3,862 research outputs found

    Robust neuromorphic coupled oscillators for adaptive pacemakers

    Get PDF
    Neural coupled oscillators are a useful building block in numerous models and applications. They were analyzed extensively in theoretical studies and more recently, in biologically realistic simulations of spiking neural networks. The advent of mixed-signal analog/digital neuromorphic electronic circuits provides new means for implementing neural coupled oscillators on compact low-power spiking neural network hardware platforms. However, their implementation on this noisy, low-precision and inhomogeneous computing substrate raises new challenges with regards to stability and controllability. In this work, we present a robust, spiking neural network model of neural coupled oscillators and validate it with an implementation on a mixed-signal neuromorphic processor. We demonstrate its robustness showing how to reliably control and modulate the oscillator's frequency and phase shift, despite the variability of the silicon synapse and neuron properties. We show how this ultra-low power neural processing system can be used to build an adaptive cardiac pacemaker modulating the heart rate with respect to the respiration phases and compare it with surface ECG and respiratory signal recordings of dogs at rest. The implementation of our model in neuromorphic electronic hardware shows its robustness on a highly variable substrate and extends the toolbox for applications requiring rhythmic outputs such as pacemakers.Comment: 14 pages, 4 figure

    Sub-mW Neuromorphic SNN audio processing applications with Rockpool and Xylo

    Full text link
    Spiking Neural Networks (SNNs) provide an efficient computational mechanism for temporal signal processing, especially when coupled with low-power SNN inference ASICs. SNNs have been historically difficult to configure, lacking a general method for finding solutions for arbitrary tasks. In recent years, gradient-descent optimization methods have been applied to SNNs with increasing ease. SNNs and SNN inference processors therefore offer a good platform for commercial low-power signal processing in energy constrained environments without cloud dependencies. However, to date these methods have not been accessible to ML engineers in industry, requiring graduate-level training to successfully configure a single SNN application. Here we demonstrate a convenient high-level pipeline to design, train and deploy arbitrary temporal signal processing applications to sub-mW SNN inference hardware. We apply a new straightforward SNN architecture designed for temporal signal processing, using a pyramid of synaptic time constants to extract signal features at a range of temporal scales. We demonstrate this architecture on an ambient audio classification task, deployed to the Xylo SNN inference processor in streaming mode. Our application achieves high accuracy (98%) and low latency (100ms) at low power (<100μ\muW inference power). Our approach makes training and deploying SNN applications available to ML engineers with general NN backgrounds, without requiring specific prior experience with spiking NNs. We intend for our approach to make Neuromorphic hardware and SNNs an attractive choice for commercial low-power and edge signal processing applications.Comment: This submission has been removed by arXiv administrators because the submitter did not have the authority to grant a license to the work at the time of submissio

    Low-power neuromorphic sensor fusion for elderly care

    Get PDF
    Smart wearable systems have become a necessary part of our daily life with applications ranging from entertainment to healthcare. In the wearable healthcare domain, the development of wearable fall recognition bracelets based on embedded systems is getting considerable attention in the market. However, in embedded low-power scenarios, the sensor’s signal processing has propelled more challenges for the machine learning algorithm. Traditional machine learning method has a huge number of calculations on the data classification, and it is difficult to implement real-time signal processing in low-power embedded systems. In an embedded system, ensuring data classification in a low-power and real-time processing to fuse a variety of sensor signals is a huge challenge. This requires the introduction of neuromorphic computing with software and hardware co-design concept of the system. This thesis is aimed to review various neuromorphic computing algorithms, research hardware circuits feasibility, and then integrate captured sensor data to realise data classification applications. In addition, it has explored a human being benchmark dataset, which is following defined different levels to design the activities classification task. In this study, firstly the data classification algorithm is applied to human movement sensors to validate the neuromorphic computing on human activity recognition tasks. Secondly, a data fusion framework has been presented, it implements multiple-sensing signals to help neuromorphic computing achieve sensor fusion results and improve classification accuracy. Thirdly, an analog circuits module design to carry out a neural network algorithm to achieve low power and real-time processing hardware has been proposed. It shows a hardware/software co-design system to combine the above work. By adopting the multi-sensing signals on the embedded system, the designed software-based feature extraction method will help to fuse various sensors data as an input to help neuromorphic computing hardware. Finally, the results show that the classification accuracy of neuromorphic computing data fusion framework is higher than that of traditional machine learning and deep neural network, which can reach 98.9% accuracy. Moreover, this framework can flexibly combine acquisition hardware signals and is not limited to single sensor data, and can use multi-sensing information to help the algorithm obtain better stability

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system
    corecore