these problems. The other side 

of the theory is that Analog signal processing can be impaired by ‘noise’ of various 

kinds, which can or cannot be random (device noise, power-supply noise, chip 

substrate noise, etc.). The problem is especially acute in high Q filters, in which high 

gain paths exist from internal points to the output. Large capacitors and transistors are 

needed in order to keep thermal and 1/f noise, respectively, at a low level. Thus, 

trying to design low noise, high Q filters on a small chip area can be a frustrating 

endeavour. 

Current-mode approaches deserve particular mention [23] since they provide a 

large dynamic range for the currents, considered now as processing variables, while 

maintaining reduced voltage swings, being accompanied by an increase in circuit 

bandwidth. Another independent, but compatible, approach is given by the so called 

“Companding”. Companding describes the linearization mechanism in which the 

signals are first compressed to an intermediate integration node and then subsequently 

expanded after being processed. The distinct characteristic of the technique is that it is 

the large-signal transfer function of the filter that is linearized, not the individual 

transconductance or active resistive elements as would be the case in more classical 

and MOSFET-C based filters.  Companding systems thus perform an externally 

Linear and Time-Invariant (LTI) operation on the signal, even though internally this is 

not the case; these systems can thus be considered as a particular case of ELIN 

systems [28].

2.2. Companding techniques

Depending upon how gain is dependent on the signal, we have two special 

companding techniques as follows:

C
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A. The input amplifier includes nonlinearity whose slope (equivalently, the small 

signal gain) decreases as the input increases. The output amplifier should have 

the opposite behaviour. This case, where the output of the amplifier is a nonlinear 

function of the instantaneous value of the input is termed instantaneous 

companding.

B. Alternatively, the input and output amplifiers can have characteristics of the form 

gxy  with a variable gain g. The gain of these amplifiers is made to depend on 

the input signal. If the gain is made to depend on the instantaneous value of the

input signal, this case reduces to instantaneous companding described above. A 

distinct situation occurs when the gain is made to depend on an average measure 

of the input signal strength (e.g. the envelope or the root-mean-square value). 

This case is termed syllabic companding.

Companding in telephony (A-law or μ-law [29]) is an example of instantaneous 

companding. Dolby noise reduction system used in tape recorders is an example of 

syllabic companding.

Instantaneous companding has been studied in detail and various techniques of 

instantaneous companding have been reported in the literature.  Besides, the 

companding filtering techniques i.e. “LD”, “SRD” and “SD” used in this thesis are all 

the instantaneous companding techniques.

Before discussing companding filtering techniques in detail, let us first have a 

brief review of the translinear theory which is the essence of most of the companding 

filtering circuits.

2.2.1. Translinear Principle

The translinear Loop (TL) circuit principle was originally formulated as a practical 

means of implementing nonlinear signal processing functions by analog circuits 

designed from bipolar transistors operating in active region or MOSFETs operating in 

weak inversion region [32].  Later on, the concept was extended to the analog circuits 

designed from MOSFETs operating in saturation region [65, 112].  The TL concept 

applies to devices having transconductance linearly proportional to an electrical 

variable such as current or voltage. For the class of devices having transconductance 

linearly proportional to current, we have
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AIg
dV

dI
 (2.1)

Integrating, we obtain

AVBeI  (2.2)

This is the exponential current-voltage characteristic of bipolar transistors operating in 

active region or MOSFETs operating in weak inversion region with I the 

Collector/drain current and V the base-emitter/gate-source voltage.

The second class of devices has transconductance linear with voltage. Therefore

AVg
dV

dI
 (2.3)

Again integrating, we obtain

BV
A

I  2

2
(2.4)

When taking the integration constant B equal to zero, Equation (2.4) represents 

MOSFETs operating in saturation, with I the drain current and V the gate-source drive 

voltage “VGS - VTH”.

Thus, the generalized translinear Loop (GTL) circuits have inputs and outputs 

in the form of currents and their primary functions arise from the exploitation of the 

proportionality of transconductance to an electrical variable in certain electronic 

devices so as to result in fundamentally exact, temperature-insensitive algebraic 

transformations. When the electrical variable referred to is a current and the devices 

are bipolar transistors, the circuits are called Bipolar-Translinear Loop (BTL) circuits. 

Alternatively, when the electrical variable is a voltage/Current, the devices are 

MOSFETs operating in saturation/ MOSFETs operating in weak inversion region, the

circuits are called MOS translinear Loop (MTL) circuits. Systematic techniques for 

the analysis and synthesis of TL circuits have been developed [35], [113]. Useful 

applications have been found such as wide-band current amplifiers [114], four-

quadrant multipliers [115], triangle-wave-to-sine-wave convertors [116], high-

frequency rms-to-dc convertors [117], improved class-AB power output stages [118], 

and many others [35].

The TL principle has been extended to achieve a wide range of temperature 

insensitive algebraic functions.  To illustrate the principle, we can begin with two 
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similar examples of BTL and MTL loops given Figs. 2.1 (a) and 2.1(b) respectively.  

Let us first analyze the loop given in Fig. 2.1 (a), applying Kirchhoff's voltage law

around the loop, it follows that 

 
CCW

BE
CW

BE VV (2.5)

Where the subscripts cw and ccw indicate the devices connected clockwise and 

counterclockwise in the loop, respectively.

Using, the exponential I-V relationship of BJT in active region, we can write
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In a monolithic process where transistors are implemented in close proximity, it is 

generally valid to assume equal thermal voltage of all junctions. Therefore, we can 

write
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Rearranging (2.7) results in
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Since, “IS” is the representation of transistor area, (2.8) can also be written as
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CW
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(2.9)

The last equation is called the BTL principle. To summarize, it is re-stated as follows: 

“For any closed loop comprising any number of pairs of clockwise and 

counter clockwise forward-biased BJT BE-junctions, the product of currents for the 

elements in one direction is proportional to the corresponding product in the opposite 

direction. The factor of proportionality depends solely on the device geometry, and is 

essentially insensitive to process and temperature variations”. 

Using the same principle, as an example, the circuit of Fig. 2.2(a) can be used 

as a squarer divider network with output current given by [119]:

2

2
1

3 i

i
i  (2.10)
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Next, Let us analyze the loop given in Fig. 2.1 (b), applying Kirchhoff's voltage law 

around the loop, it follows that 

 
CCW

GS
CW

GS VV (2.11)

Using, the square I-V relationship of MOSFET in saturation (neglecting the effects of 

mobility reduction and channel length modulation effects), we can write
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V
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Where VTH is the threshold voltage and  LWCK ox02

1  is the transconductance 

parameter of MOSFET.

Assuming well-matched threshold voltages (monolithic construction and uniform 

temperature) and neglecting body effect allows the threshold voltages to be dropped. 

Also, the parameters µ and Cox, will then be common and can be canceled. Thus 

(2.12) reduces to

    
CCW

D

CW

D

LW

I

LW

I
(2.13)

Where W/L is the temperature and process-independent aspect ratio determined by 

the designer.

The last equation is called the MTL principle. To summarize, it is re-stated as 

follows: 

“For any closed loop comprising any number of pairs of clockwise and 

counter clockwise GS regions of saturated MOSFETs, the sum of root currents for the 

elements in one direction is proportional to the corresponding sum of root in the 

opposite direction. The factor of proportionality again depends solely on the device 

geometry, and is essentially insensitive to process and temperature variations”. 

Again, using the same principle, as an example, the circuit of Fig. 2.2(b) can 

be used as a squarer/divider/multiplier network with output current given by [65]:

2

2
2

2
1

3 2i

ii
i


 (2.14)
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    (a) (b)

Fig. 2.1:  Translinear Loops: (a) BTL and (b) MTL.

        (a) (b)

Fig. 2.2:  Translinear Loops implementing useful functions of 

Squarer/Divider/Multiplier.

2.3. Companding Filter Techniques

Low-voltage operation and electronic adjustment of frequency characteristics 

are the current requirement for realizing analog filters and an endeavor of achieving 

these goals thus gained a significant research effort [120–125]. Companding filters are 

an interesting subclass of analog filters with potential for low-voltage operation and 

electronic tuning capabilities [27, 126]. The main concept of the companding filtering 

is the following: the linear input current is initially converted to a non-linear 

compressed voltage and, as a next step, is processed by a companding core. The 

resulted compressed output voltage is then expanded and simultaneously converted 

into a linear current. The compression of the input current could be performed by the 

following ways: 

A. through the logarithmic V–I relationship of bipolar transistor in active region 

or MOS transistor in weak inversion; the derived filters are known in the 

literature as Log-Domain (LD) filters [32, 36, 49, 50, 57, 58, 127], 
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B. through the square-root V–I relationship of MOS transistor in strong 

inversion; the derived filters are known as Square-Root Domain (SRD) 

filters [73, 128–130], and 

C. through the inverse of the hyperbolic sine function realized by translinear 

loops formed by bipolar transistors in active region or MOS transistors in 

weak inversion; the derived filters are known as Sinh-Domain (SD) filters 

[78, 80, 131, 132].

The response of three compression operators corresponding to a shifted sinusoidal 

waveform is given in Fig, 2.3.

Fig. 2.2:  Response of three compression operators corresponding to a shifted 

sinusoidal waveform.
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2.3.1. Log-Domain (LD) Filtering

The concept of LD filtering was first introduced in the 1970's [33]. LD filters 

are a particular subclass of instantaneous companding systems that use Logarithmic

(LOG) and Exponential (EXP) functions for compression and expansion [34]

respectively. This makes it possible for LD circuits to operate with very low supply 

voltage without sacrificing the dynamic range. Also, these filters contain low 

impedance nodes along the signal path, which can be exploited to achieve greater 

bandwidths. LD filters are thus receiving interest in literature and substantial progress 

has been made in simplifying the processes of synthesis and analysis. The basic 

building blocks of the LD filtering are Log and Exponential operators, Lossy and 

Lossless Integrators, and, algebraic summation/subtraction blocks.  These blocks have 

been designed using PNP and NPN transistors or NPN transistors alone in the 

literature.  But, most of the proposed filters have been designed using all NPN 

transistors as they render the filters convenient for monolithic integration. Therefore, 

only NPN based design of the said blocks will be discussed in the following section.

2.3.1.1. All NPN Transistor Exponential Transconductor Cells

A positive and a negative all NPN transistor exponential transconductor cells (usually 

named E cells), with their associated symbols, are shown in Figs. 2.4 (a) and (b), 

respectively. The output current in both topologies is given by [133].  

  TOUTIN Vvv
oout eIi ˆˆ.  (2.15)

Where VT is the thermal voltage and IO is a DC current.
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Fig. 2.4:  All NPN transistorized representation of transconductance cells and the 

symbols used in the Thesis: (a) Positive transconductance cell.  (b) Negative 

transconductance cell.

2.3.1.2. LOG and EXP Operators

By employing the E+ cell in Fig. 2.4, the realization of LOG and EXP operators is 

given in Figs. 2.5 (a) and (b), respectively.  The Figs. 2.5 (a) and (b) are described by 

the following operators respectively [36].  

  






 


o

oin
TinIN I

Ii
ViLOGv ln.ˆ (2.16)

  o
Vv

oOUTout IeIvEXPi TOUT  ˆ.ˆ (2.17)

It is worth to note here that the compressed voltages have been marked with a 

circumflex (^) throughout the thesis.
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Fig.  2.5:  Realization of the LD operators (a) LOG operator and (b) EXP operator.

2.3.1.3. LD Integrators

LD integrators are the heart of the LD filtering technique. Combining the two LD

cells of Fig. 2.4, and adding a capacitor, the LD two-input integrator (lossless) is 

formed as shown in Fig. 2.6 (a). Applying KCL at node P, we can write

T

OUTIN

T

OUTIP

V

vv

o
V

vv

o
OUT eIeI
dt

vd
C
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ˆ

.ˆ


 (2.18)

Where IPv̂ , INv̂ and OUTv̂ , denote the LD positive input, negative input, and output, 

respectively. Multiplying through by TOUT Vve ˆ
and applying the chain rule will result 

in
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Defining the pair of inverse LOG and EXP mappings as given in (2.16) and (2.17), we 

can rewrite Equation (2.19) as

    dtvEXPvEXP
CV

I
vEXP INIP

T

o
OUT )}ˆ()ˆ({.

ˆ
1

.ˆ (2.20)

There are two points that worth paying attention to: (i) As revealed from (2.20), the 

bias current Io can be viewed as to "scale" the capacitor. It is this factor that accounts 

for the electronic tunability of this integrator and the LD filters. (ii) According to 

(2.20}, both positive and negative integrators can be obtained by setting negative or 

positive inputs to ground respectively. 
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     (a) (b)

Fig. 2.6: Exponential transconductor cell representation of: a) two-input lossless 

integrator. b) two-input damped (lossy) integrator.

The LD two-input damped (lossy) integrator is shown in Fig. 2.6 (b), where the 

grounded positive transconductance cell is added to ensure DC stability [48, 50, 62].  

Following the same procedure, the input-output relationship of the damped integrator 

can be given as:

    dtvEXPvEXPvEXP
CV

I
vEXP OUTINIP

T

o
OUT )}ˆ()ˆ()ˆ({.

ˆ
1

.ˆ
        

(2.21)

In Laplace domain, the input-output relationships of the LD two-input lossless and 

lossy integrators can be respectively given by Equations (2.22) and (2.23)
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Where  Tom VIg  , is the transconductance of the exponential cell and 

 Cg m
ˆ is the reciprocal of integrator’s time-constant.
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2.3.1.4. LD Summation/Subtraction Blocks

Also, the required LD amplifier–summer block is presented in Fig. 2.7. Applying 

KCL at the output node, it is obtained that
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 (2.24)

Multiplying both sides of Equation (2.24) with the term TOUT Vve ˆ
and after some 

algebraic manipulation, this can be expressed as follows:
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The last term on the right side of Equation (2.25) leads to DC instability [48, 50, 62].  

For  1321  aaa and using Equation (2.17), Equation (2.25) can be written as 

       332211 ˆ.ˆ.ˆ.ˆ INININOUT vEXPavEXPavEXPavEXP  (2.26)

From Equation (2.26), it is concluded that the circuit in Fig. 2.7 implements a LD 

Amplifier-Summer/Subtractor.  

Fig. 2.7: LD amplifier-Summer/Subtractor and the symbol used in the Thesis.
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2.3.2. Square-Root-Domain (SRD) Filtering

Many researchers, in the recent years, have endeavoured to develop 

companding circuits which include LD circuits [50, 52, 55, 57-60, 62, 63, 134].

However, in most of the IC fabrication technologies, owing to the modern trend of 

digital CMOS processes, the more economical MOSFET implementation of LD

circuits is adopted. To meet such demand and change, LD circuits were designed 

using weak inversion MOSFETs. The circuits, however, are sensitive to threshold 

voltage matching, and the bandwidth becomes restricted due to its limited operation 

that is merely within the kHz range. The problems encountered in the above method 

were solved by using MOS transistors operated in the strong inversion; the resulted 

circuits are known as SRD circuits, due to the quadrature I-V characteristic of MOS 

transistor in strong inversion region [135, 66-70, 73, 75-77, 128-130, 136-139].  SRD 

filtering is a very attractive technique for realizing continuous-time filters with 

capability of low-voltage operation and electronic tuning of their frequency 

characteristics. These benefits are originated from the companding nature of SRD 

filters and the realization of time-constants by dc currents [27, 65, 67, 126, 135, 136].

The basic building blocks of the SRD filtering are Square (SQ) and Square-Root 

(SQRT) operators, Lossy and Lossless Integrators, and, algebraic 

summation/subtraction blocks. Therefore, SRD design of the said blocks will be 

discussed in the following section.

2.3.2.1. SRD Operators

Like LD filters, SRD filters are ELIN systems and analogous to Log and EXP

operators, the complementary SQ and SQRT operators are used in order to maintain 

the linear behavior of the whole system. The physical implementation of the SQ and 

SQRT operators is shown in Figs. 2.8(a) and 2.8(b).

Using the well-known quadratic I–V characteristics for the drain current of a 

MOS transistor, operated in the saturation region, the SQ operator of Fig. 2.8(a) is 

defined as:                 

    OTH IVv
K

vSQ  2ˆ
2

ˆ (2.27)
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Where SQ ( v̂ ) represents a current i that flows into a MOS transistor, v̂ is the gate–

source voltage,  LWCK oxo the transconductance parameter, and VTH the

threshold voltage, while I0 is a constant dc current. 

The SQRT operator is defined as the inverse of the SQ operator and thus

     T
O V

K

Ii
iSQRT 




)(2
)(         (2.28) 

Where SQRT (i) represents the gate-source voltage of a diode connected MOS 

transistor, driven by a current i + I0. The SQRT operator can thus be physically 

implemented using the circuit shown in Fig. 2.8(b). 

From equations (2.27) and (2.28), it is obvious that the above operators are 

complementary i.e. SQ (SQRT (i)) = i. The functions that describe these operators are 

basically the traditional quadratic and square root functions, with a few constants 

added for their physical implementation.

       (a)      (b)

Fig. 2.8: Realization of the SRD operators. (a) SQ operator.   (b) SQRT operator.

2.3.2.2. SRD Integrators

Unless specified otherwise, integrators have been designed by employing only 

the Square-Root-Divider (SQRD) block given in Fig. 2.9 [140, 141] instead of 

conventional Geometric-Mean (GM) and squarer/divider (S/D) blocks.  The output 

current of the topology in Fig. 2.9 is given by Equation (2.29) as 

x
y

z i
i

I
i .0 (2.29)

where I0 is a dc current. An attractive characteristic of the topology in Fig. 2.9 is that 

the minimum supply voltage requirement is equal to VTH+2VDS,sat, where VDS,sat is the 

saturation voltage of a MOS transistor. As a result, the proposed SRD filters will be 
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fully compatible with nowadays’ industry demands for systems with low-voltage 

operation capability. Another benefit is that the realization of SRD integrators using 

the cell in Fig. 2.9 offers a significant reduction of the circuit complexity in 

comparison with the corresponding topologies where geometric mean and 

squarer/divider cells have been utilized [66-77, 130, 135-141].

Fig. 2.9:  Square root divider cell [140, 141].

A typical configuration of a SRD two-input lossless integrator, constructed 

from SQRD block is demonstrated in Figure 2.10 (a). The current that flows through 

the capacitor Ĉ is given by
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After some algebraic manipulations, (2.30) can be written as
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Defining the pair of inverse SQ and SQRT mappings as given in Equations (2.27) and 

(2.28), we can rewrite Equation (2.31) as

     INIPOUT vSQvSQvSQ
dt

d
ˆˆˆ.ˆ  (2.32)

Where 
02

ˆ
ˆ

kI

C
 is the time constant of SRD integrator. Thus, an equivalent resistor 

with a value 021ˆ kIR  is realized by the SRD integrator which can be 
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electronically controlled through the dc current I0. As a result, the realized time-

constants in the SRD can be also adjusted through that dc current.

The SRD two-input damped (lossy) integrator is shown in Fig. 2.10 (b).  Following 

the same procedure, the input-output relationship of the damped integrator can be 

given as:

    dtvSQvSQvSQ
C

kI
vSQ OUTINIPOUT )}ˆ()ˆ()ˆ({.

ˆ
2

ˆ 0
(2.33)

In Laplace domain, the input-output relationships of the SRD two-input lossless and 

lossy integrators can be respectively given by Equations (2.34) and (2.35)
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Where 02kIgm  , is the transconductance of the SQRD cell and  Cg m
ˆ is the 

reciprocal of integrator’s time-constant.

2.3.2.3. SRD Summation/Subtraction Blocks

The realization of an SRD algebraic summation block with a weighted input is that 

given in Fig. 2.11. Applying the KCL at the output node, it is derived that
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Using equations (2.27) and (2.36), it is easily derived that

     21 ˆ.ˆˆ ININOUT vSQavSQvSQ  (2.37)
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(a)

(b)

Fig. 2.10: SRD Integrators. (a) Two-input SRD lossless integrator. (b)Two-input 

SRD lossy integrator.

Fig. 2.11: SRD algebraic summation block with weighted input.
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2.3.3. Sinh-Domain (SD) filtering

Sinh-Domain (SD) filtering is an important technique for realizing analog filters 

with inherent class-AB nature. This is originated from the fact that the required current 

splitting is simultaneously realized with the compression of the linear input current and 

its conversion into a non-liner voltage. This is not the case in the LD filters, where a 

pseudo class-AB operation is realized by establishing two identical class-AB signal 

paths and employing a current splitter at the input of the whole filter. The produced 

intermediate output currents are then subtracted in order to derive the final output of the 

filter. In addition to the aforementioned feature, SD filters also offer the capability for 

electronic adjustment of their frequency characteristics because the realized time-

constants are controlled by a dc current. Because of the companding nature, SD filters 

also allow the capability of operation under a low-voltage environment. Compared with 

their corresponding LD and SRD counterparts, SD offer more power efficient filter 

realizations but the price paid may be an increased circuit complexity [32, 78-85]. Like 

LD and SRD filtering, the basic building blocks of the SD filtering are Sinh and Sinh-1

operators, Lossy and Lossless Integrators, and, algebraic summation/subtraction 

blocks. Therefore, SD design of the said blocks will be discussed in the following 

section.

The main building block for designing SD filters is the non-linear Sinh-Cosh 

(SC) transconductor cell.  Since, the proposed SD filters have been designed using 

BJTs (BiCMOS) in active region and MOSFETs in weak inversion region, both types 

of designs are discussed here.  

2.3.3.1. Weak Inversion MOSFET (WIMOSFET) based SD Filter Design

2.3.3.1.1. WIMOSFET based SD operators

The weak inversion MOSFET (WIMOSFET) based SC cell is given in Fig. 2.12 [84]. 

Utilizing the translinear principle and performing a routine algebraic analysis, it can 

be easily obtained that the output currents are given by the following equations











T

IN
oout U

v
Ii

ˆ
sinh.21 (2.38)











T

IN
oout U

v
Ii

ˆ
cosh.22 (2.39)



Chapter-2: Companding Filters     

32
Realization of Integrable Low-Voltage Companding Filters for Portable System Applications, 
Ph. D. Thesis, Farooq A. Khanday, March-2013.

Where UT = n VT, n is the subthreshold slope factor of a WIMOSFET and VT is the 

well known thermal voltage.

The corresponding S cell with an inverted output is shown in Figure 2.12(b). 

Using Equation (2.38) and inspecting the topology in Fig. 2.13(a), it is readily 

obtained that the voltage ( INv̂ ) at its non-grounded terminal is given by Equation

(2.40). That is, a linear input current is converted into a compressed voltage. In 

addition, from the configuration in Fig. 2.13 (b) and the employment of Equation

(2.38), it is derived that the expression in Equation (2.41) is realized. In other words, 

the topology in Fig. 2.13 (b) performs an expansion of a compressed voltage and 

simultaneously a conversion of it into a linear current. Consequently, the topologies in 

Fig. 2.13 perform two complementary operations as those described by SINH−1 and 

SINH operators introduced in Equations (2.40) and (2.41), respectively.

  







 

o

in
TinIN I

i
UiSINHv

2
sinh.ˆ 11      (2.40)

  









T

OUT
oOUTout U

v
IvSINHi

ˆ
sinh.2ˆ      (2.41)

Another important block that is required for realizing SD filters is two-

quadrant multiplier/divider block.  A conceptual diagram of a two-quadrant class-AB 

multiplier/divider block is that depicted in Fig. 2.14(a), whereas in Fig. 2.14 (b) the 

notation of this block is given. It is constructed from two one-quadrant multipliers 

[79] and an appropriate splitter of the current i1 in order to achieve a two-quadrant 

operation. The realization of the multiplier is that shown in Fig. 2.14 (c). The one 

quadrant multipliers are constructed from transistors Mn1–Mn4 and Mp1–Mp4, 

respectively. The translinear loop formed by transistors Mn5–Mn6 and Mp5–Mp6

establishes that the outputs of the splitter are given by the expressions 

2/4 2
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2
111 





  iiii p and 2/4 2
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  iiii n . Taking also into account 

the following condition: i1p−i1n = i1, it can be easily obtained that the output current is 

given by the following equation 

2

1.
i

i
Ii oout  (2.42)
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Using the building blocks presented in this section, the topologies of the 

corresponding SD integrators will be presented in the following section.

(a)

(b)
Fig. 2.12: WIMOSFET SC transconductors: (a) positive SC transconductor cell; (b) 

Employed Symbol of positive SC transconductor cell (c) negative Sinh transconductor 

cell; and (d) Employed Symbol of negative Sinh transconductor cell.

Fig. 2.13: Realization of the WIMOSFET SD operators: (a) SINH−1 and (b) SINH.
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Fig.  2.14: WIMOSFET Two-quadrant multiplier/divider: (a) Conceptual 

representation; (b) Employed Symbol; and (c) Topology.

2.3.3.1.2. WIMOSFET SD Integrators

A typical configuration of a WIMOSFET SD two-input lossless integrator, 

constructed from blocks mentioned is demonstrated in Fig. 2.15(a). The current that 

flows through the capacitor Ĉ is given by
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After some algebraic manipulations, Equation (2.30) can be written as
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Defining the pair of inverse SINH-1 and SINH mappings as given in (2.40) and (2.41), 

we can rewrite Equation (2.43) as

     INIPOUT vSINHvSINHvSINH
dt

d
ˆˆˆ.ˆ  (2.44)

Where oT ICU 2/ˆ  , is the time-constant in SD.

The WIMOSFET SD two-input damped (lossy) integrator is shown in Fig. 2.15 (b).  

Following the same procedure, the input-output relationship of the damped integrator 

can be given as:

    dtvSINHvSINHvSINH
UC

I
vSINH OUTINIP

T

o
OUT )}ˆ()ˆ()ˆ({.

ˆ
2

ˆ (2.45)

In Laplace domain, the input-output relationships of the SD two-input lossless and 

lossy integrators can be respectively given by Equations (2.46) and (2.47)
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Where
T

o
m U

I
g

2
 , is the transconductance of the SC cell and  Cg m

ˆ is the 

reciprocal of integrator’s time-constant.

2.3.3.1.3. WIMOSFET SD Summation/Subtraction Block

The realization of WIMOSFET SD algebraic summation block with a weighted input 

is that given in Fig. 2.16. Applying the KCL at the output node, it is derived that
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Using Equation (2.41), Equation (2.48) can be written as

     21 ˆ.ˆˆ ININOUT vSINHavSINHvSINH  (2.49)
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(a) (b)

Fig. 2.15: WIMOSFET SD Integrators. (a) Two-input SD lossless integrator. (b)Two-

input SD lossy integrator.

Fig. 2.16: WIMOSFET SD algebraic summation/subtraction block with weighted 

input.

2.3.3.2. BiCMOS based SD Filter Design

2.3.3.2.1. BiCMOS SD operators

The BiCMOS SC cell is given in Fig. 2.17(a) [85]. The cell provides hyperbolic-sine 

and cosine outputs, given by the expressions in Equations (2.50) and (2.51) 

respectively








 
 

T

ININ
oS V

II
 ˆˆ

sinh2                                          (2.50)








 
 

T

ININ
oC V

II
 ˆˆ

cosh2                                          (2.51)



Chapter-2: Companding Filters     

37
Realization of Integrable Low-Voltage Companding Filters for Portable System Applications, 
Ph. D. Thesis, Farooq A. Khanday, March-2013.

where Io is a dc current, VT is the thermal voltage (26mV @ 27oK), IN̂ and IN̂ are 

the voltage at the non-inverting and inverting inputs, respectively.

The corresponding cell with an inverted Sinh output is shown in Figure 2.17(b). 

Fig. 2.17 can be used to implement SINH and SINH-1 complementary operators 

described by Equations (2.52) and (2.53) respectively as shown in Fig. 2.18.
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where VDC is a dc voltage.

In addition, BiCMOS SC cell can be used to implement two-quadrant 

multiplier/divider block as shown in Fig. 2.19 [85] where the output current is given 

by Equation (2.42).

2.3.3.2.2. BiCMOS based SD integrators

A typical configuration of a BiCMOS SD two-input lossless integrator, 

constructed from blocks mentioned is demonstrated in Fig. 2.20(a). The current that 

flows through the capacitor Ĉ is given by
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After some algebraic manipulations, Equation (2.54) can be written as
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Defining the pair of inverse SINH-1 and SINH mappings as given in Equations (2.52) 

and (2.53), we can rewrite Equation (2.55) as Equation (2.44).

Where oT ICV 2/ˆ  , is the time-constant in SD.
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The corresponding equation for damped BiCMOS integrator of Fig. 2.20(b) and the 

Laplace domain equations of Lossless and Lossy integrators will be same as 

Equations (2.45), (2.46) and (2.47) respectively. 

(a) (b)

(c) (d)

Fig. 2.17: BiCMOS SC transconductors: (a) positive SC transconductor cell; (b) 

Employed symbol of positive SC transconductor cell (c) negative Sinh transconductor 

cell; and (d) Employed symbol of negative Sinh transconductor cell.

(a) (b)

Fig. 2.18: Realization of the BiCMOS SD operators: (a) SINH−1 and (b) SINH.
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Fig.  2.19: BiCMOS Two-quadrant multiplier/divider [85].

(a) (b)

Fig. 2.20: BiCMOS SD Integrators. (a) Two-input SD lossless integrator. (b)Two-

input SD lossy integrator.

2.3.3.2.3. BiCMOS SD Summation/Subtraction Block

The realization of BiCMOS SD algebraic summation block with a weighted input is 

that given in Fig. 2.21. Applying the KCL at the output node, it is derived that
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Using Equation (2.53), Equation (2.48) can be written as

     21 ˆ.ˆˆ ININOUT vSINHavSINHvSINH  (2.57)
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Fig. 2.21: BiCMOS SD algebraic summation/subtraction block with weighted input.

2.4. Summary

The chapter started with discussion of companding techniques including LD, SRD and SD

techniques of filter synthesis. The building blocks required to implement companding filters 

were fully investigated. Translinear circuits are the base of companding circuits and were also 

discussed in detail.  
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SYNTHESIS METHODS OF COMPANDING FILTERS

3.1. Introduction

ith regards to the design of companding filters, a number of systematic 

methods have been introduced in the literature as under:

i) The Function Block Diagram (FBD) or Signal Flow Graph (SFG) Synthesis

method that simulates the operation of the passive prototype filter and transposes

to the corresponding one in the companding-domain by employing an appropriate 

set of complementary operators [36, 41, 58, 61-63, 77, 84, 90-92, 129, 139, 142 

etc.].

ii) The Linear Gm-C Filter Transposition Synthesis Method of Companding Filters

in which the linear gm-C filter that simulates the operation of the passive filter is 

transposed to the companding-domain by using appropriately configured non-

linear transconductor cells [38, 50, 57, 132 etc.].

iii) The Exponential State-Space Synthesis Method of Companding Filters in which 

the state-space operational description of the passive prototype filter is mapped to 

the corresponding companding filter [41, 66, 128 etc.].

iv) The Linear Transformation (LT) Synthesis Method of Companding Filters in 

which passive prototype filter is divided into small two-port networks and each 

small network is then transformed into companding-mode network and 

subsequently connected to form a Companding filter [51, 52, 130, 143 etc.].

v) The Component Substitution Synthesis Method of Companding Filters in which 

the elements of the passive prototype filter are substituted by appropriate 

companding blocks which implement the corresponding relationships and 

subsequently connected to form a Companding filter [59, 73, 85, 127, 129 etc.].

vi) The Wave Synthesis Method of Companding Filters in which the corresponding 

LC passive prototype filter is split into two-port subnetworks that are considered 

resistively terminated at both ports. Each port is fully described by using the wave 

variables, defined as incident and reflected waves. Accordingly, these two-port 

subnetworks are described by using the scattering parameters. The linear SFG that

corresponds to the scattering parameters matrix description of the elementary two-

port subnetwork is then transposed to the corresponding companding-domain 

SFG, by employing the set of complementary operators [49, 137].

W
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Among the above six synthesis methods of companding filters, only first four 

methods will be discussed in the following section as the various proposed circuits 

which are Published/Accepted/Under-review fall only under these synthesis 

techniques.  It is worth to mention here that the work is under progress for the design 

of proposed circuits under later two categories as well.

3.1.1. Functional Block Diagram (FBD) Synthesis Method of Companding Filter 

Design

The FBD method is most frequently used for designing companding filters.  The 

method can be followed by either of two ways. The First technique is the indirect one 

in which LC ladder is first converted into an FBD using operational simulation and

the linear FBD is then subsequently translated into the corresponding Companding 

FBD using the specific steps.  The second technique is the direct one in which we can 

directly start from translating the applied FBD of a particular problem into the 

corresponding Companding FBD. 

3.1.1.1. Indirect Method

One of the most popular filter synthesis techniques is the method of operational 

simulation of LC ladders. This method finds the active circuit realization that mimics 

the internal i-v relationships of the individual L and C elements in the LC network. 

The benefits are many-fold. Widely accepted by the design community, lossless 

doubly-terminated LC ladders that are designed to deliver maximum possible power 

to the load exhibit low passband sensitivity to the inevitable process and element 

variations. The resulting circuit has a one to one correspondence to its passive LC 

ladder predecessor. This promotes physical understanding about the functionality of 

various parts of the resulting circuit. Designers can tell from inspection which part of 

the circuit is implementing integrations, scaling or summation etc. The companding

filter synthesis by operational simulation of LC ladder involves the following steps:

A. Finding an LC ladder that meets the design specifications.

B. Deriving the corresponding FBD from the LC prototype.

C. Modifying the FBD to its companding-domain equivalence by:

i) Placing Expander and Compressor blocks in front and behind each 

integrator respectively.
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ii) Placing Expander and Compressor blocks at the filter output and input 

respectively.

D. Map the companding-domain integrator circuit onto the companding-domain 

FBD.

Notice that by performing step C, we are transforming the filter FBD from the 

linear-domain into the companding-domain, while ensuring overall linear input-to-

output relationship. The following example demonstrates the conversion of a 2nd-

order low-pass LC ladder into the corresponding LD filter using the blocks mentioned 

in section 2.3.1.

3.1.1.1.1. Design Example

It begins with finding the passive prototype as shown in Fig. 3.1 (a), followed by 

deriving the corresponding linear FBD as shown in Fig. 3.1 (b)) [144, 145] and the 

achieved LD FBD as shown in Fig. 3.1 (c) using the above steps, and finally, the LD

filter circuit as shown in Fig. 3.19(d). This filter will ideally realize the transfer 

function,
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Where
L

C
RQ

LC
o .

1
           (3.2)

and K (=1) denotes the filter dc gain. The simulation results of the LC ladder of Fig.

2.1(a) with R = 1Ω, C = 1µF and L = 10µH and that of LD counter part of Fig. 3.1(d) 

with VCC = -VEE = 1.5V, I0 = 25µA, C1 = 9.61nF, C2 = 0.961nF and using the 

parameters of the AT&T CBIC-R NR100N NPN transistor [32] given in Table 3.1, is 

shown in Fig. 3.2.
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Fig. 3.1: Synthesis of lowpass LD biquad: (a) Passive prototype (b) the linear SFG 

(c) the corresponding LD SFG, and (d) the final LD filter.

(a)       (b)

Fig. 3.2: Simulation Results of: (a) Passive prototype of Fig. 3.1(a). (b) LD filter of 

Fig. 3.1(d).

Table 3.1:  The model parameters of NR100N NPN transistor used for PSPICE 

simulations.

NR100N - 1X NPN TRANSISTOR

.MODEL NXl NPN RB=524.6  IRB=0  RBM=25   RC=50    RE=1

+IS=121E-18    CJC=0.983E-13 XTI=2 XTB=1.538 BF=137.5 NF=1

+ IKF=6.974E-3 TF=0.425E-9 NR=1   NE=1.713   BR=0.7258    VAR=10.73

+ISE=36E-16  TR=0.425E-8 NC=2 VAF=159.4 ISC=0 VJE=0.5

+IKR=2.198E-3    CJE=0.214E-12  MJE=0.28 EG = 1.206 VJC=0.5 MJC = 0.3
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3.1.1.2. Direct Method

As discussed earlier, direct method starts from the FBD itself.  The following 

examples demonstrate: (1) the proposed Multiple-Input-Multiple-Output (MIMO) 

Universal filter; (2) the proposed generic Single-Input-Multiple-Output (SIMO) 

universal filter topology of arbitrary order and type, leading to four optimal FLF 

configurations, which has received a lot of appreciation from the distinguished 

corners as suggested by the fact that the LD version of one of its configuration stands 

in the top cited articles in one of the Wiley’s leading journal of the world since 2009; 

(3) the proposed Multiple-Input-Single-Output (MISO) universal filter topology of 

arbitrary order and type; (4) the proposed universal biquadratic filter for low 

frequency applications. The implementation of such filters with multifunction feature 

find applications in  phase-locked loops, FM stereo demodulator, touch-tone 

telephone tone decoder and crossover network used in three-way high-fidelity 

loudspeakers, and, Biomedical Electronics and most of these are embedded in the 

portable systems [146].

3.1.1.2.1. Proposed MIMO universal filter [J2]

The FBD and the transposed LD FBD of the proposed MIMO universal filter is 

shown in Fig. 3.3 and Fig. 3.4 respectively.  An examination of the FBD of the 

proposed LD MIMO universal filter given in Fig. 3.4 reveals that it has been 

configured around lossless integrator and addition/subtraction blocks with appropriate 

feedbacks from their outputs. The realized input-output relationships of the filter are 

given by:
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Where
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2 1
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(3.8)

and LOG and EXP operators are as per Equations (2.16) and (2.17) respectively. 

Also ω0 and Q of each filter responses is given as follows:

21
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  (3.9)
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KQ  (3.10)

Fig. 3.3: FBD of the proposed MIMO universal filter

Fig. 3.4: Transposed LD FBD of the proposed MIMO universal filter of Fig. 3.3.
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The filter responses obtained from Equations (3.3)-(3.7) are given in Table 3.2

corresponding to selection of currents 1ii , 2ii and 3ii . An examination of Table 3.2

reveals that the proposed filter is simultaneously universal MISO and SIMO and no 

matching condition is required to be imposed for obtaining any of the responses. 

The LD MIMO depicted in Fig. 3.5 has been constructed using LOG and EXP 

blocks, lossless integrator blocks and addition/subtraction blocks demonstrated in 

section 2.31. The expressions for ωo and Q corresponding to Equations (3.9) and 

(3.10) have been obtained by using time constant relationship of LD integrator and are 

given by:

21
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CCV
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o (3.11)

1

2

C
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KQ  (3.12)

It is obvious from Equations (3.11) and (3.12) that ωo and Q are electronically 

tuneable in an independent manner. The former through Io, while the latter through K 

factor which can be made proportional to a current or ratio of currents by connecting 

LOG and EXP blocks in cascade.

Input currents Responses Available at output node currents

ii1 ii2 ii3 iout1 iout2 iout3 iout4 iout5

iin 0 0 NI-LP I-LP I-BP NA NA

0 iin 0 I-BP NI-BP NI-HP NI-LP NI-BP

0 0 iin NI-HP NA NA I-BP I-HP

iin 0 iin NI-BS NA NA NA NA

iin iin iin AP NA NA NA NA

Note:- NA: Not Applicable, NI: Non-Inverting, I: Inverting, iin: Input current

Table 3.2: Standard 2nd-order filter functions obtained for five outputs by carefully 

selecting the input currents 1ii , 2ii and 3ii .

3.1.1.2.1.1. Simulation and Experimental Results

To verify the theoretical results, the proposed LD MIMO universal biquad depicted in 

Fig. 3.5 was designed for VCC = -VEE = 1.5 V, Io =5 μA and C1 = C2 = 63.66pF which 

yield pole frequency (fC) = 500 KHz.  The NPN transistors in cell implementations are 
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simulated using the parameters of the AT& T CBIC-R NR100N NPN transistor. The 

frequency behaviour of the filter was evaluated by performing large-signal transient 

analysis using the PSPICE simulator, with modulation index factor m=ipeak/Io = 50%

and the magnitude responses obtained are given in Figs 3.6(a)-3.6(e). 

Fig. 3.5: Proposed LD MIMO universal filter.

  

(a) (b) 
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(c)  (d) 

(e)

Fig. 3.6: Simulated magnitude responses of standard filter functions of proposed 

MIMO universal filter in Fig. 3.5. (a) iout1, (b) iout2, (c) iout3, (d) iout4, (e) iout5.

The electronic tuneabilty of ω0 is demonstrated in Fig. 3.7.  In addition, the 

gain of the filter responses is electronically controllable through the dc bias current of 

the corresponding expansion stages which is depicted in Fig. 3.8. The independent 

electronic adjustment of ω0 and Q corresponding to Equations (3.11) and (3.12) is 

demonstrated in Fig. 3.9. 

The THD analysis usually considered for deriving distortion analysis is not 

appropriate. By applying an input signal close to the fundamental frequency at the 

input of a filter, the corresponding harmonics usually fall into stopband and, thus, an 

underestimation of the non-linearity at the output of the filter will be achieved. The 

problem is usually prominent in case of BP responses. Thus, more practical way for 

evaluating the non-linear performance is to perform the well-known 3rd-order inter-
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modulation distortion (IMD3) test. Therefore, to study the non-linear behaviour of 

proposed filter for LP response ( 1outi ), IMD3 test was employed. Accordingly two 

closely spaced tones 100 kHz and 110 kHz, which fall in the passband of the LP 

response, were applied at the input of the filter. The simulated value of distortion at 

full-scale input signal (m = 100 %) for the output was found to be -55.8 dB. Fig. 3.10

depicts the simulated IMD3 response as a function of the modulation index factor. 

The noise of the filter was integrated over a 2 MHz range and the simulated rms value 

of the output noise current was computed to be 131 nA.  The achieved dynamic range 

at 0.1 % distortion level was 49.1 dB. In addition, the power consumption for 

proposed filter was calculated as 3.32 mW.  Assuming 1 % deviation vis-a-vis 

Gaussian distribution, Monte Carlo analysis with 100 runs was conducted for the 

variations of the transistor mismatches, integrating capacitors and bias currents. The 

derived simulated values from the proceeding sensitivity analysis were found to be 

0.008 and 9.898 KHz respectively for standard deviation of the maximum gain and 

the cut-off frequency. These values verify low sensitivity and good linearity features 

of the filter. 

Fig. 3.7: Demonstration of the electronic tunability of frequency characteristics of the 

proposed MIMO filter.

To verify the circuit operation in practice, the proposed MIMO universal filter was 

implemented in a bread-board realization, using commercially available transistor 

arrays (LM3046N). Fig. 3.11 shows a photograph of the breadboard circuit. 

Subsequently, the circuit was tested practically for frequency response. Fig. 3.12
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shows the measured frequency response with Io = 157 μA and C1 = C2 = 0.1 μF

which yield resonance frequency (fC) = 10 KHz.  From the measured response, we can 

notice that even in worst (breadboard) realization, the response fairly corresponds to 

simulation results.

Fig. 3.8: Demonstration of the electronic tunability of gain characteristics of the 

proposed MIMO filter.

Fig. 3.9: Demonstration of the independent adjustment of ω0 and Q of the filter.
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Fig. 3.10: Linear performance of the LP filter function (iout1) of MIMO universal 

filter.

Fig. 3.11: Bread-board realization of the MIMO universal filter.
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Fig. 3.12: Measured frequency response of the MIMO universal filter for a 50 µA 

(peak value) input signal.

3.1.1.2.2. Proposed Arbitrary-Order Universal Filter Topologies [J5]-[J8], [J11]

3.1.1.2.2.1. Single-Input-Multiple-Output (SIMO) Universal Filters

3.1.1.2.2.1.1. All-pole filters

Functional block diagrams (FBDs) of an arbitrary even and odd order all-pole filter 

based on the Follow-the-Leader Feedback (FLF) multiple-loop topology are depicted 

in Figs. 3.13(a) and 3.13(b),  respectively.

Defining the product of the time constants 1 , 2 , . . . , j as jnj b  1...... 21  ( j = 

1, 2, . . . , n), the derived highpass (HP), lowpass (LP) and bandpass (BP) transfer 

functions are given by (3.13)–(3.15), respectively
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According to (3.15), a symmetrical BP filter function is derived for j = n/2 in the case 

of an even-order filter, while all the other BP filter functions BP (n – j) realized in the 

case of an odd-order filter could be considered as asymmetrical.

An examination of Fig. 3.13 reveals, that it consists of lossless integrators, 

arranged one after the other with feedbacks from their outputs to the summation 

block. Depending on the type of integrator, their order of sequence and type of 

feedback, as many as four stable filter configurations can be obtained from FBD 

which are discussed hereunder:

Filter Topology 1 (FT1): Non-inverting lossless integrator followed by inverting 

lossless integrator with positive and negative feedbacks from their respective outputs.

Filter Topology 2 (FT2): Non-inverting lossless integrators are arranged one after the 

other with negative feedbacks from their outputs.

Filter Topology 3 (FT3): Inverting lossless integrator and Non-inverting lossless 

integrator arranged one after the other with positive feedbacks from their outputs.

Filter Topology 4 (FT4): Inverting lossless integrators are arranged one after the 

other with positive and negative feedbacks taken alternately from their outputs.

The order of the filter and its configuration determines the non-inverting or inverting 

mode of the transfer function as summarized in Table 3.3. It is worth to mention here 

that it is very important to know the mode of every output in each configuration as it 

determines how they will be involved in algebraic summation to achieve BS and AP 

filtering functions discussed in the next section. In addition, the four configurations 

presented above are the only achievable stable designs from the generic SIMO design 

as is demonstrated for 2nd–order in Table 3.4.

(a)
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(b)

Fig. 3.13: FBDs of the Generic SIMO all-pole FLF filter topologies: (a) Even Order 

and (b) Odd Order.

Table 3.3: Signs (Non-Inverting or Inverting) of the filter functions (HP is Inverting 

in all Configuration). (NA: Not Applicable, I: Inverting, NI: Non-Inverting, BP1: 

BP(n/2), BP2: BP(n+1)/2, BP3: BP(n-1)/2).

3.1.1.2.2.1.2. Filters with finite transmission zeros

The derivation of filters with finite transmission zeros could be achieved using the 

FBD given in Fig. 3.14. According to the FBD in Fig. 3.14 (a), which is valid for an 

even-order filter, the bandstop (BS) filter function is given by the expression in 

Equation (3.16) as
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Using the expressions in Equations (3.13)–(3.15), the above transfer function could be 

alternatively written as in Equation (3.17)

Order
Filter Topology 1 Filter Topology 2 Filter Topology 3 Filter Topology 4

LP BP1 BP2 BP3 LP BP1 BP2 BP3 LP BP1 BP2 BP3 LP BP1 BP2 BP3

1 I NA NA NA I NA NA NA NI NA NA NA NI NA NA NA

2 NI I NA NA I I NA NA NI NI NA NA I NI NA NA

3 NI NA NI I I NA I I I NA NI NI NI NA I NI

4 I NI NA NA I I NA NA I NI NA NA I I NA NA

5 I NA NI NI I NA I I NI NA I NI NI NA NI I

6 NI NI NA NA I I NA NA NI I NA NA I NI NA NA

7 NI NA I I I NA I I I NA I I NI NA I NI

8 I I NA NA I I NA NA I I NA NA I I NA NA

9 I NA I NI I NA I I NI NA NI I NI NA NI I

10 NI I NA NA I I NA NA NI NI NA NA I NI NA NA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



Chapter-3: Synthesis Methods of Companding Filters

    

56
Realization of Integrable Low-Voltage Companding Filters for Portable System Applications, 
Ph. D. Thesis, Farooq A. Khanday, March-2013

 
01

1
1

0
2

2
4

4
2

2 ...

bsbsbs

bsbsbsbs

v

v
sH

n
n

n

n
n

n
n

n

in

BS
BS 


 







 (3.17)

The allpass (AP) filter function is given by the expression used in Equation (3.18) as
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Using the expressions in Equations (3.15) and (3.17), the above transfer function 

could be alternatively written as in Equation (3.19)
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Table 3.4: Table demonstrating that the four configurations presented are the only 

stable ones.
*I1: First Integrator after Summation, I1: Second Integrator after Summation, NI: Non-Inverting, I: Inverting.
#F1: Feedback from first integrator, F2: Feedback from second integrator.
~U: Unstable, S: Stable.

Mode of 

Integrators*

Type of 

Feedback#
HP Transfer 

Function

Stability 

Status~

I1 I2 F1 F2

NI NI + +

211

2

2

1
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s
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NI I + -

I NI - -

I I - +

NI NI + -
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(a)

(b)

Fig. 3.14: FBDs of the Generic SIMO all-pole FLF filter topologies with finite 

transmission zeros: (a) Even Order and (b) Odd Order.

According to the FBD shown in Fig. 3.14(b), the derivation of an odd-order BS filter 

with finite transmission zeros could be achieved by the following ways:

(a) According to the formula in Equation (3.20)
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and the resulting filter will be denoted as BS1.

(b) According to the formula in Equation (3.21)
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and the resulting filter will be denoted as BS2.

Using Equations (3.13)–(3.15), (3.20) and (3.21), the corresponding filter functions 

could be alternatively expressed by Equation (3.22) and Equation (3.23), respectively
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Having available the BS1 and BS2 filter functions, the corresponding AP filter 

function could be alternatively derived by the formulas given by Equation (3.24) and 

Equation (3.25)
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Using Equations (3.13)–(3.15), and Equations (3.22)-(3.25), the corresponding filter 

functions could be alternatively expressed by Equation (3.26) and Equation (3.27), 

respectively
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3.1.1.2.2.2. Multiple Input Single Output (MISO) Universal Filter

FBD of MISO Universal filter topology of arbitrary order is depicted in Fig. 3.15. The 

derived transfer function is given by Equation (3.28)
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Again defining the product of the time constants 1 , 2 , ..., j as jnj b  1...... 21  ( j 

= 1, 2, . . . , n), Equation (3.28) can be alternatively written as

       

           

01
1

1

212

1
1

1

0...11...1...2...1

1....1..1

bsbsbs

vSsbSsbnSsb

nSsbnSs

v
n

n
n

in
nnnnn

n
n

n
n

nnn

out 






 













       (3.29)

Fig. 3.15: FBD of the MISO Universal filter topology.

From Equation (3.29), it is revealed that the five different generic filtering functions 

can be obtained from the universal filter structure shown in Fig. 3.15 by the following 

specifications:

i) Low-pass: Close  0S , but open all other  iS .

ii) Band-pass: Close  2nS when n is even or close   21nS when n is odd, but 

open all other  iS .

iii) High-pass: Close  nS but open all other  iS .

iv) Notch: Close both  0S and  nS but open all other  iS .

v) All-pass: Close all of the switches.
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3.1.1.2.2.3. LD design [J5]-[J7]

The LD design of the proposed filter (SIMO) has been published in [J5]-[J7].  It is 

worth to mention here that the results of Lowpass (LP), Bandpass (BP) and Highpass 

(HP) were only presented in the said publications (FT1-FT4 corresponds to, Multi-

Function Filter (MFF), MFF1-MFF4).

To transpose Generic FBD to its LD counterpart, the LD blocks mentioned in 

section 2.3.1 were used.  The following step together with the ones mentioned at the 

start of this section were followed for the LD transposition:

 dc stabilize the circuit by applying the rules contained in [50] according to 

which at least one pair of E+ and E− cells must have their outputs connected 

to each capacitor node and the sum of dc bias currents of E+ cells with their 

outputs connected at a node should be equal to the corresponding sum of dc 

bias currents of E− cells with their outputs connected at the same node.

Following the mentioned steps, we obtain the transposed Generic FBD of the LD 

MFF filter topology depicted in Fig. 3.16. The transfer functions in Equations (3.13-

3.15) are now expressed as  
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3.1.1.2.2.3.1. Simulation results

To verify the validity of the proposed design, 5th-order LD MFF of each configuration 

depicted respectively in Figs. 3.17(a)-3.17(d) were constructed for  VCC = VEE = 1.5 

V, Io =25 μA and C = 15.9 pF which yield cut-off/centre frequency (fC) = 10 MHz.  

The NPN transistors in cell implementations are simulated using the NR100 model 

parameters of Table 3.1. The frequency behaviour of the filter was evaluated by 

performing large-signal transient analysis using the PSPICE simulator, with 
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modulation index factor m=ipeak/Io = 50%.  The small deviations, caused by bipolar 

transistor imperfections, have been compensated by following the procedure 

suggested in [48]. The values of the compensation factors were: KRE = 0.999,    KRB= 

0.996, Kβ = 0.986, K1VA = 1, k2VA = 0.99, fβ = 0.00019, and fVA = 0.0013. Also, the 

DC bias currents for the final stage of the filter are multiplied by a factor 1.0086. The 

compensated magnitude responses of 5th order LD MFF topologies are given in Figs. 

3.18(a)-3.18(d). The electronic tunability of cut-off frequency and gain of MFFs has 

been verified for different values of the bias current as shown in Fig. 3.19.

Fig. 3.16:  Transposed MFF topology of the filter in Fig. 3.13 into LD.

A comparative study of the proposed circuits was carried out on the basis of 

usually used parameters of non-linear behaviour, number of components, sensitivity 

and power consumption.

To study the non-linear behaviour of proposed SD universal biquadratic filter 

topology, IMD3 (for LP response) test was employed. For this purpose two closely 

spaced tones 3 MHz and 3.2 MHz, which fall in the passband of the LP response, 

were applied at the input of each of the filters. The simulated values of distortion at m 

= 100 for the biquads are given in Table 3.5.  

Also, the simulated IMD3 responses as a function of the modulation index 

factor, is given in Fig. 3.20. Further, Table 3.5 also contains computed data about 

simulated rms values of the output noise currents integrated over 20 MHz range, 

dynamic ranges (DR) at 0.3 % distortion level, number of devices required and static 

power consumption.  For obtaining sensitivity graph, Monte Carlo analysis with 100 

runs assuming 1 % deviation (with Gaussian distribution) was carried out with respect 

to the variations of the transistor mismatches, integrating capacitors and bias currents. 
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From this graph the values of standard deviation (STD) and mean variance (MV) of 

the maximum gain and cut-off frequency were calculated as given in Table 3.6.  

The results of Tables 3.5 and 3.6 reveal that each design has different 

performance for different set of parameters, thereby, facilitating application specific 

selection of MFF design. Further one can see from the comparative study that MFF1 

is better design as most of its performance factors are superior vis- a-vis other 

designs.

(a)

(b)

(c)
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(d)

Fig. 3.17:  Topologies of the 5th-order generic LD MFF of Fig. 3.16. (a) MFF1 (b) 

MFF2 (c) MFF3 (d) MFF4.

  

(a)    (b)

  

(c)    (d)

Fig. 3.18: Simulated magnitude responses of standard filter functions of MFFs of Fig. 

3.17. (a) MFF1 (b) MFF2 (c) MFF3 (d) MFF4.
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Fig. 3.19:  Demonstration of electronic tunability of cut-off frequency and gain of 

MFFs.

Table 3.5: Comparison of nonlinearity, component count and power dissipation of 

MFFs of Fig. 3.17.

Table 3.6: Statistical simulation results about the frequency behaviour of the LP filter 

functions of LD MFFs of Fig. 3.17.
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rms output 

Inoise

(nA)

DR @  

0.3% 

IMD3 level 

(dB)

No. of 

Components Static Power 

Consumption 

(mW)
Tr. CS

MFF1 -49 dB 230 36.82 66 38 3.62

MFF2 -45.9 dB 240.1 35.24 72 36 3.76

MFF3 -41 dB 250.3 33.75 60 40 3.48

MFF4 -47.8 dB 236.4 35.82 60 40 3.43

MFF
Gain Cut-off  Frequency IMD3 at m=100%

STD MV STD MV STD MV

MFF1 0.0078 0.96 0.252 MHz 9.82 MHz 1.53 dB -47.7 dB

MFF2 0.0087 0.95 0.284 MHz 9.8 MHz 1.65 dB -44.5 dB

MFF3 0.0095 0.94 0.288 MHz 9.81 MHz 1.72 dB -39.4 dB

MFF4 0.0095 0.94 0.292 MHz 9.78 MHz 1.84 dB -46.1 dB
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Fig. 3.20:  Linear performance of the LP filter functions of 5th-order LD MFFs of Fig. 

3.17.

3.1.1.2.2.3.2. Comparison

The various advantages offered by the topologies can be best depicted by comparing 

the LD MFF design with the LD universal/multifunction filters. After a careful look 

on the literature, [53, 54] were found. Out of these, [54] will be a better choice for 

comparison. Hence, the 2nd-order versions of MFF2 and [54] were implemented 

using transconductor cells of [136] and the model parameters of the NR100N.   In 

addition, the following values 1 EECC VV V, 25oI μA and C = 59.1 nF yield 

cut-off/centre frequency as 100Cf KHz.  To study the nonlinear behavior of the

designs, IMD3 of LP responses of both the designs was measured. For this purpose, 

a two-tone test was performed using closely spaced tones 20 KHz and 22 KHz (2% 

of cut-off frequency) which fall within the pass band of the filters.  IMD3 responses 

of both the designs are drawn in Fig. 3.21.  The simulated values of distortion at full-

scale input signal ( %100m ) for both the designs are given in Table 3.7. The noise 

was integrated over 1 MHz range and the simulated rms value of the output noise at 

LP outputs for both the designs is given in Table 3.7.  Also, the signal-to-noise ratio 

(SNR) versus the modulation index factor (i.e. the ratio of the signal’s amplitude to 

the bias current: Opeak Iim  ) for both the designs is plotted in Fig. 3.22. It is worth 

to mention that the noise values for the two designs were very close to each other as 

given Table 3.7 and thus SNR versus modulation index factor appears to be a single 

plot.  The achieved DR at %2.0 distortion level for both the designs is given in 

Table 3.7.  To see the effect of variations of the integrating capacitors and bias 
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currents, the sensitivity comparison for the designs were made.  Monte Carlo 

analysis with 100 runs assuming %5 deviation (with Gaussian distribution) was 

carried out with respect to the variations of the integrating capacitors and bias

currents. The results are plotted in Fig. 3.23.  As is evident from the Monte Carlo 

simulation, design reported in [54] show more insensitivity toward both absolute and 

relative variations in the process parameters around the cut-off frequency than the 

proposed design. A comparison in terms of component count between the two 

designs was made and the number of transistors, capacitors and current sources 

required for 2nd, 4th and 6th-order filters of both the designs (for same filter functions) 

are given in Table 3.8.  It is evident from the results that the increase in the number 

of components for the order to get increased by two is more in the design reported in 

[54] vis-à-vis the proposed design.  The total static power dissipation of the 2nd, 4th

and 6th –order filters of both the designs is given in Table 3.8. In addition, for high-

order design using design methodology reported in [54], we can cascade the biquads 

reported in it.  But then the overall filter will contain single filter function in contrast 

to the proposed design which contains all the proposed filter functions irrespective of 

the order of the filter.  Also, the odd-order filter design is not possible with the 

design of [54].  Thus, on the basis of above discussion we can conclude that the 

proposed design offers several advantages over the design reported in [54].

Fig. 3.21:  Third-order intermodulation distortion (IMD3) versus modulation index 

factor response of biquads of proposed topology and Reference [54].
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Fig. 3.22:  SNR versus modulation index factor of biquads of proposed design and 

Reference [54].

(a) (b)

Fig. 3.23:  Sensitivity of LD filters on integrating capacitor and bias current 

variations. (a) Reference [54] design. (b) Proposed design.

Circuit Distortion at m=1 Output noise DR @ 0.2% Distortion

This work -53.37 dB 128 nA 45.7 dB

Reference [54] -47.75 dB 129 nA 42.6 dB

Table 3.7:  Comparison of non-linearity between the proposed design and Reference

[54].
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Circuit Order No. of Components Total Static 

Power 

Dissipation

Transistors Current 

Sources

Capacitors

This work 2nd 31 23 2 2.38 mW

4th 55 31 4 3.74 mW

6th 79 39 6 5.1 mW

Reference [54] 2nd 44 22 2 2.8 mW

4th 70 32 4 4.3 mW

6th 96 42 6 5.8 mW

Table 3.8:  Comparison of component count and power dissipation between the 

proposed design and Reference [54].
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3.1.1.2.2.4. SRD design [J8], [J11]

In order to transpose the FBDs in Figs. 3.14 and 3.15 to the corresponding ones into 

the SRD, the SRD blocks discussed in section 2.3.2 were used. Following the same 

steps as for LD conversion with exception of using SRD blocks, the transposed FBDs

of the SRD SIMO FLF and MISO filter topologies are demonstrated in Figs. 3.24 and 

3.25 respectively. The transfer functions in Equations (3.13–3.15, 3.17, 3.19, 3.22, 

3.23, 3.26, 3.27 and 3.28) are now expressed as  
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Where jjnb  ˆ.....ˆ.ˆ1ˆ
21 ( j = 1, 2, . . . , n),
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(a)

(b)

Fig. 3.24: Transposed topologies of the Generic SIMO all-pole FLF filter topologies 

with finite transmission zeros of Fig. 3.14 into SRD: (a) Even Order and (b) Odd 

Order.
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Fig. 3.25: Transposed topology of MISO Universal filter topology of Fig. 3.15 into 

SRD.

3.1.1.2.2.4.1. Simulation Results

The performance of the SRD SIMO and MISO universal filter topologies has been 

evaluated by employing the PSPICE software. For this purpose, the square root 

divider block given in Fig. 2.8 will be employed in simulations. In addition, according 

to Equation (3.42) and the conditions concerning the input currents, three digital 

control bits bi (i = 0, 1, 2) are required to select one of the five filter transfer functions 

in case of 3rd and 4th-order MISO universal filter. Therefore, the switch status 

condition provided in Table 3.9 has to be followed in order to derive the appropriate 

filter functions. One possible implementation of the establishment of the required 

switching scheme is shown in Fig. 3.26.

A single power supply voltage VDD = 1.5V (VSS=0) is employed for biasing all 

the stages of the universal filter topologies of Figs. 3.24 and 3.25, while the dc current 

I0 is chosen to be equal to 5 µA. In the square root divider block of Fig. 2.8, the dc 

voltage VDC has been chosen equal to 900 mV. Having available the technology 

parameters provided by the BSIM 0.35-µm CMOS process, the MOS transistor aspect 

ratios of the cell in Fig. 2.8 are summarized in Table 3.10. The aspect ratio of PMOS 

transistors employed in summation blocks was 120µm/2µm. Due to the fact that the 

aspect ratios of NMOS transistors employed in integration, summation and 
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compression/expansion blocks were chosen to be 1.3µm/2µm, the equivalent SRD 

resistor in the expression of time constants in the SRD, given by the formula 

021ˆ KIR  , was 38.1 kΩ. 

As a design example, the 3rd and 4th-order universal filters were designed in 

each of the SIMO and MISO configurations as shown in Figs. 3.27, 3.28 and 3.29. 

The capacitors for 3rd–order filter were chosen as 

pFCandpFCpFC 85ˆ3.40ˆ,3.20ˆ
321  and that of 4th–order filter were chosen as

pFCandpFCpFCpFC 65.104ˆ5.53ˆ,26.31ˆ,81.15ˆ
4321  .  With above values of 

equivalent resistor and capacitors, resonant frequency f0 = 105.55 KHz for 3rd-order 

SIMO filter and 102.8 KHz for 4th-order SIMO filter. The dc power dissipations for 

the universal filter topologies of Figs. 3.27, 3.28 and 3.29 were as given Table 3.11.  

With Aiin 2 , the simulated frequency responses of 3rd and 4th order SIMO and 

MISO universal filters of Figs. 3.27, 3.18 and 3.29 are given in Figs. 3.30, 3.31 and 

3.32 respectively. 

Monte Carlo analysis with 100 runs assuming %5 deviation (with Gaussian 

distribution) was carried out with respect to the variations of the integrating transistor

mismatches, capacitors and bias currents. The results are plotted in Figs. 3.33, 3.34 

and 3.35.  The simulated values of standard deviations of the maximum gain and 

center frequency are given in Table 3.11. 

To study the non-linear behaviour of the proposed SIMO and MISO universal 

filters, 3rd-order IMD3 test was employed. Accordingly two closely spaced tones 

which fall in the passbands of their BP responses were applied at the input of the 

filter. The rms values of the output currents, at 1% distortion level are given in Table 

3.11. Integrating the noise over a 150 kHz range, the simulated rms values of the 
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noise output current for all the cases are also given in Table 3.11. The predicted DR, 

at distortion level 1%, would be as that given in Table 3.11.

The performance of the proposed SIMO and MISO universal filter topologies 

have been compared, in  terms of power efficiency,  with the 2nd-order SIMO and 

MISO universal LD [147] and SRD [139] filter topologies. For this purpose, the 

Figure of Merit (FOM) given by Equation (3.43), would be employed

         )(DRfn
PFOM

o 


                                                  (3.43)

where P is the power dissipation of the filter, n is the number of poles, fo is the cut-off 

frequency, and DR is the dynamic range.

The derived comparison results are summarized in Table 3.12, where it could 

be concluded that the proposed SIMO and MISO universal filter topologies offer 

more power efficient designs than the reported. In addition, from Table 3.12, it could 

readily be obtained that the MISO universal filter topology offers a more power 

efficient design than that of the SIMO universal filter configurations.
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(b)

Fig. 3.26: Circuit schemes for filter function selection in 3rd and 4th–order MISO 

universal topologies.
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(b)
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(c)

(d)

Fig. 3.27: 3rd–order SRD SIMO universal topologies: (a) FT 1, (b) FT 2, (c) FT 3, 

and (d) FT 4.

(a)
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(b)

(c)

(d)

Fig. 3.28: 4th–order SRD SIMO universal filter topologies: (a) FT 1, (b) FT 2, (c) FT 

3, and (d) FT 4.
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(a)

(b)

Fig. 3.29: 3rd and 4th–order SRD MISO universal filter topologies.
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(d)
Fig. 3.30: Simulated magnitude and phase responses of the 3rd–order SIMO universal 

filter topologies. (a) FT 1, (b) FT 2, (c) FT 3, and (d) FT  4.
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(c)

(d)
Fig. 3.31: Simulated magnitude and phase responses of the 4th–order SIMO universal 

filter topologies. (a) FT 1, (b) FT 2, (c) FT  3, and (d) FT 4.
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(b)
Fig. 3.32: Simulated magnitude and phase responses of the MISO universal filter 

topologies. (a) 3rd–order; and (b) 4th–order.
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(c)  

(d)  

Fig. 3.33: Sensitivity of the 3rd–order SIMO universal filter topologies with capacitor

Transistor and bias current variations. (a) FT 1, (b) FT 2, (c) FT 3, and (d) FT  4.

(a) 

(b)  
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(c)  

(d)  

Fig. 3.34: Sensitivity of the 4th–order SIMO universal filter topologies with capacitor

Transistor and bias current variations. (a) FT 1, (b) FT 2, (c) FT 3, and (d) FT  4.

(a)  
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(b)  
Fig. 3.35: Sensitivity of the MISO universal filter topology with capacitor Transistor

and bias current variations. (a) 3rd–order; and (b) 4th–order.

Control 
bits 

(b2b1b0)

3rd–order MISO 
Universal Filter

4th–order MISO Universal 
Filter Filter 

Function
S(0) S(1) S(2) S(3) S(0) S(1) S(2) S(3) S(4)

000 1 0 0 0 1 0 0 0 0 LP
001 0 0 0 1 0 0 0 0 1 HP
010 0 1/0 0/1 0 0 0 1 0 0 BP
011 1 0 0 1 1 0 0 0 1 BS
100 1 1 1 1 1 1 1 1 1 AP

Table 3.9: Switch status condition for 3rd and 4th-MISO universal filter topologies.

Transistor (W/L)

Mp1- Mp7

Mp8- Mp10

Mn1- Mn4

Mn5- Mn8

Mn9- Mn12

200µm/2µm
20µm/2µm
24µm/2µm
48µm/2µm
24µm/2µm

Table 3.10: Aspect ratio of the MOS transistors of the geometric-mean block in Fig.

2.8.

Performance factor

SIMO

3rd-Order 4th-Order

FT1 FT2 FT3 FT4 FT1 FT2 FT3 FT4

Power supply voltage 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V

Bias current 5µA 5µA 5µA 5µA 5µA 5µA 5µA 5µA

Power dissipation 358µW 355µW 371uW 387µW 439µW 424µW 438uW 456µW

Total capacitance (pF) 145.6 145.6 145.6 145.6 205.22 205.22 205.22 205.22

rms Ampl. @ THD level 1% 2.66µA 2.74µA 2.63µA 2.58µA 2.52µA 2.57µA 2.53µA 2.51µA

rms value of output noise 1.11nA 1.86nA 1.50nA 1.13nA 2.49nA 2.11nA 3.39nA 5.80nA

Dynamic range (dB) 67.6 63.4 64.9 67.2 60.1 61.7 57.5 52.7

Std. dev. Of Mid-Freq. gain 2.21k 1.47k 1.69k 2.19k 2.23k 1.53k 3.58k 1.42k

Std. dev. Of Center Freq. fo 30.05m 351.9m 9.54m 30.51m 109.2m 516.9m 10.6m 6.37m

(a)
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Performance factor

MISO

3rd-Order 4th-Order

Power supply voltage 1.5V 1.5V

Bias current 5µA 5µA

Power dissipation 258uW 334uW

Total capacitance (pF) 145.6pF 205.22

rms Ampl. @ THD level 1% 2.68uA 2.58uA

rms value of output noise 1.049nA 2.344nA

Dynamic range (dB) 68.2 60.8

Std. dev. of Mid-Freq. gain 1.71k 1.41k

Std. dev. of Center Freq. fo 24.17m 5.0483m

(b)
Table 3.11: Performance comparison results for the proposed universal filter 

topologies (a) SIMO and (b) MISO.

Table 3.12: Comparison results with the already published companding topologies.

 It is worth to mention here the SD design of the proposed Generic universal 
filter topologies of Figs. 3.4 and 3.5 is under process and will be completed in 
the near future.

Filter Topology
Figure of 
Merit (pJ)

Reference [139] SIMO 1.95 

MISO 0.90 

Reference [147] SIMO 3.315 

MISO 9.246 

Proposed 3rd-order SIMO Universal 

filter topologies

FT1 0.552 

FT2 0.898 

FT3 0.801 

FT4 0.627 

Proposed 4th-order SIMO Universal 

filter topologies

FT1 1.1 

FT2 0.88 

FT3 1.38

FT4 2.70 

Proposed MISO Universal filter 

topologies

3rd-order 0.33 

4th-order 0.77 
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3.1.1.2.3. A low voltage and low power SD universal biquadratic filter for 

low frequency applications [J4]

3.1.1.2.3.1. Design Procedure of SD Universal Biquadratic Filter

The FBD of the proposed SD universal biquadratic filter is demonstrated in Fig. 3.36, 

where the realized transfer functions are described by Equations (3.44)–(3.48)
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where the variable K denotes a scaling factor.

The resonant frequency (ω0) and the Q factor of the filter are given by Equations

(3.49) and (3.50) as

21

0 ˆ.ˆ

1


       (3.49)

2

1

ˆ

ˆ
.

1




K
Q       (3.50)

After examining Equations (3.49) and (3.50), it is clear that the resonant frequency 

(ω0) and Q factor of the filters could be independently adjusted by the scale factor K.

From Fig. 3.36 it is clear that to realize SD FBD of the universal filter, SD lossless 

integrator and summation/Subtraction blocks are required which have been already 

presented in section 2.3.3.
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Fig. 3.36: FBD of the proposed SD Universal biquadratic filter.

Fig. 3.37: Topology of the proposed SD Universal Biquadratic filter.

3.1.1.2.3.2. Simulation Results

In order to confirm the validity of the proposed design, a SD counterpart of 

universal biquadratic filter in Fig. 3.36, using the building blocks mentioned in 

section 2.3.3 was designed and the derived SD universal biquadratic filter is depicted 

in Fig. 3.37. 

The evaluation of the performance of the filters has been done using the 

PSPICE Software. In addition, the transistor models with technology parameters 
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provided by the TSMC 0.18-µm CMOS process were employed in simulations. The 

aspect ratio of both NMOS and PMOS transistors that construct the translinear loops 

in S and C cells was chosen to be 8 µm / 8 µm, whereas the aspect ratios of the other 

NMOS and PMOS transistors were 8 µm / 8 µm and 80 µm / 8 µm, respectively. A 

symmetrical supply voltage equal to ± 0.75 V has been chosen, while the dc current I0

was 100 pA. The dc power dissipation for the filter was 19.2 nW. The frequency 

response with a cut-off frequency f0 = 13 Hz, which is typical for EEG application, 

was realized.

EEG is a method to measure brain waves by recording the electrical 

movements along the head scalp by the firing of neurons within the brain [148]. The 

electrical activity is recorded through highly conductive electrodes attached to the 

heads surface and sends the signals into EEG machine. The recording can be done in 

several different conditions depending on the objective. Most of the time, EEG is used 

in medical practice to diagnose epilepsy, brain death, coma, and some other abnormal 

activities in brain. In the early stage, EEG was used to detect brain tumors and focal 

brain disorders [149].

Several different rhythmic oscillations can be classified to define brain 

activities. Five major brain waves (Alpha, Beta, Delta, Gamma, and Theta waves) 

define most the brain activities with three additional minor bands (Kappa, Lambda, 

and Mu waves) as the complements [150]. The classification is based on the operating 

frequency range of each wave and the state of the sample, in this case, human 

biological sample. Table 3.13 shows the characteristic of major and minor bands.

Therefore, considering that n = 1.32 and oT ICU 2/ˆ  , for the above value of cut-off 

frequency f0 = 13 Hz, the values of capacitors were chosen 75.3 pF. The simulated 

magnitude response of the SD universal biquadratic filter is therefore given in Fig. 

3.38. Fig. 3.39 shows the phase response of AP output. Fig. 3.40 shows the time-

domain response of the AP output. A sine-wave input at a frequency of 13 Hz with

modulation index factor m = 50 % was applied to the filter. This causes a 38.16 ms 

time delay at the AP output corresponding to 178.60 phase difference which is close 

to the theoretical value (1800).

The electronic tunability of the proposed SD universal biquadratic filter 

topology concerning its frequency characteristics is demonstrated by performing 

simulations of its frequency response at different levels of current I0. The derived 
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responses for f0 = 5 Hz, 13 Hz, 35 Hz are simultaneously plotted in Fig. 3.41, where it 

can be verified the capability for electronic tuning of the proposed SD universal 

biquadratic filter.  For above values of frequencies, I0 was varied from 38.4 pA-269.2 

pA. The feature for orthogonal adjustment between the resonant frequency and Q 

factor offered by the proposed filter has been verified through the plot depicted in Fig.

3.42. In Fig. 3.42, the BP filter responses, obtained for K = 0.33, 0.5 and 1, are 

demonstrated. According to Equation (3.50), the theoretically predicted values of Q 

were 3, 2 and 1. The obtained values from the plot in Fig. 3.42 were 2.88, 1.92 and 

0.95 respectively. Due to the fact that the center frequency of the BP filters remains 

unaffected during the tuning of Q, it is obvious that this is an orthogonal procedure 

with regards to the tuning of ω0. 

Band Frequency (Hz) Amplitude (µV) Individuals State

Alpha 8 – 13 20 - 60 Relaxed, closed eyes

Beta 13 – 40 2 – 20 Excited mental/ physical

Delta 0.5 – 3.5 20 – 200 Deep sleep normal person

Theta 4 – 7 20 - 100 Drowsiness in young adults

Gamma 36 – 44 3 - 5 Sensory stimuli

Kappa 10 N/A Thinking

Lambda N/A 20-50 Visual image

Mu 8-13 N/A Sensori motor cortex

Table 3.13: Brain waves classification [150].

Fig. 3.38: Simulated frequency responses of the proposed SD Universal biquadratic 

filter of Fig. 3.37.
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Fig. 3.39: AP Phase response of the filter of Fig. 3.37.

Fig. 3.40: Time-domain responses of the input and AP output of the filter of Fig. 3.37.

Fig. 3.41: Demonstration of the electronic tunability of frequency characteristics.
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Fig. 3.42: Demonstration of the independent tunability of ω0 and Q.

The nonlinear behaviour of the SD biquad for LP response was carried out 

employing IMD3 test. For this purpose two closely spaced tones 11 and 12 Hz, which 

fall in the passband of the BP response, were applied at the input of the filter. The 

simulated IMD3 versus modulation index factor is plotted in Fig. 3.43. The simulated 

rms value of input signal amplitude for 1 % distortion level was 60.9 pA. 

Integrating the noise over a 50 Hz range, the calculated rms value of the noise 

was 0.067 pA.  The SNR versus modulation index factor is plotted in Fig. 3.44. The 

predicted dynamic range (DR), at distortion level 1%, would be equal to 59.17 dB.

Fig. 3.43:   Nonlinear performance of the proposed SD universal biquadratic filter of 

Fig. 3.37.
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Fig. 3.44: Simulated SNR versus modulation index factor.

The proposed biquadratic filter was designed using LD and SRD and 

Operational Transconductance Amplifier (OTA) derived according to [151] as well. 

The performance of the proposed SD biquadratic filter has been compared with those 

of the corresponding LD, SRD and OTA-Based designs. An estimation of the power 

efficiency of the filters is given by utilizing the FOM given by Equation (3.43).The 

derived results are summarized in Table 3.14 where it could readily be obtained that 

the proposed SD biquadratic filter offers: more power efficient design, better 

sensitivity performance and less Capacitance than that of the corresponding LD, SRD

and OTA based designs. Besides, more importantly has low bias and power 

dissipation values.

Performance factor LD Design SRD Design OTA Design [151] Proposed

Power supply voltage 1.5V 1.5V ±0.75V ±0.75V

Bias current 25µA 5µA 5nA 100pA

Power dissipation 3.46mW 209uW 424nW 19.2nW

Total capacitance (pF) 24.5uF 643nF 1.71nF 150.6pF

rms Ampl. @ THD level 1% 13.6uA 2.62uA 72.1mV 60.9 pA

rms value of output noise 33.6nA 7.13nA 346.9uV 0.067 pA

Dynamic range (dB) 52.14 51.3 46.35 59.17

Std. dev. of Mid-Freq. gain 1.7086m 202.3774u 474.3u 392.7014u

Std. dev. of Center Freq. fo 269.89m 286.4307m 324.7m 274.69m

FOM 329nJ 21.9nJ 78.5pJ 0.813pJ

Table 3.14: Performance comparison results for the proposed SD biquadratic filter.

10

20

30

40

50

60

70

0.001 0.01 0.1 1

S
N

R
(d

B
)

Modulation index(m)



Chapter-3: Synthesis Methods of Companding Filters

94
Realization of Integrable Low-Voltage Companding Filters for Portable System Applications, 
Ph. D. Thesis, Farooq A. Khanday, March-2013

3.1.2. Linear Gm-C Filter Transposition Synthesis Method of Companding 

Filters

A method to build companding filters from existing Gm-C filters was given in [38].

The approach enables the filter designer to simply transform the standard Gm-C filters 

to Companding Filters. Companding-domain filter can be synthesized using the Gm-C 

Filter Transposition method by the following procedures:

a) Starting by first choosing the traditional Gm-C filter with the required transfer 

function as the prototype filter. 

b) All the linear transconductance blocks employed in the original filter will be 

replaced by the non-linear transconductance blocks.

c) To achieve the linear current-mode filter, the appropriate non-linear 

transconductors must be added to the input and output terminals of the filter 

obtained at step b.

d) Determine the values of companding-domain parameters corresponding to 

prototype filter.

Observing the procedure, the obtained filter will be ELIN filter.

Without going into details of Gm-C Filter Transposition method which could 

be easily found from the open literature, the following example, demonstrating the 

proposed synthesis approach for single-input-four-output (SIFO) multi-function LD

biquad, explains the Gm-C Filter Transposition method comprehensively.

3.1.2.1.Synthesis of SIFO Electronically Tunable LD multi-function Biquad [J10]

3.1.2.1.1. Design of LD multi-function Biquad

3.1.2.1.1.1. Method

To begin with let us consider the transfer function of 2nd-order HP filter as given 

hereunder:
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Where K is a gain determining constant and coefficients b0–b2 determine the type of 

filter (Butterworth, Chebyshev).
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Equation (3.52) can be rearranged as:
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     2
21 111 scsc

G
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 (3.53)

Where   G = gain at infinity and  211 bbc  and   202 bbc 
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G
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(3.54)

Where  

     2
21 11 scscsH  (3.55)

Equation (3.55) can be rearranged as:
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The complete FBD of 2nd -order HP Filter is then as shown in Fig. 3.45, where the 

dash line enclosed block represents the feedback transfer function H(s) with two 

summers combined into one.

Fig. 3.45: FBD representation of proposed multi-function biquadratic filter.

3.1.2.1.1.1.1. LP filtering function            

The general transfer function of LP filter is 
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Equation (3.58) can be rearranged as:
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Where (K/K2) = K1.
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Thus, LP filtering function can be obtained by dividing the transfer function of HP 

filtering function by s2 or by integrating the HP filtering function 2-times. From Fig. 

3.45, it is then clear that LP filtering function will be available at node 3.

3.1.2.1.1.1.2. BP filtering function

The general transfer function of 2nd – order BP filter is 
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(3.60) can be rearranged as:
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Where (K/K4) = K3.

Thus, BP filtering function can be obtained by dividing the transfer function of HP 

filter function by s or by integrating the HP filter transfer function. From Fig. 3.45, it 

is clear that BP filtering function will be available at node 2.

3.1.2.1.1.1.3. LPN/HPN filtering function

The two uncommon filtering functions, LPN and HPN, are revisited in this work [144, 

152-154].  To calculate the transfer functions of these filtering functions, let us 

consider the transfer functions of 2nd-order HP and LP filters based on the design 

discussed above, as  given below
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If we integrate the output at node 2 by a separate integrator  sa '
21 , then the output of 

this integrator will be a LP filtering function given by
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(3.65)

In our case of LD filters   oTnn IVCa  , so

(i). If  '
211 aa >  211 aa or '

2a < 2a , then TN(s) will be the   transfer function of 

LPN filter as discussed in [144, 152-154].

(ii).If  '
211 aa <  211 aa or '

2a > 2a , then TN(s) will be the transfer function of 

HPN filter as discussed in reference [144, 152-154].

Thus Equation (3.65) represents the combined transfer function of LPN and HPN 

filtering functions. The LPN/HPN extension is then as shown in Fig. 3.45.

Equation (3.65) can be expressed as:
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As discussed above then n > o for LPN and vice-versa for HPN, where n is the 

notch frequency of LPN/HPN filtering function and o is the cut-off/centre frequency 

of LP/HP/BP filtering function. n and o have a1 as a common term and two 

independent terms '
2a and 2a respectively. Thus, the cut-off frequency of LP/HP/BP 

can be varied independent of notch frequency of LPN/HPN and vice-versa

The Gm-C representation of the proposed multifunction filter is shown in Fig. 

3.46. The actual Gm-C representation will be without current–voltage converter (I/V) 

and voltage–current (I/V) converters shown in Fig. 3.46. The I/V and V/I converters 

are required to extract the resultant of input and feedbacks currents representing HP 

filtering function, without disturbing the operation of the entire circuit. The 

intermediate voltage is then the voltage representation of HP filtering function as 

shown in Fig. 3.46.  The I/V and V/I converters should have unit transfer ratios 

(impedance and admittance or resistance or conductance) but if they have non-unity 

transfer ratios, the overall transfer function will be same, only there will be change in 

the gain G.  The above discussed Gm-C representation of the design can be transposed 

into LD filter representation as discussed in [38].  In order to make the design DC 
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stabilized, the rules discussed in [50] were followed. The LD representation of the 

proposed LD multi-function biquad is shown in Fig. 3.47.  In this representation, the 

HP filtering function is extracted by separating 1st capacitor by a transconductance 

cell [54].

Fig. 3.46:  Gm-C representation of proposed multi-function biquad.

3.1.2.1.1.3. Simulation Results

The performance of the proposed LD multi-function biquad, shown in Fig. 3.47 was 

evaluated through simulation results using PSPICE. For this purpose, the magnitude 

responses of multi-function filter with cut-off frequency as fC =50 KHz were 

simulated. The power supply voltages were chosen to be VCC = −VEE = 1.5V, and the 

bias currents were IO=25uA. The capacitor values for C1 and C2 were taken as 3.18 

nF. The value of C2΄ used in the LPN/HPN notch extension section was chosen as 35 

nF for HPN and 2 nF for LPN leading to the respective notch frequencies of 15 KHz 

and 63.3 KHz. The simulated magnitude responses using ideal and practical 

transistors are respectively plotted in Figs. 3.48(a) and 3.48(b). All the NPN 

transistors in cell implementations are simulated using the parameters of the AT& T 

CBIC-R NR100N NPN transistor.

In order to verify the DC stability of the proposed approach, transient analysis 

was done. For this purpose, a sinusoidal input current with modulation index factor 

(i.e. the ratio of the signal’s amplitude to the bias current: m=ipeak/Io) equal to 60% 

and a frequency equal to 20 KHz was applied to multi-function filter , the simulated 

input-output current waveforms are plotted in Fig. 3.49. The non-linear behaviour of 

the multi-function biquad was also studied. For this purpose, the THD of the multi-

function filter having cutoff frequency set to 50 kHz has been measured for each of 
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the outputs. For HP and HPN, the negligible difference was found between their 

distortion characteristics and was thus represented by only one characteristic. 

Similarly, the distortion characteristics of LP and LPN filtering functions were 

represented by only one characteristic.  For LP filtering function, THD was measured 

at 30 KHz, for BP filtering function, THD was measured at 50 kHz and for HP 

filtering function THD was measured at 100 KHz. The simulated plots of THD versus 

modulation index factor are shown in Fig. 3.50 and the values of input current at 1% 

THD value  and the values of THD at m = 1 for each of the outputs are summarized in 

Table 3.15. The noise performance of the multi-function LD filter was also studied. 

For this purpose, the noise of the filter was integrated over a 3 MHz range and the 

signal-to-noise ratio (SNR) versus the modulation index factor is plotted in Fig. 3.51.

The negligible differences were found between the noise performances of various 

outputs. The achieved dynamic range (DR), at 1% distortion level, was calculated for 

each of the outputs and is summarized in Table 3.15. The overall dynamic range was 

taken as the worst case of HP/HPN filtering function being operating at high 

frequencies and is given as 38.3 dB.

Fig. 3.47: LD representation of proposed multi-function biquad.
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(a)       (b)
Fig.  3.48: Magnitude response of proposed LD multi-function biquad (a) Using ideal 

transistors (b) Using practical transistors.

Fig. 3.49: Simulated input-output current waveforms of proposed LD multi-function

biquad.

Fig.  3.50: Total harmonic distortion (THD) versus modulation index factor 

(Ipeak/Ibias).
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In order to verify the electronic tunability, the bias currents were given three values as 

25 µA, 50 µA and 75 µA and the frequency responses for each of the outputs are 

shown in Fig. 3.52(a)-3.52(e). From the responses, it was observed that for the above 

three values of bias current, the cut-off/centre frequencies comes out approximately 

50 KHz, 100 KHz and 150 KHz respectively. Thus, the approach has linear 

dependence of cut-off/centre frequencies over the bias current. To verify the 

independent tuning of notch frequency of LPN/HPN, the components constituting 2a

and '
2a were varied independently. For this purpose, first the '

2C was varied by giving 

it three values as 35 nF, 55 nF and 75 nF and 2C was kept fixed at 3.18 nF and the 

resultant frequency responses are shown in Fig. 3.53(a). Secondly, the   C2 was varied 

by giving it three values as 3 nF, 9 nF and 15 nF and '
2C was kept fixed at 35 nF and 

the resultant frequency responses are shown in Fig. 3.53(b). It is worth to mention that 

as the information regarding the cut-off/centre frequency of LP/HP/BP is also 

contained in the LPN/HPN responses, it is sufficient to observe the LPN/HPN 

response. That is why only the HPN responses are shown in figures. From the 

responses, it is clear that the notch frequency of LPN/HPN and the cut-off/centre 

frequency of LP/HP/BP can be varied independent of each other. 

Fig. 3.51:  Signal to noise ratio (SNR) versus modulation index factor (m).
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Table 3.15:  Simulated values of input current at 1% THD, THD at m=1 and dynamic 

range for each of the three outputs.

    (a)       (b)

    (c)       (d)

Calculations
LP/LPN 
Output

BP 
Output

HP/HPN 
Output

Value of input current for 1% THD 23uA 14.4uA 10.5uA

Value of THD at m=1 36dB -34.6dB -29.4dB

Dynamic range 45dB 41.6dB 38.3dB
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(e)

Fig. 3.52: Magnitude responses showing the electronic tunability of the proposed LD 

multi-function biquad. (a) LP (b) HP (c) BP (d) LPN (e) HPN.

   

(a)                                                               (b)
Fig. 3.53 Magnitude responses showing the independent tuning of notch and cut-

off/centre frequency (a) Fixed cut-off/centre frequency and varying notch frequency. 

(b) Fixed notch frequency and varying cut-off/centre frequency.
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3.1.3. Exponential State-Space Synthesis Method of Companding Filters

All known analog filter types may be derived and synthesized starting from linear 

state space models. By applying linear or nonlinear mappings to the variables, one 

may derive circuit realizations. Of course, such derivations may require considerable 

creativity, as evidenced by the many techniques developed by those who have been 

responsible for the evolution of filter synthesis as we now know it. The universal 

applicability of state space methods to filter synthesis provides an invaluable tool for 

the unification of the many approaches introduced over the years. This unification 

provides not only elegance, but also a means for comparison amongst the many 

realizations. 

Companding filter can be synthesized using the state-space method by the 

following procedures:

a) Starting with the transfer function of the prototype filter, State-space equations 

satisfying the transfer function are found (as mentioned above, considerable 

creativity may be required to find the State-space equations). 

b) State-space equations are appropriately transformed into companding-domain.

c) The companding-domain State-space equations are synthesized using 

appropriate companding-domain blocks.

d) Determine the values of companding-domain parameters corresponding to 

prototype filter.

Without going into details of state-space synthesis method, the following example,

demonstrating the proposed synthesis method for the design High-order Allpass filters 

using Novel Low-Voltage Current-Mode SRD low-order Allpass Filters, explains the 

state space method comprehensively.

3.1.3.1. Synthesis of High-order Allpass filters using Novel Low-Voltage Current-

Mode SRD low-order Allpass Filters [J15]

3.1.3.1.1. Proposed Low-Voltage Current-Mode SRD AP filter Design 

3.1.3.1.1.1. First-Order AP Filter

A first-order AP filter transfer function can be written as follows:

1
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Where  is the time constant of the filter and k is the gain or loss throughout the 

frequency response. Equation (3.67) can be decomposed to the following:

1

2
)(




s
k

ksH (3.68)

The second term in the right hand side of Equation (3.68) is the transfer function of 

first-order low-pass (LP) filter and can be represented by state space equations as 

shown below:
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As the state variables are node voltages, then substitute x = V1 and u = U in Equation

(3.69) leads to Equation (3.70)
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Multiplying by a constant C on both sides of Equation (3.70), we have
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For a MOSFET in saturated region, the drain current is given by
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Where β is the transconductance parameter, VGs is the gate to source voltage and THV

is the threshold voltage of the MOSFET.  Defining new currents I1, IU and Io given by
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And after some manipulations, the state space equations become
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Where    
 oTH

TH
T IV

CV
I         (3.76)

Equation (3.75) is the complete derivation of the first order LP filter. An examination 

of Equation (3.75) reveals that, it needs two square-root circuits, a load capacitor, 

some current mirrors, two additional DC bias current sources and two n-type 

MOSFETs.  From Equation (3.75), it is clear that for the implementation of the 

proposed LP filter, the square-root circuit is needed and is therefore given in Fig. 3.54 

[77, 155]. The complete circuit diagram of the proposed first-order AP filter as per the 

Equations (3.68) and (3.75) is then as shown in Fig. 3.55.

3.1.3.1.1.2. Second-Order AP Filter

The second-order AP filter transfer function can be written as follows:
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Equation (3.77) can be decomposed to the following:

1

2

)(

)(
)(

22 


Q

s
s

Q

s
k

k
sU

sY
sH





(3.78)

The second term in the right hand side of Equation (3.78) is well known transfer 

functions of second order BP filter.  By following the similar procedure introduced in 

the previous section, the complete derivation of the second-order BP filter is:
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Implementation of Equation (3.79) in circuit form needs three square-root circuits, 

two grounded capacitors, several current mirrors, three additional DC bias current 

sources and three n-type MOSFETs. The proposed second-order AP filter obtained as 

per Equations (3.78) and (3.79) is then as given in Fig. 3.56. 

Moreover, a high-order AP filter can be implemented by cascading low-order 

(first order and second order) AP filters and the same has been verified in the 

simulated results.  

(a)

(b)

Fig. 3.54:  (a) Low-voltage current square-root (geometric-mean) cell (b) the 

employed symbol.

3.1.3.1.1.3. Simulation results

In order to verify the theoretical predictions discussed in section 3.1.3.1.1., the 

proposed low-order AP circuits shown in Figs. 3.55 and 3.56 were simulated using 

TSMC 0.25 μm CMOS process parameters. For both the filters, the aspect ratios of 

transistors used in current mirror are W/L = 20μm/2 μm and those used in square-root 

circuit are given in Table 3.16.
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With VDD = 1.5 V, C1 = C2 = 56.27 pF, I0 = 5µA, the simulated value of the pole 

frequency was 100 KHz. Figs. 3.57 and 3.58 depict the simulated magnitude and 

phase responses of the first order and second-order AP filter respectively. 

Furthermore, the simulated frequency responses of LP and BP filters, being the 

inherent building blocks of the low-order AP filters and high-order AP filters are 

shown in Fig. 3.59. In addition, the simulated frequency responses of high-order AP 

filter designs are shown in Fig. 3.60. To demonstrate the electronic tunability of the 

proposed circuits, I0 was varied and the achieved results for 1.25 μA, 5 μA and 20 μA 

are shown in Fig. 3.61. In addition, the performance of the proposed AP filters was 

evaluated through the performance factors of linearity, noise, and mismatching. The 

obtained results are summarized in Table 3.17.

Fig. 3.55:  Proposed low-voltage SRD design of first-order AP filter.

Fig. 3.56:  Proposed low-voltage SRD design of second-order AP filter.
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(a)

(b)

Fig. 3.57:  Simulated Responses of first-order AP filter (a) Magnitude Response (b) 

Phase Response.

(a)
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(b)

Fig. 3.58:  Simulated Responses of second-order AP filter (a) Magnitude Response 

(b) Phase Response.

Fig. 3.59:  Simulated Magnitude Responses of first-order LP filter and second-order 

BP filter.

Fig. 3.60:  Simulated Phase Responses of High-order AP filters.
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Fig. 3.61:  Demonstration of electronic tunability of the proposed AP designs.

Transistor W/L (µm/µm)

Mp1-Mp3 11.6/2

Mp4 5.8/2

Mp5 14/2

Mp6-Mp10 28/2

Mn1-Mn4 3.6/2

Mn5 20/2

Mn6-Mn7 30/2

Mn8-Mn9 10/2

Table 3.16: Aspect ratio of the MOS transistors of the geometric Mean Blocks.

Performance 

Factors

Values

1st Order AP 2nd Order AP 5th Order AP

Power Dissipation 250µW 475µW 1.03mW

Dynamic range 49.2dB 48.7dB 47.1dB

Sensitivity of ωo 76.4KHz 79.4KHz 83.5KHz

Table 3.17: Results of performance factors for the proposed AP filters.
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3.1.4. Linear Transformation Synthesis Method of Companding Filters

In the Linear Transformation (LT) Synthesis Method of Companding Filters, the

passive prototype filter is divided into small two-port networks and each small 

network is then transformed into companding-mode network and subsequently 

connected to form a Companding filter. Companding-domain LT filter can be 

synthesized from the passive prototype by the following procedures:

a) Each passive prototype filter is split into two-port subnetworks.

b) The transfer function of each two-port subnetwork is found and is

appropriately transformed into companding-domain.

c) The companding-domain transfer function is synthesized using appropriate 

companding-domain blocks.

d) The passive prototype transfer function is replaced with their corresponding 

companding-domain transfer function and neighboring sections are connected

with the cross-cascade interconnection.

e) The values of companding-domain parameters corresponding to passive 

parameters are determined.

3.1.4.1. Sinh-Domain (SD) Linear Transformation (LT) filters [J1]

Following the above consideration, an LT passive filter can be divided into the two-

port subnetworks as given in Table 3.18. In order to perform filtering in the Sinh-

Domain, the variables of the linear yu  domain will be transformed into nonlinear 

variables in the YU ˆˆ  Sinh-domain. This can be achieved by utilizing the SINH-1 and 

SINH operators of Equations (2.40) and (2.41). Employing these operators, the 

proposed passive to SD substitution scheme is demonstrated in Table 3.18.

The corresponding expressions that describe the substitutions of the 

subnetworks from linear u-y domain to nonlinear YU ˆˆ  SD are also given in Table 

3.18.         2211
ˆˆ,ˆ,ˆ uUSINHuUSINHiuUSINHyYSINH s  . The linear-domain time 

constants in all rows are given by either of the formulas: RC or RL / . The 

realized SD time constant for all rows is given by the expression: 02/ˆˆ IUC Tii  . That 

is, the realized time-constants can be adjusted through the dc current Io and thus can 

be used to compensate cut-off frequency deviation caused by the MOS transistors 

imperfections. Concluding, the proposed substitution scheme offers a quick procedure 
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for deriving high-order SD filters. This is due to the fact that, having available the 

realization of SD FBDs in Table 3.18, just one step must be followed in order to 

obtain the corresponding SD filter structure. The realization of the SD FBDs in Table 

3.18 will be discussed in the next Section, where the fundamental SD blocks will be 

introduced. 

Row 

No.

Passive 

Prototype

Linear u-y 

domain 

Expressions

Sinh-Domain LT 

Equivalent
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Table 3.18: Proposed substitution scheme for the derivation of SD LT filters.
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3.1.4.2.  Realization of the Proposed SD LT Equivalents

By a simple inspection in the FBDs of rows 1–8 it is concluded that SD integrator 

configurations and resonator block must be available.  Because of the fact that the SD 

integrator blocks were discussed in section 2.3.3, only, resonator block will be 

discussed as follows:

In order to realize the required function described by the FBDs in rows 7–8 of 

Table 3.18, the topology in Fig. 3.62 is proposed. Applying the KCL at node A the 

derived expression is given by:

       
 YCoshI

YCoshIVSinhIUSinhIUSinhI
II

o

oooo
oo ˆ

ˆˆˆˆ
22 121 

 (3.81)

After some algebraic manipulations and using Equation (2.41), the above expression 

could be alternatively rewritten as

      211
ˆˆˆ USINHUSINHVSINH  (3.82)

Similarly applying KCL at nodes B and C, the derived expressions are respectively 

given by:
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Combining Equations (3.82)–(3.84), the derived expression is

      21
2

21
2

ˆˆ
ˆ

1ˆˆˆ USINHUSINH
s

s
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(3.85)

3.1.4.3. Simulation Results
In order to verify the validity of the proposed technique, a 3rd-order LC ladder 

lowpass All-pole and elliptic filters shown in Figs. 3.63(a) and 3.63(b) respectively, 

will be emulated. The SD LT filter topologies derived according to Table 3.18 are 

depicted in Figs. 3.64(a) and 3.64(b) respectively. The transfer functions 

corresponding to Figs. 3.63(a) and 3.64(b) are respectively given by
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The evaluation of the performance of the filters has been done using the PSPICE

software. In addition, the transistor models provided by the BISIM 0.35µm process 

will be employed in simulations. The aspect ratio of both NMOS and PMOS 

transistors that construct the translinear loops in S and C cells was chosen to be 

5µm/5µm, whereas the aspect ratios of the other NMOS and PMOS transistors were 

5µm/5µm and 50µm/5µm, respectively.

Fig. 3.62: Proposed LT SD equivalent of the LC resonators in Table 3.18.

A symmetrical supply voltage equal to ±0.75V has been chosen, while the dc 

current I0 was 100 pA. The dc power dissipation for the filter in Fig. 3.64(a) was 21.1 

nW, while for the filter in Fig. 3.64(b) the value was 27.5 nW.  A frequency response 

with cutoff frequency 41 Hz will be achieved in an All-pole filter and cutoff 

frequency of 27.5 Hz and a passband ripple of 1dB will be achieved in an Elliptic 

filter. For the above values of cut-off frequency and Passband ripple, the values of 

capacitors for an All-pole filter were chosen as pFCCC 30ˆˆˆ
321  and that for 

elliptic filter were chosen as pFCCpFCC 20ˆˆ,50ˆˆ
3241  . With modulation index
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 %35 biaspeak Iim , the simulated frequency responses of the SD LT filter 

topologies are depicted in Fig. 3.65.

(a)

(b)
Fig. 3.63: 3rd-order LC ladder lowpass filters, (a) All-pole, and (b) Elliptic.

(a)

(b)
Fig. 3.64: 3rd-order SD LT filter topologies derived according to Table 3.18, (a) All-

pole, and (b) Elliptic. 
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(a)

(b)
Fig. 3.65: Simulated frequency responses of the filters in Fig. 3.64. (a) All-pole 

(b) Elliptic.
In addition, the linear behavior of the outputs of the filter was evaluated through the 

consideration of their IMD3 performance. For this purpose, two closely spaced tones 

(i.e. 10–11 Hz) with variable amplitude have been simultaneously applied at the 

inputs of the filters. Considering the spectrum of the output currents, THD level 1% is 

observed at an input rms value 1.39 nA for the filter in Fig. 3.64(a) and 1.32 nA for 

the filter in Fig. 3.64(b). The noise was integrated over a 100 Hz range and the 

simulated rms value of the input referred noise was 0.56 pA for the filter in Fig. 3.

3.64(a) and 0.59 pA for the filter in Fig. 3.64 (b). Thus, the calculated value of the 

dynamic range, at 1% distortion level, will be 67.89 dB for the filter in Fig. 3.64(a) 

and 67 dB for the filter in Fig. 3.64(b). The effects of passive and active elements 

mismatching in the frequency behavior of the filter have been considered by 

employing the well-known Monte–Carlo method. The simulated values of standard 

deviation of the low-frequency gain for the all-pole and elliptic SD LT filter 
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topologies were 0.07 and 0.074 and that of the cut-off frequency were 0.084 Hz and 

0.092 Hz, respectively.

The electronic tunability of the all-pole and elliptic SD LT filter topologies were 

demonstrated by performing simulations of its frequency response at different levels 

of current Io. The derived responses of all-pole and elliptic filter SD LT filter 

topologies for Io=50pA, 100pA, and 200pA are simultaneously plotted in Fig. 3.66(a) 

and Fig. 3.66(b) respectively, where the capability for electronic tuning of the LT SD

filters can be verified.

(a) (b)
Fig. 3.66: Demonstration of electronic tunability, (a) All-pole, and (b) Elliptic.

3.2. Summary

In the chapter, six techniques for designing the companding filters were discussed in detail.  

The simple but novel contributions which fall under four of the six techniques were also 

presented.  The performance of the proposed low-voltage low-power novel designs were 

presented in detail. It has been the endeavor to directly correlate the applications of the 

proposed designs in portable systems.  Besides, the comparison study of performance 

parameters of the proposed designs with those reported in the open literature was carried out. 

Based on the study, it can be noticed that the proposed designs offer the benefits of: a) low-

voltage low-power suitable for the contemporary technology of monolithic ICs b) the 

modularity of the filter’s structure due to the fact that it is exclusively constructed from 

lossless/lossy integrators and subtraction/summation blocks, c) the canonical structures with 

lesser number of active and passive components d) the electronic tunability of frequency 

characteristics through DC currents e) freedom from matching conditions f) use of grounded 

capacitors, required for the absorption of parasitic capacitances and small chip areas is also 
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present and as a sequel designs are suitable for fabricating in monolithic chip g) improved 

linearity h) low power consumption i) extended dynamic range, and, j) improved power

efficiency.

The work carried out in this chapter got recognition by various journals and 

conferences which published the papers based on the results of this thesis (see list of 

published, accepted and communicated papers).
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CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

4.1. Conclusions

This chapter finally summarizes the complete work done during the course of this study.  

Apart from a breadboard realization of one of the designs, the circuits presented in this Thesis could 

not be physically realized due to the lack of adequate resources at the place of research.  The 

theoretical behavior of the circuits has only been supported by PSPICE simulation results.  However, I 

expect some funding from our reputed organization in the near future and with the collaboration from 

Electronics Laboratory, Patras University team, some chip designs of the companding designs will 

definitely come in the near future.

The present investigation is primarily concerned with the study and design of low-voltage low-

power companding filters for portable system applications.   The motivation for this study emanated 

because low-voltage low-power companding filters have gained prominence in recent times due to the 

advent of mobile communications gadgets and portable electronic systems.   New design techniques 

are proposed for companding filter design to improve upon the features such as Bias, Linearity, 

sensitivity, power consumption, tunability etc.  Some of the low-order deigns have the orthogonal 

tuning feature.  Besides, high-order companding universal filter designs were proposed for the first 

time in the literature.  The work carried out in this thesis got recognition by various journals and 

conferences which published the papers based on the results of this thesis.

Chapter 1 gives a brief introduction about the significance of low-voltage low-power analog 

integrated filters, present technologies of their design and the associated complexities in their design.  

The chapter also includes the motivation for the study and objectives achieved in the thesis.

Chapter 2 presents a review of companding filters.  The three main classifications of 

the companding filters i.e. LD, SRD and SD, are fully discussed.  Towards this end, the

operators and building blocks required to design three classifications are discussed in detail 

and the translinear principle used to implement these blocks is also discussed.  

Chapter 3 discusses the six techniques used to implement the companding filters.  

The steps to obtain a companding filter through either of these techniques are discussed in 

detail.  Most of the techniques are concluded with the introduction of the contributions in the 

various International Journals of repute.

4.2. Suggestions for the future work

Despite much work has been done on low-voltage low-power companding filters and in spite of the

fact that wealth of the literature available on the subject, there is still a lot of scope to further this 

knowledge.
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Although PSPICE simulators now have the capability to model the devices as close to the 

actual parameters, still the simulated results may not be exactly same as the results obtained from the 

hardware implementations.  The first and foremost proposal for further work is to implement the 

proposed circuits for companding filters in silicon.  The proposed designs can then be applied by the 

real time signal obtained from the live source.  This will give the scope for improving the circuit 

performances.  

As the device dimensions of the digital circuits are continuously decreasing, the power supply 

is also decreased at the same rate to ensure the proper functioning of the devices. According to data

that provides information about the near future of semiconductor technology, International Technology 

Roadmap for Semiconductors (ITRS), the supply voltage for digital circuits for 2013 in 32 nm

technology is 0.5 V. To make the companding filters compatible with the digital circuits so that both 

can be integrated over the same integrated chip, the new companding filters have to be designed with 

comparable power supplies. Work has already been started to design companding filters about 0.5V 

supply using MOSFETs in weak inversion region.  

Low-voltage low-power companding filters are being designed by employing MOSFETs 

operating in strong or weak inversion regions.  The proper functioning of the companding filters 

depends on the square or exponential i-v relationship of the MOSFETs in the two regions.  The 

relationship is valid upto to few Hertz to few hundred Kilohertz.  Thus, the design focus of the new 

low-voltage low-power companding filters has to be low frequency applications.  Therefore, the 

utilization of low-voltage low-power companding filters could be exploited in the fields of: Short-

range wireless communications; Biomedical Electronics for implantable devices, such as pacemakers, 

blood flow meters and auditory stimulators; Hardware Neural Network design; Neuromorphic designs

etc.   

Finally, the new nano-electronic devices in which the i-v relationship is valid at high 

frequencies as well could be explored for companding filter designs.
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