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Abstract

Smart wearable systems have become a necessary part of our daily life with applications rang-
ing from entertainment to healthcare. In the wearable healthcare domain, the development of
wearable fall recognition bracelets based on embedded systems is getting considerable attention
in the market. However, in embedded low-power scenarios, the sensor’s signal processing has
propelled more challenges for the machine learning algorithm. Traditional machine learning
method has a huge number of calculations on the data classification, and it is difficult to im-
plement real-time signal processing in low-power embedded systems. In an embedded system,
ensuring data classification in a low-power and real-time processing to fuse a variety of sensor
signals is a huge challenge. This requires the introduction of neuromorphic computing with
software and hardware co-design concept of the system. This thesis is aimed to review various
neuromorphic computing algorithms, research hardware circuits feasibility, and then integrate
captured sensor data to realise data classification applications. In addition, it has explored a
human being benchmark dataset, which is following defined different levels to design the activ-
ities classification task. In this study, firstly the data classification algorithm is applied to human
movement sensors to validate the neuromorphic computing on human activity recognition tasks.
Secondly, a data fusion framework has been presented, it implements multiple-sensing signals to
help neuromorphic computing achieve sensor fusion results and improve classification accuracy.
Thirdly, an analog circuits module design to carry out a neural network algorithm to achieve low
power and real-time processing hardware has been proposed. It shows a hardware/software
co-design system to combine the above work. By adopting the multi-sensing signals on the em-
bedded system, the designed software-based feature extraction method will help to fuse various
sensors data as an input to help neuromorphic computing hardware. Finally, the results show
that the classification accuracy of neuromorphic computing data fusion framework is higher than
that of traditional machine learning and deep neural network, which can reach 98.9% accuracy.
Moreover, this framework can flexibly combine acquisition hardware signals and is not limited
to single sensor data, and can use multi-sensing information to help the algorithm obtain better
stability.
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Chapter 1

Introduction

1.1 General Background

With the popularity of smart wearable systems, it has brought more convenient applications to
the health-care area. Among them, the development of wearable fall recognition bracelets based
on embedded systems has become a hot spot in the market. It is composed of non-invasive
and wearable sensors with processors [1]. However, the combination of machine learning and
embedded devices still has a technological divide. The low power and real-time health care Ar-
tificial Intelligence (AI) platform has great potential in smart wearable systems. In this respect,
neuromorphic computing hardware as AI techniques has been proposed by researchers and sci-
entists at various levels in the field of wearable sensors to develop health care applications. Von
Neumann structure is a traditional and popular hardware design, it is a memory structure that
combines programs, instructions, and data. Von Neumann structure encodes the program into
data format, which is then stored in memory along with the general data. The computer pro-
cesses the data by calling the program in the memory. This means that all programs will eventu-
ally be converted into data and stored in the memory, and executing the corresponding program
requires fetching instructions from the memory and executing them in turn. However, the CPU
memory accesses speed as the main factor affecting the system processing power, which makes
the system absolutely dependent on the memory.

Neuromorphic computing as an exploration that is different from Von Neumann’s architec-
ture on the hardware processing platform. It is separated from the Von Neumann structure from
the bottom design, which adopts the same storage and computing design as the brain. It is
the integrated storage and computing architecture, which saves on moving data from a mem-
ory unit to a computing unit. Meanwhile, neuromorphic computing uses the biological neurons
method to complete the machine learning process. It builds a synapse and neuron-like system
by programming electronic components into discrete resistance states and convolving electronic
components of different weights with each other. The hardware support low power and real-time
for the sensor signal processing, which is a brilliant method in the wearable field [2].

1



CHAPTER 1. INTRODUCTION 2

In the realisation of AGI (Artificial General Intelligence) [3], it has two alternative research
routes: a. computer science-oriented and b. neuroscience-oriented. There are essential dif-
ferences in the ideas, concepts and implementation plans of these two ways. Most artificial
intelligence applications are based on computer science-oriented, as it relies on the famous Von
Neumann architecture [4].

For example, the current popular deep learning algorithms partly simulate the human brain’s
neural network structure. However, its process depends on the Von Neumann architecture to
complete the calculation, which modelling and solving based on optimisation problems. Its
essence is still According to the calculation of the time-sharing sequence [5]. So that it will
show the high computing power requirements [6], the amount of calculation is large [7], and the
algorithm is complicated [8].

Unlike the Von Neumann architecture approach to integrated circuits, the brain’s extraor-
dinary processing power from a neuroscience perspective is down to three essential points: a.
broad connectivity, b. organisational hierarchies of structure and functionalisation, c. time-
dependent synaptic connections of neurons. Neurons as the brain’s computational primitive
elements, which exchange and transmit information through discrete action potentials, and
Synapses are the primary storage elements for memory and learning.

At this point, neuromorphic computing is guided by neuroscience oriented. It works low
power consumption to conduct asynchronous, parallel and distributed processing for information
by simulating the processing mode of the brain. Neuromorphic computing has a variety of
abilities such as autonomous perception, recognition and learning. In this way, it gets free from
the Von Neumann architecture on the underlying design, which adopts the memory-computing
integrated design as the brain.

It uses neuronal computing architecture to complete the required tasks; after designing a ba-
sic neuron, a neural network structure of neuromorphic computing can be built through a flexible
combination of the neurons. Such a design breaks through the limitations of traditional com-
puter architecture and can realise parallel data transmission, distributed and real-time processing
of massive data with extremely low power consumption.

In contrast, traditional Deep Learning Networks (DLN) are essentially artefacts of hierar-
chical structure [9] with many layers to represent potential features. It is transformed by repre-
sentations of different features from multiple layers in the input process. This neural network
was developed to match silicon transistor types’ hardware computing systems. The digital logic
of large-scale computing platforms consists of billions of transistors integrated on a single sil-
icon chip. Therefore, various silicon-based cells are arranged hierarchically for efficient data
exchange suitable for the algorithm hierarchy concept.

Currently, some traditional neural networks are widely used, such as Convolutional Neural
Networks (CNN) [10], Recurrent Neural Networks (RNN) [11], Generative Adversarial Net-
works (GAN) [12]. These neural network algorithms are based on the back-propagation algo-
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rithm and the various mathematical optimisers that achieves excellent performance in various
tasks. However, the computing level of the traditional neural network is divided into processing
units and memory storage. The physical separation of processing units and memory hierarchies
creates what is known as a "memory wall bottleneck" [13].

Neuromorphic computing is a new generation neural network model that is inspired by biol-
ogy. It is fundamentally different from these traditional neural networks. Despite the superficial
similarities, there are sharp differences between the computing principles of the brain works and
silicon-based computers. These include:

• The computing section (processing unit) and storage section (memory unit) are separated
in the computer. It unlike neurons and synapses in the brain, which are memory-computing
integrated design;

• Transistors are mainly used to construct deterministic Boolean (Digital) circuit switches,
which are different from the event-driven random computing based on spike signals in the brain.

• Traditional neural network algorithm is based on the high-precision floating-point numbers
for operations, but the brain does not use floating-point numbers for operations. Instead, in
the perception system of the brain, information will be in action voltages or electric spikes to
transmission, reception, and processing.

• The training process of traditional neural networks relies on the back-propagation algo-
rithm that is mainly on gradient descent. However, the brain’s memory and learning depend on
the synaptic plasticity that occurs when postsynaptic cells are stimulated. For example, Hebbian
learning for

• Traditional neural networks usually require a large number of labelled datasets to drive
network fitting. This is different from the brain’s experiences, and its perception and learning
process in many cases is unsupervised. The brain does not need such a large amount of repeated
data to learn the same thing.

To sum up, neuromorphic computing was produced to make neural networks more similar
to the brain. It was inspired by the concept that biological brains process information. Neuro-
morphic computing is not a traditional neural network like CNN and RNN, but it is a new type
of neural network that is closer to the brain.

1.2 Research Motivation and Challenges

Currently, artificial intelligence applications have limited usage scenarios due to high power and
resource requirements at algorithm runtime. The embedded system is not capable of running a
neural network for real-time multi-sensors (such as magnetic, acceleration and RF/Radar sen-
sors) signal processing for activity detection. Neuromorphic chip fit and integrates the neural
network into hardware that is an excellent choice to solve this. It can achieve milliwatt level
power consumption and process multi-modal data in real-time. Previous works in the area have



CHAPTER 1. INTRODUCTION 4

not fully utilised the advantages of neuromorphic computing for associative memory features.
The data from multiple sensors can be fused together on the neuromorphic chip to detect activ-
ity more efficiently and accurately. The data coming from multi-sensors can help make more
accurate decisions than single-class data type, for instance, a magnetic sensor for geomagnetic
variations in human altitude change in the fall [14], and an acceleration sensor for postural re-
sponses when the human fall [15]. The RF/Radar sensor is available in the indoor environment
for acquiring human activity by Doppler shift information [16]. When the above multi-sensors
data is fused, a wide range of information can be evaluated to avoid a single data effect of activity
feature, improving human activity recognition accuracy. The research challenges are to develop
real-time Neuromorphic computing hardware, and design feature computing to multi-sensing
signal processing for human activity recognition. The designed Hardware/Software system is
for real-time and low-power signal processing of human beings with multiple sensors simulta-
neously and improves the system’s robustness in different environments compared to state of the
art.

Problem Statement:
In ongoing research work, neuromorphic computing can be work with associative memory fea-
tures to store signals. However, the key is how to design a hardware module to stimulate neurons
for data classification. Neuromorphic computing can be adopted to the Hebbian learning method
for training neural networks with the data, the weights of the feature map are obtained and solid-
ified into the hardware design. Hence, the hardware allows signal processing for low power and
real-time runtime and is crucial to an embedded system. Meanwhile, following the hardware
acceleration advantage, it is can be combined with a more different type of signals into the plat-
form, which helps the neuromorphic computing output more precision and efficiency. The aim
of this project is to design a data fusion method to suit the neuromorphic computing to match
the multi-hardware input. Finally, the application will focus on the HAR tasks, depending on
multi-sensing devices acquire for human being signals, and it can be used in health care areas.
Such as more accuracy for fall detection or other activity recognition that help disabled or elder
persons achieve a more intelligent and more convenient life.

1.3 Scope of Research

For the machine learning applications, Von Neumann architecture caused power consumption,
and computation has surged. A new architecture is crucial for designing a low power and real-
time system, which can be used to implement applications from sensor signals to data classifica-
tion processing. This design should have a tendency to improve wearable devices that are getting
out of high energy consumption and low computing power on the runtime. Neuromorphic com-
puting architecture has the potential and is deemed to save energy and accelerate computing on
the implementation. It is different from the Von Neumann architecture where storage and com-
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puting are separated. Neuromorphic computing can process data more efficiently as a neuron
model, which is used to combine storage and processing. Neuromorphic computing can pro-
cess data in real-time and does not require data interaction between multiple modules during the
calculation.

This project focuses on the research of neuromorphic computing hardware with multiple sen-
sors to achieve health care applications. It uses hardware circuits to implement low-power and
real-time neuromorphic computing with pre-processing data algorithm as a hardware/software
co-design system. The hardware circuit features can implement AI algorithm calculations and
avoid high power consumption and the complexity of the computing architecture. The algo-
rithm adopts the integrated structure of storage and computing like human brain processing.
The software-based data pre-processing is used to feature extraction on the multiple sensors
signal, and then work together with neuromorphic hardware to finish applications. In the Al
application, neuromorphic hardware combined with feature extraction method achieves flexible
architecture, modular design, and non-declining computing efficiency, and its potential is very
significant [17]. Meanwhile, this aforementioned approach using neuromorphic computing can
implement into hardware to obtain advancement with low power and real-time processing [18].

1.4 Research Objectives

The research is based on Neuromorphic computing hardware’s own design to recognise human
beings’ status, including vital signs, movement and pose acquired by Sensor, Radar and RF of
multi-sensing data. This work aims to develop low power healthcare systems based on the own
Neuromorphic computing hardware, which can monitor people activities and vitals simultane-
ously in real-time, such as Smart bracelets giving them greater independence without needing to
rely on carers. This Neuromorphic computing data fusion framework is exploiting the associa-
tive memory feature of Neural Networks. A hardware module has been designed to simulate the
Neural Network algorithm, which uses multi-sensing information integration and data classifica-
tion to recognise human activities. By adopting the Hebbian learning method for training neural
networks, weights of human activity features are obtained and implemented/embedded into the
hardware design. Here, the neural network weight of human activities is achieved through data
preprocessing, and then the weight is mapped to the amplification factor setting in the hardware.

Objectives:
1. To study and perform the thorough literature review and recognise the recent research per-
formed on various techniques of Neuromorphic Computing hardware, and understand the work-
ing principle with Hopfield neural network.
2. To analyse and fuse Inertial Measurement Unit (IMU) Sensor, Universal Software Radio Pe-
ripheral (USRP) and Radio Frequency (RF)/Radar data, for human activity recognition.
3. To design Neuromorphic computing for data classification signal processing based on the
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Hopfield Neural Network.
4. To implement Neuromorphic computing for hardware acceleration of data classification with
multi-sensing fused data, theoretical analysis on the low power and real-time neuromorphic
computing hardware.
5. To design a hardware module to simulate the neuromorphic computing algorithm, which uses
data fusion and classification to monitor people’s activities for elderly care of fall detection.

1.5 Main Contributions

This thesis proposes a neuromorphic computing data fusion framework to improve the human
activity recognition ability from multiple data collection hardware. By comparing the different
combinations of sensors and various classification algorithms, it is verified that the framework
based on this design can flexibly fuse multiple types of data and achieve high-precision recog-
nition work. Meanwhile, neuromorphic computing is implemented in hardware simulation.

Algorithm Contributions:
• The associative memory function of neuromorphic computing is utilised to help limited sample
datasets. As a result, it achieves better HAR task performance than traditional machine learning
and deep neural network. Furthermore, the HNN algorithm as neuromorphic computing is used
to realise One-shot learning, which dramatically reduces the training cost, and the idea is verified
on a limited sample dataset.
• In this thesis, a neuromorphic computing data fusion method is designed based on the attention
mechanism to select suitable features and complete feature-level data fusion. It is proved that
this method can be flexible fuse human movement information from three different types of
hardware: IMU, Radar, and USRP.

Application Contributions:
• The NodeNs sensor is used to collect the point cloud data of human movements, and the
different human activities are defined and analysed. Finally, a benchmark dataset of multi-
subjects and multi-person is obtained. It can be used to monitor the movement of humans in all
aspects, which helps hospitals get better care for disabled persons, such as the elderly. So, this
research has completed a health care application, which starts from human being data collection
and analyses of human activities. Then the data is preprocessed to obtain activity features to
complete HAR task.

Hardware Contributions:
• The HNN of neuromorphic computing is successfully built circuits based on the amplifier
and the summing unit on the hardware simulation software. Furthermore, the correctness of the
data transmission is verified through the input and output voltage, which shows neuromorphic
computing obtaining the effect of hardware acceleration.
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1.6 Thesis Organization

Chapter 2 reviews Neuromorphic computing technologies for Data Classification utilized in the
literature and investigates the possible approach for hardware design with Neuromorphic com-
puting algorithm.

Chapter 3 depicts the IMU Sensor signal processing based on a Neuromorphic computing al-
gorithm to human activity recognition, which is based on Hopfield Neural Network to achieve
the data processing for the IMU Sensor. It is built in three different types of Sensors, there are
Gyroscope, Accelerometer and Magnetometer, and then complete the recognition task for three
activities.

Chapter 4 describes the neuromorphic computing data fusion method. It is designed to fuse
multi-sensing signals for data pre-processing. It is used an Attention Mechanism to feature se-
lection for fused data. The first is data pre-processing which is individually feature extraction
work for each data collection hardware, and then Attention Mechanism based on TopK to sort
the feature, and finally make an activity feature map by the selected features. It is fed in Hopfield
Neural Network to complete HAR work.

Chapter 5 presents the hardware implementation for Neuromorphic computing, it designed a
circuit by amplifier and summer to represent Hopfield neural network. Then following the hard-
ware simulation tools to verify the algorithm that is achieved human fall detection.

Chapter 6 shows a benchmark dataset for human activity data collection by NodeNs sensor.
Its focus on a standard workflow for human activity defines and design. The human activity is
stored in a point cloud format, and evaluated by state of the art technology for HAR work.

Chapter 7 summarizes the research on the thesis, and give some advice on possible ways to
improve the research field.



Chapter 2

Literature Review

Compared with Von Neumann’s computer architecture, neuromorphic systems offer more unique
and novel solutions to the artificial intelligence discipline. Inspired by biology, this novel sys-
tem has implemented the theory of human brain modeling by connecting feigned neurons and
synapses to reveal the new neuroscience concepts. Many researchers have vastly invested in
neuro-inspired models, algorithms, learning approaches, operation systems for the exploration
of the neuromorphic system and have implemented many corresponding applications. Recently,
some researchers have demonstrated the capabilities of Hopfield algorithms in some large-scale
notable hardware projects and seen significant progression. This chapter presents a compre-
hensive review and focuses extensively on the Hopfield algorithm’s model and its potential ad-
vancement in new research applications. Towards the end, the chapter concludes with a broad
discussion and a viable plan for the latest application prospects to facilitate developers with a
better understanding of the aforementioned model in accordance to build their own artificial
intelligence projects.

2.1 Introduction

Nowadays, neuromorphic computing has become a popular architecture of choice instead of Von
Neumann computing architecture for applications such as cognitive processing. It is based on
biologically inspired methods to build highly connected synthetic neurons and synapses, which
achieves theoretical neuroscientific models. The Von Neumann architecture is the computing
standard predominantly for machines. However, it has significant differences in organizational
structure, power requirements, and processing capabilities relative to the working model of the
human brain [19]. Therefore, neuromorphic calculations have emerged in recent years as an
auxiliary architecture for the Von Neumann system. Neuromorphic calculations are applied to
create a programming framework. The system can learn and create applications from these
computations to simulate neuromorphic functions. These can be defined as neuro-inspired mod-
els, algorithms and learning methods, hardware and equipment, support systems and applica-

8
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tions [20].
Neuromorphic architectures have several significant and special requirements, such as higher

connection and parallelism, low power consumption, memory collocation and processing [21].
Its strong ability to execute complex computational speeds compared to traditional Von Neu-
mann architectures, saving power and smaller size of the footprint. These features are the bot-
tleneck of the Von Neumann architecture, so the neuromorphic architecture will be considered
as an appropriate choice for implementing machine learning algorithms [4].

There are some main motivations for using neuromorphic architecture, including Real-time
performance, Von Neumann Bottleneck, Scalability, Low power, Fault Tolerance, Faster, Neu-
roscience [19]. It is particularly in Von Neumann Bottleneck and Neuroscience. The Von Neu-
mann Bottleneck is a problem for the memory wall, which is the growing disparity of speed
between CPU and memory outside the Chip. However, neuromorphic architecture is a storage-
computation integrated structure that is avoided for the memory wall problem. For Neuro-
science, it is different from the computer science-oriented design concept, the neuromorphic
architecture is more adapted for biological models of the human brain. Among them, real-
time performance is the main driving force of the neuromotor system. Through parallelism
and hardware-accelerated computing, these devices are often able to perform Neural Network
(NN) computing applications faster than Von Neumann architectures [22]. In recent years,
the more focused area for neuromorphic system development has been low power consump-
tion [22] [23] [24]. Biological Neural Networks (BNN) are fundamentally asynchronous [25],
and the brain’s efficient data-driven can be based on event-based computational models [26].
However, managing the communication of asynchronous and event-based task in large systems
is a challenging in the Von Neumann architecture [27]. The hardware implementation of neuro-
morphic computing is favourable to the large-scale parallel computing architecture as it includes
both processing memory and computation in the neuron nodes and achieves ultra-low power
consumption in the data processing. Moreover, it is easy to obtain a large-scale neural network
based on the scalability. Because of all aforementioned advantages, it is better to consider the
neuromorphic architecture than Von Neuman for hardware implementation [28].

The basic problem with neuromorphic calculations is how to structure the neural network
model. The composition of biological neurons is usually composed of cell bodies, axon, and
dendrites. The neuron models implemented by each component of the specified model are di-
vided into different groups, based on the type of model being distinguished by biologically and
computationally driven. It is normally can be separated as follows:
• Biologically Plausible [29]: Specifically simulate the behaviour type present in the biologi-
cal nervous system. Such as a Hodgkin-Huxley model, the understanding of neuronal activity
from the perspective of ions entering and leaving the neuron is based on a four-channel non-
linear differential equation [30]. Another one is Morris Lecar model, which depends on a two-
dimensional nonlinear equation for effective and simple calculation and implementation [31].
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Meanwhile, a calcium-based model is a simplified biologically plausible implementation, pro-
viding the link concept between stimulation protocols, calcium transients, protein denoting cas-
cades and induced synaptic changes [32]. Finally, for a Galves-Löcherbach model, it combines
the spiking levels with biological rationality, and a model with inherent randomness [33].
• Biologically-Inspired [34]: Ignore biological rationality to replicate biological nervous system
behavior. Such as the Izhikevich model, has both simplicity and the ability to replicate biologi-
cally precise behavior [35]. Other one is Hindmarsh-Rose model, which satisfactorily explains
the dynamics of pulse firing, cluster firing, and chaotic behavior of neurons [36].

Similarly, synaptic models can be divided into two categories. One of the synaptic models is
bio-inspired synaptic implementations that include spike-based systems and feed-forward neural
networks [37]. For more complex synaptic models, another common approach is based on
plasticity mechanism that depends on the intensity or weight of a neuron to change over time
[38].

Neuromorphic systems request different network topologies to complete different work ar-
eas. In network models, the more popular implementations are feed-forward neural networks,
such as multilayer sensing, and other architectures include Recurrent neural networks, Stochas-
tic neural networks [39], Spiking neural networks [40], Artificial neural network, cellular neural
networks [41] and Pulse-Coupled Neural Networks (PCNN) [42], Cellular Automata (CA) [43],
Fuzzy Neural Networks (FNN) [44]. Hopfield network as the RNN network architecture is es-
pecially common in the early implementation of neural morphology, which is consistent with
the neural network research trend, there are more recent implementations now. Such as graph
partition [45], fault detection [46] and data classification [47], etc.

For the algorithm, the learning method should match each requirement differences on spe-
cific network topology, neuron model or other features of network model. In the algorithm
learning process, supervised learning is generally not considered as an online method. Online
learning is normally applied for unsupervised tasks of cluster analysis. The widely used al-
gorithm for programming neuromorphic systems is back-propagation technique. In contrast,
unsupervised learning is based on self-organizing maps or self-organizing learning rules.

Neuromorphic implementation based on high-level standards is to divide hardware imple-
mentation into three categories: digital, analog, and hybrid analog/digital platforms [34]. The
analog system takes advantage of the physical characteristics on the electronic device to achieve
the computation process, while digital systems tend to rely on logic gates to perform the com-
putation process. In contrast, the biological brain is an analog system that relies on physical
properties for computation rather than Boolean logic. Because the neural network can be re-
sistant to noise and faults, it is a good solution for analog implementation [48]. Two major
categories of digital systems are processed to neuromorphic implementation that are Field Pro-
grammable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC). The first
one for FPGA, which has been used frequently in neuromorphic systems [34]. Another one is
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custom or ASIC chips, which is also common neuromorphic implementations [49].
For neuromorphic systems, custom analog integrated circuits have several universal features

which make them suitable for each other. There are all properties that occur in both analog
circuits and biological systems, such as the conservation of charge, amplification, thresholding
and integration [50]. Because of the analog circuits similar to biological systems, widely used
in hybrid analog/digital neuromorphic systems for the implementation of neuronal and synap-
tic components. Moreover, several problems with analog systems about unreliability can be
addressed by using digital components. Meanwhile, analog neuromorphic systems of synaptic
weights are often stored in digital memories. Neuromorphic system communication includes
both intra-chip and inter-chip communication [51].

One of the software tools on the neuromorphic system includes custom hardware synthesis
toolset. These synthesis tools usually require a relatively high level of description and con-
version, which can be used to implement a low-level representation of the neural circuits on
the neuromorphic system [52]. The second set of software tools for the neuromotor system is
a programming tool of neuromotor systems, which include two functions: mapping and pro-
gramming [53]. The software simulator developed to test and verify the neuromotor system that
is based on a software-based simulator for hardware performance. For applications, in order
to demonstrate the computational and device capabilities of neuromorphic computing, various
types of neural networks have been applied to different applications area, including images [54],
speech [55], data classification [56], control [57], and anomaly detection [58]. To achieve these
types of applications on hardware, neural networks matched lower power consumption, faster
calculations, and footprint ratios delivered are superior to those delivered by using Von Neumann
architecture.

The rest of the chapter is organized as follows: Section 2.2 introduces the details of Hopfield
algorithm. Section 2.3 extends to discrete Hopfield network architecture and hardware imple-
mentation. Section 2.4 describes the learning method in Hopfield algorithm. Section 2.5 presents
the applications of Hopfield algorithm and shows the application development details. Section
2.6 discusses some of the research open challenges and future trends in the Hopfield algorithm.
Section 2.7 summarizes the entire discussion of hardware research on Hopfield algorithms and
hardware implementation.

2.2 Hopfield Algorithm

The Hopfield network is an important algorithm in the history of neural network development.
Professor J.J Hopfield [59], a physicist at the California Institute of Technology, proposed in
1982 that it is a single-layer feedback neural network. Hopfield Neural Network (HNN) is the
simplest and most applicable model in feedback networks [60], because it has the function of
associative memory [61], which can accurately identify the object and accurately identify digital
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signals even if they are contaminated by noise.
The Hopfield neural network model is a kind of recurrent neural network [62]. There is a

feedback connection between the input and the output. Under the input excitation, it will be in
a constant state of flux. The feedback network can be divided as stable and unstable, which is
by judging its stability. For a Hopfield network, the key is to determine its weight coefficient
under stable conditions [62]. If the weight matrix W of the Hopfield the network is a symmetric
matrix, and the diagonal elements are 0 then it indicates that the network is stable.

According to the discrete or continuous output of the network, the Hopfield network is di-
vided into two types: Discrete Hopfield Neural Network (DHNN) and Continuous Hopfield
Neural Network (CHNN) [63].

DHNN: The output of a neuron takes only 1 and 0, which is respectively indicating the
neuron in an activation and inhibition state [64].

CHNN: a topology structure is identical to the DHNN. But the difference is whether its
activation function is a discrete step function [65] or a continuous function of sigmoid [66].

Due to the structural characteristics of discrete Hopfield network, the output data is equal to
the input mode size and dimension. Meanwhile, it is the neurons that take binary values (1, -1)
or (1, 0) as input and output. The synaptic weight between neuron i and neuron j is wi j [67].
So for a Hopfield neural network with N numbers of neurons, the weight for the matrix is NxN
size. Its unique associative memory process is through a series of the iterative process until the
system is stable [68].

Discrete Hopfield network is a feature that can be used for associative memory. This is one
of the intelligent characteristics of human beings, so the Hopfield algorithm can simulate human
"want" [69]. By reviewing and thinking about the past scenes, it is used as the associative mem-
ory of the Hopfield Neural network. Firstly, the learning training process is determine the weight
coefficient of the network, and then the memorized information is stored in the N-Dimensional
hypercube of a minimal energy corner [70]. Meanwhile, after the weight coefficient of the
network is determined, as long as a new input vector is given to the network, this vector may
be local data, incomplete or partially incorrect data, but the network still produces a complete
output of the information being remembered [71].

The most prominent feature of the Hopfield neural network concept is designed closely re-
lated to circuit hardware deployment [72]. The main idea of the Hopfield is the use of the
hardware circuit to simulate neural network optimization process. This process can be fast that
takes an analog circuit processing advantage rather than digital circuit [73]. Unlike the software
realization of the Hopfield neural network, the hardware implementation of the algorithm makes
brain-like computations possible [74].

Hopfield is based on the idea of energy function to create a new calculation method, which
is through the nonlinear dynamics method for developing this neural network. It has clarified
the relationship between the neural network and dynamics model [75]. Then, established the
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stability criterion of the neural network on this algorithm. Meanwhile, it points out that the
information is stored in the connection between the neurons of the network, eventually results
build a Hopfield network. In addition, Hopfield algorithm compares the feedback network with
the Ising model in statistical physics and defines the upward and downward directions of the
magnetic rotation as neuron’s two states of activation and inhibition [76]. That means the mag-
netic rotation interaction as the synaptic weight on the neuron. This logicality helped many
physics theory and physicists to enter the field of neural networks. In 1984, Hopfield designed
and developed the circuit of the network algorithm model [77], it is stating that neurons can be
implemented with operational amplifiers, and all neuron connections can be simulated by elec-
tronic circuits [78]. One of the continuous Hopfield networks using circuit deployed, which is
successfully solved Travelling Salesman Problem (TSP) calculation problem. It proves that the
Hopfield circuit can address the optimization problem [79].

Moreover, Hopfield network can convert analog signals into a digital format that is to realise
associative memory, signal estimation and combination optimization applications [80]. This
solution is similar to the method of the human first layer to achieve signal processing. So,
it belongs to the neuromorphic calculation. Due to the algorithm stability of output digital
signal, Hopfield neural can withstand the redundant input of analog signal noise or variable [81].
This situation is in contrast to the interface circuit between the traditional analog transmission
medium and the digital computing device [82]. It takes the speed advantage of the analog circuit
and the noise reduction ability of the digital circuit into account.

2.3 Discrete Hopfield Network

Hopfield algorithm as a single-layer fully interconnected feedback network that includes sym-
metric synaptic connections to stores information on the connections between neurons. It is
forming a discrete neural network that is characterized by parallel processing [83], fault toler-
ance and trainability [84].

Discrete Hopfield network of function that simulates the memory of biological neural net-
work is often called associative memory network. Associative Memory (AM) is an integral part
of neural network theory [85], and it is a significant function in artificial intelligence and other
fields that are used for pattern recognition [84], image restoration [86], intelligent control [87],
optimal computation [88] and optical information processing [89]. It mainly uses the good fault
tolerance of neural networks to restore incomplete, defaced and distorted input samples achieve
complete prototypes, which are suitable for recognition, classification purposes [90].

Association is based on memory where the information is stored first, and then retrieved
in a certain way or rule. Associative Memory (AM) is also called content-addressed memory,
which means the process of AM is the process of accessing information [91]. Information is
distributed in the content of biological memory, rather than a specific address. The storage of
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information is distributed, not centralized. The storage of information is Content Addressable
Memory (CAM) that is distributed, not centralized [92]. Whereas traditional computers are
based on addressable memory, which is a group of information with a certain storage unit [93].
In comparison, Hopfield neural networks are more consistent with the information storage mode
of biological memory. It is distributed storage of the information in the connection weight matrix
of the neural network, which is easy directly recalled the content of the information [67].

According to different memory recall methods, associative memory networks can be divided
into static memory and dynamic memory networks. The first advocated a forward mapping of
inputs, and the other is the memory process for the interactive feedback of input and output.
Since the dynamic network has good fault tolerance, it is the most commonly used associative
memory [94]. The common dynamic memory network is the Hopfield model (auto-associative
memory) [95] and Kosko’s Bidirectional Associative Memory (BAM) model (hetero-associative
memory) [96].

The applied classification based on associative memory can be divided into auto-associative
memory and hetero-associative memory. Auto-associative memory refers to recovering from the
damaged input mode to the complete mode; it can map the input mode in the network to one of
the different modes stored in the network. At this point, the associative memory network can
not only map the input to the self stored modes, but also have some fault tolerance for the input
mode with default or noise [64]. Hetero-associative memory refers to obtaining other relevant
patterns from input patterns. When the hetero-associative network is excited by input patterns
with certain noise, it can associate the pattern pairs of the original samples through the evolution
of the state [97].

In the process of realizing associative memory, discrete Hopfield neural network is divided
into two working stages: learning-memory stage and associative memories stage. The task for
the learning-memory stage is to adjust the weights on the input samples, which the stored sam-
ples become dynamics factors on the Hopfield neural network [98]. The task for the associative
memories stage is to make the final steady-state as attractor dynamics after adjusted weights,
it is depending on the incomplete or affected information as the associative keyword. [99]. In
fact, this associative memory process is the continuous movement of the energy function inside
the Hopfield neural network, so that the energy is continuously reduced, eventually reaching a
minimum value, and in a steady-state process [100].

From the perspective of learning processing, Hopfield algorithm is a powerful learning sys-
tem with simple structure and easy programming. The Hopfield network operates in a Neural
Dynamics, and its working process is the evolution of the state, which means the evolution from
the initial state in the direction of energy reduction until it reaches a stable state, which is the
output results. Therefore, the state of the Hopfield network evolves in the direction of decreasing
energy function. Since the energy function is bounded, the system will incline to a stable state,
which is the output of the Hopfield network [101].



CHAPTER 2. LITERATURE REVIEW 15

Figure 2.1: The fully connected network architecture of the Hopfield network (adapted from
[105].)

From a system perspective, the feedforward neural network model has limited computing
power. Comparatively, the feedback neural network has more stronger computing power than a
feedforward neural network, it is based on feedback dynamics to enhance global stability [102].
In feedback neural networks, all neurons have the same status and there is no hierarchical dif-
ference. They can be connected to each other and also feedback signals to themselves [103]. In
contrast, although the Back-Propagation (BP) neural network model can handle learning prob-
lems, it is not suitable for combinatorial optimization problems. In theory, if the application is
properly set, Hopfield Neural networks can be more robust on the applications. It is a static non-
linear mapping, and the nonlinear processing capability of the complex system can be obtained
by the compound mapping of the simple nonlinear processing unit [104].

The discrete Hopfield neural network (DHNN) which is also known as a feedback neural
network is fully connected network architecture and is shown in Figure 2.1. The circles represent
neurons, and the output of each neuron as the input of other neurons, which means that the input
of each neuron comes from other neurons. In the end, other neurons will return the output data
to themselves. At this time, each neuron the input and output has a delay z−1 [105]. In the
Hopfield neural network each neuron is of the same model, and x represents the neuron output
at the current time, and y represents the neuron output at the next time.
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wi j is weight between neuron i and neuron j. So, in the time t, the output of x in the neuron i

can be expressed as [106]:

xi (t) =
n

∑
j=1

wijyj (t) (2.1)

In the time t+1, the output of y in the neuron i can be expressed as [107]:

yi (t+1) = f (xi (t)) (2.2)

Where [108] f (•) is the transfer function:

f (a) =

{
+1 a ≥ 0

−1 a < 0
(2.3)

Figure 2.2: Circuit topology of Hopfield network.

Converting the network structure into a circuit topology that is shown in Figure 2.2, Hopfield
neural networks are equivalent to amplified electronic circuits. Input data for each electronic
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component (neuron), including constant external current input, and feedback connections that to
link with other electronic components [109].

As shown in Figure 2.2, each electronic component is based on amplifiers. It includes a non-
inverting amplifier and an inverting amplifier (depending on the positive and negative weight
of the connection to select corresponding output needs) [110]. All states are feedback to the
input of the circuit through the bias current Is (S=1,2,3,..., N) [111]. At the connection point of
each neuron has a resistor, which represents the impedance ri j(ri j = 1/wi j) connected to other
neurons [112]. The constant wi j represents the network weight between neuron i and neuron j.

For the bias current calculation is shown in the following [113]:

Ii =
s

∑
j=1

xi

rij
=

s

∑
j=1

xjwij (2.4)

2.4 Algorithm Learning Method

The neural network learning method can be classified by event sequence and time series [114].
This occurrence is due to the asynchronous timestamps, where the sequence of events depend on
the network dynamics, and the time-series is deterministic [115]. For instance, in the RNN (re-
current neural network) architecture of the Backpropagation Through Time Algorithm (BPTT),
Forward propagation is calculated each time in sequence order, while the Backpropagation deliv-
ers the accumulated residuals starting from the last time sequence number through the multiple
layers [116]. In contrast, the event information can be captured based on the event sequence
method, thereby, adjusting the time steps of the conditional intensity function [114]. On the
other hand, the Hopfield algorithm training is based on the dynamics evolving in discrete time
with time steps to discrete learning [117].

According to different learning environments, neural network learning methods can be di-
vided into supervised learning and unsupervised learning [118]. In supervised learning, the data
of the training samples are loaded to the network input end. Meanwhile, the corresponding ex-
pected output is compared with the network results to achieve the difference value [119]. So, it is
to adjust the connection strength on the weights and converge to a certain weight after repeated
training [120]. If the sample situation is changed, then weights can be modified to adapt to the
new environment after training [121]. Neural network models using supervised learning include
back-propagation networks [122], perceptrons [123], etc. In unsupervised learning, the network
is directly placed into the environment without giving standard samples, and the learning and the
working combined as a stage [124]. At this point, the learning rule transformation is based on
the evolved equation of connection weight [125]. The classic example of unsupervised learning
is the Hebb learning (HL) rule [126].

Hebb learning rules are the basis of artificial neural networks. The adaptability of neural
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networks is realised through learning approaches [127]. It is a behaviour according to the envi-
ronment changes, which is used to adjust weights and then to improve the system [128]. Hebb
rules believe that the learning process occurs in the process of synapse between neurons. At
the synapse, the strength of synaptic connections varies with the activity of neurons between
synapses [129]. Some artificial neural network learning rules can be regarded as deformation by
the Hebb learning rules [130]. Based on this, researchers have proposed various learning rules
and algorithms to meet the needs of different network models. Effective learning algorithms
enable neural networks to construct different target and object representations, which is through
adjustment of connection weights. It is a distinctive information processing method that enables
information storage and calculation is processing in network connections [131].

In 1949, D.O. Hebb proposed the "synaptic correction" on the learning mechanism of neural
networks by psychology hypothesis [129]. Its means when neuron i and neuron j are excited
at the same time, the connection strength between the two neurons should be enhanced. For
example, in animal experiments when a bell rings, a neuron is excited, and at the same time
the appearance of food will stimulate the other nearby neurons, then the connection between
these two neurons will be strengthened, so that there is a relationship between these two things
connected. On the contrary, if two neurons are always unable to stimulate simultaneously, the
connection between them will become weaker [132].

The neuron stores the learned knowledge on the connection weights of the network. From
the biological field, when the A cell’s neuron axon is close enough to B cells, it repeatedly and
continuously stimulates to cell B. At this point, the connection between the two cells will be
strengthened. This means one or two cells in A or B will produce some kind of growth process
or metabolic change, thereby enhancing the stimulation effect of cell A into cell B [133].

DHNN follows the Hebb learning method, which is a neural network learning rule proposed
by Donald Hebb [134]. It is used to describe the behaviour of the connection relationship be-
tween neurons. Such as two connected neurons where both are activated; it can be considered
that the relationship between the two neurons should be relatively close. Hence, the weight of
the connection between these two neurons is increased. On the contrary, when one of the two
neurons is activated, and the other one is inhibited, the weight between the two neurons should
decrease.

The Hebb learning rule can be mathematically expressed as follows [135]:

wij (t +1) = wij (t)+ c∗ ei ∗ e j (2.5)

The wi j represents the connection weight of neuron j to neuron i, si and e j represent the
output of two neurons, ’c’ is a constant representing the learning rate. If ei and e j are activated
at the same time, that means ei and e j are positive, and the wi j will increase. If ei is activated and
e j is inhibited, that means ei is positive and e j is negative, then wi j will decrease. This equation
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shows that the change in weight wi j is proportional to the product of the transfer function values
on both sides of the synapse. This is an unsupervised learning rule, which does not require any
information from object outputs [136].

After converting to DHNN, it can be simply expressed as the following weight calculation
[113]:

Wi j =
n

∑
s=1

(2V s
i −1)

(
2V s

j −1
)

(2.6)

Hopfield neural network weight learning uses the sum of the outer-products method by Hebb
rule. Given p pattern samples (n dimensional orthogonal vector) that is Xp , p = 1, 2, 3, ..., x ∈
{-1, 1}n, and the samples are orthogonal to each other. The n> p, then the weight matrix is outer
product sum of memory samples [137].

Outer product sum can be expressed as [138]:

w =
p

∑
p=1

xp (xp)T (2.7)

Weight binary computing is straightforward using a component-wise manner as follows:
[139]: [140]

wij =

{
∑

p
p=1 xp

i xp
j , i ̸= j

0, i = j
(2.8)

At this point, w satisfies the symmetry requirement, and its need to check whether is an
attractor on the algorithm.

Since p samples Xp, p = 1, 2, 3, ..., x ∈{-1, 1}n is pairwise orthogonal. The calculation
according to the following: [140]

(xp)T xk =

{
0 p ̸= k

n p = k
(2.9)

Due to n > p, the attractor xp will be calculated by the following:

f (wxp) = f [(n− p)xp] = sgn [(n− p)xp] = xp (2.10)
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The weights computing workflow of Hopfield network [141] is presented in Algorithm 2.1

Algorithm 2.1: Hopfield Algorithm Workflow.
Require: pn pattern samples (n dimensional orthogonal vector);

1: Set to the initial state of the network x=p;
2: Set the number of iteration steps;
3: Calculate the w weight of the network: w=∑i=1

n[pT p− I
]
;

4: Since wi j=0, subtract the unit matrix I;
5: Perform iterative calculation;
6: Until the number of iteration steps is reached or the state of the network is stabled, stop the

network learning operations, otherwise iteration continues;
Ensure: Weight matrix of Hopfield Neural Network

However, when the network size is fixed, the number of memory mode is limited. To avoid
association error rate on the associative memory, the maximum number of memory modes pmax

that the network store ability of the capacity is N/2ln(N) [142]. It is related to the network size,
algorithm and the distribution of vectors in the memory mode [143]. When designing a DHNN
network using an outer product method, if the memory patterns all meet the pairwise orthogonal
condition, the n-dimensional network can memorise at most n patterns [144]. Nonetheless, the
pattern samples cannot all meet the orthogonality condition, and the information storage of the
network will be greatly reduced for the non-orthogonal patterns. In fact, when the network
size n is set, the more patterns to be memorised, which cause the high possibility of errors in
associations. On the contrary, if it is required the lower error rate, which needs the smaller
information storage capacity of the network. Follow the mentioned storage capacity calculation
for N/2ln(N) [142], which is maximum number of associative memory modes with 0.14N for
stable storage states. So, it will occur errors during the association on the network [145] when
exceeds maximum storage capacity proportion [146]. The error result corresponds to a local
minimum of energy, or a pseudo-attractor [147].

DHNN for associating memory function to store patterns that are constrained by the storage
capacity, which means storage capacity proportional. This is the number of neurons required
for each sample memory capacity. When the memory capacity exceeds the neuron storage
capacity, the system will confuse the stored samples. It appears as errors in the neurons signal
output. Relative to the steady-state of the correct memorised pattern, spurious states will also be
generated during the learning process of associative memory in the Hopfield network. When the
pattern samples of learning and memory do not meet the orthogonality condition, the dynamic
update of the energy function may produce a false minimum. It will cause the neural network to
return wrong or incomplete learning results. Therefore, the associative memory will be wrong
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on the neuron; the result corresponds to the local minimum of energy and is called spurious
attractors. The current configuration of the neural network is projected into the subspace spanned
by the pattern vector with a learning rule. The work should ensure that the memory pattern
computing meets the maximum pattern memory capacity (Pmax) of a learning rule. It can avoid
the Hopfield neural network generated spurious states of the pattern learning, which means the
local minimum value in the energy function can be reduced. The storage capacity proportion is
approximately 0.14N, which is a max number of memorised patterns. This proportion is from
the principle of neuron training, which follows the relationship of neurons N and patterns K in
the below computing: [148]

K ≤ N
2lnN

= Pmax (2.11)

2.5 Applications

In daily life, character recognition has high practical application value in the postal [149], trans-
portation [150] and document management process [151], such as the recognition of car numbers
and license plates in transportation systems [152]. However, the images captured in the natural
environment are often blurred due to the limitations of camera hardware [111], or uncleared by
the font is occluded and worn out. At these points, the complete information of the character
cannot be obtain and identification of noisy characters become a key issue [153].

At present, there are several methods for character recognition, which are mainly divided into
a neural network [154], probability statistical [155], and fuzzy recognition [156]. The traditional
character recognition method cannot recognize well under the condition of noise interference.
However, the discrete Hopfield neural network has the function of associative memory, which is
reasonable for anti-noise processing [157]. By applying this function, characters can be recog-
nized and satisfactory recognition results can be achieved. Besides, the convergence calculation
becomes fast for processing.

2.5.1 General workflow for Character recognition case study

The associative memory can be designed based on the discrete Hopfield neural network concept,
and the network can recognize the 10 digits that fall in the range from 0-9. Furthermore, despite
any disturbance by certain noise due to the specified range of numbers, still has a good recogni-
tion effect by network feedback. At this point, the network is composed of a total of 10 stable
states that reach to 0-9 numbers. These numbers are represented by 10 x 10 matrices and are
directly described by the binary matrix. In the 10 x 10 matrix, the number pixel is represented
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Figure 2.3: Hopfield network of the recognition application workflow.

by 1, and the non-number pixel is defined -1 as blank display.
The network through learning the above matrices on the function of associative memory is

performed to achieve 10 steady states reaching 10 numbers. When new input data are applied to
the network, the output of the network which is feedback, and used to determine the comparison
of 10 steady states such as the object vector. Finally, the purpose of the whole operation is
to achieve the effect of correct recognition. The Hopfield network of recognition application
workflow is depicted as Figure 2.3

Standard Templates

In this study, standard templates are selected to convert into binarisation matrix. In this applica-
tion of characters recognition, all the numbers from 0-9 are converted into 10x10 matrices.

Design Hopfield Network

In this case, network T is a matrix size of R with Q target vectors (the element must be binary
of -1 or 1). According to the above matrices requirements that to design network architecture,
it is a 10 x 10 matrix on number sample size, which means R = 10. Following the matrix size,
the Hopfield network will contain 100 neurons, which one by one neuron match with a 10 x 10
matrix point.

Hopfield network Training

The learning processing adopts a neurodynamic method. The working process is based on the
evolution of the state. For a given initial state, it evolves of energy decreasing manner, and finally
reaches a stable state. The network starts from the initial state X (0) to multiple recursions, where
its state does not change to form a stable state, which means the network is stable by x(t +1) =
x(t).

When the X state is reached to a steady-state, then it is considered as an attractor. The
attractors are determined by the final behaviour of a dynamic system. The system requirement
of remembers information that is stored in different attractors. When the input sample containing
part of the memoried information applied to a network, the evolution process of the network is
resumed all the required sample information from the inputted part of the information. The
aforementioned procedure is called the process of associative memories.
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Input Test Sample to Hopfield Neural Network

In this section, test samples are converted to the matrix, and the size is the same as the training
sample. This new test matrix is then placed into a trained Hopfield network, and the network
output of the feedback, which is found to the closest of the object vector. In this case, the
feedback will be in a range from 0-9 matrices.

2.5.2 Other applications

Based on the discrete Hopfield neural network, it has the function of associative memory. In re-
cent years, many researchers have attempted to apply Hopfield network to various fields in order
to replace conventional techniques to address the issues, such as water quality evaluation [158]
and generator fault diagnosis [159], and have achieved considerable results by applying afore-
mentioned method. For example, in the Internet of Things (IoT) applications, where multiple
links fail and break the real-time transmission services, and due to this reason, the fault cannot
be quickly located at that particular point [160]. The relationship between the fault set and the
alarm set can be established through the network topology information and the transmission
service, which is compatible with the proposed Hopfield Neural Network [161]. The built-in
Hopfield algorithm of the energy function is used to resolve fault location, and hence, it is found
that integration of aforementioned algorithm with the IoT will improve transmission services in
smart cities [162].

However, the application will have a wider framework to suitable more applications in ad-
dition to limited applicability for the field. When the Hopfield neural network collaborates
with some notable optimisation algorithms, not the network alone, that provides its associative
memory stronger but also improves the application efficiency. For example, the existence of
many pseudo-stable points in general discrete Hopfield neural networks, limit the proficiency
of network. Therefore, a Genetic Algorithm (GA) can be considered for the discrete Hopfield
network [163], and the global search capability of the Genetic Algorithm is used to optimise
the steady-state of Hopfield associative memory function. So that makes the associative mode
jump out of the pseudo-stable point, and then the Hopfield network maintains a high associative
success rate under the condition of higher noise to signal ratio.

2.5.3 Application Comparison

The workflow details of Hopfield algorithm are similar to those of above in section B men-
tioned. However, the main difference is that varied projects need to design suitable templates
for different objects to matching data-sets, and then to input object data into the neural network
algorithm for learning. Appropriate templates will help the algorithm learning features more
easily and improve processing accuracy.
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The actual practice of Hopfield neural network involves a surprising number of scientific
disciplines, which is the key technical areas it covers include Data Classification, Pattern Recog-
nition, Image Recognition, Feature Match, Image segmentation, Image retrieval. The result of
the investigation was reported as shown in Table 2.1. By comparing the applications in various
fields, which can find that the application of the algorithm is a different implementation method.
It is mainly depending on the design of the neural network weights that the algorithm uses the
weights for associative memory to output results. Under the appropriate template of input data,
which to corresponding output analysed and predicted results.

2.6 Future Plan and Challenges

For the future of neuromorphic chips, it is the key to break through the development direction of
Von Neumann’s structure limitations. Because the basic operations of neural networks are the
processing of neurons and synapses [171], the conventional processor instruction set (including
x86 and ARM, etc.) was developed for general-purpose computing [172]. These operations are
arithmetic operations (addition, subtraction, multiplication and division) and logical operations
(AND-OR-NOT) [173]. It often requires hundreds or thousands of instructions to complete the
processing of neuron computing, making the low processing efficiency of the hardware ineffi-
cient.

Currently, neural computing needs a completely different design than the Von Neumann ar-
chitecture [20]. The storage and processing are integrated into the neural network [28], whereas
in Von Neumann’s structure, there it is separated and realized respectively by memory and com-
putational unit [174]. There is a huge difference between the two computing when using current
classical computers based on the Von Neumann architecture (such as CPUs and GPUs) to run
neural network applications. They are inevitably restricted by a separate storage and handling
structure, which has caused a lower efficiency over the impacts. Although the current FPGA and
ASIC can meet the requirements of some neural network application scenarios, a new generation
of architecture like neuromorphic chips and integrated computing design will be used as the un-
derlying architecture to improve the neural network computing in the long-term planning [175].

Among the above, ASIC is a kind of chip specifically designed for this special purpose.
Compared to FPGA, it features stronger performance, smaller size, less power consumption,
lower cost and more progress in developing hardware design. ASIC needs research, develop-
ment time and high risks of technology marketing that have become a major obstacle to future
promotion. However, some of its advantages such as good mold size, low cost, great energy con-
sumption, great reliability, strong confidentiality, high computing performance and high com-
puting efficiency have become the best choice for current formal nerve chips [176].

Another key point of neural computing is the challenge of holding computing nodes [177].
Generally, the nodes of bit computation are the conduction switches of the transistors [178].
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However, formal neural computing requires computational nodes like neurons, which is the
penalty for an alternative generalized alternative approach to achieve non-bit computing. This
means that artificial synapses and excitement need improvement [179]. Nowadays, there are
a lot of explorations on how to simulate or create synthetic synapses. Taken as a whole, for
produced formal neuronal chips, industrial circuits are used primarily to simulate synapses that
achieve formal neuronal computing [4]. But manufacturing processes and technical costs are
high and production efficiency is low, causing neuronal simulation efficiency to low.

There are still many problems in the research of new materials for the neuromorphic hard-
ware. In the future, researchers in the neuromorphic disciplines consider new materials be-
longing to neuromorphic computing can be found in place of transistors to new hardware de-
sign [180]. For example, the array composed of memristor that is a plastic element can be stored
and processed to integrate for the neuromorphic hardware. It has a high switching current ratio,
a light effective mass, a large adjustable band gap and large electron mobility, which provides a
favourable basis for successful preparation of low-power neuromorphic hardware [181].

Eventually, the architecture, algorithm and programming scheme of adaptive neuromorphic
computing is in a wide blank and a long way to reach a final goal that replaces to Von Neu-
mann’s structure in the artificial intelligence discipline. But the frontiers of neuromorphic com-
puting knowledge are being pushed farther outwards over the time, and the future opens a bright
prospects.

2.7 Summary

Although neuromorphic computing has gained widespread attention in recent years, however,
it is still considered to be in the infancy stage. The existing solutions mostly focus on a single
application at the hardware or software level, and majority of them are only suitable for handling
limited applications. In addition, there are many software-based neural network applications that
has been deployed, but hardware-based neural network design has been the key to the neuromor-
phic design. Convention neural network circuit implementation is thought of time-consuming
and inconvenient. In order to apply a simple and fast design method to neural network hardware,
which can optimise and manufacture neuromorphic computing systems, needs to systematically
unificate the requirements of the software calculation process. Furthermore, it can process and
improves the final software-level application indicators to quantify hardware attributes. Finally,a
testable solution for a specification component can be achieved.

This study gives an overview of the work that is the hardware implementation field on neural
networks. In addition, the work has also discussed the various techniques and methods em-
ployed in the overall progression and implementation of the Hopefield algorithm. In this regard,
it is found that this algorithm has been extensively deployed in various disciplines based on fea-
sibility and efficiency. Moreover, it has also highlighted the existing solutions for neuromorphic
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computing which are mainly focused on a single application at the software-hardware level. In
this regard, it is discovered that there is significant room for further improvement to achieve
the most optimized design with a low computation process. From in-depth research, this chap-
ter provides a significant step toward the hardware implementation of low-power neuromorphic
processing systems using the advanced Hopfield algorithm.



Chapter 3

IMU Sensing-based Hopfield
Neuromorphic Computing for Human
Activity Recognition

Aiming at the self-association feature of the Hopfield neural network, it can reduce the need
for extensive sensor training samples during human behaviour recognition. For a training algo-
rithm to obtain a general activity feature template with only one time data preprocessing, this
work proposes a data preprocessing framework that is suitable for neuromorphic computing.
Based on the preprocessing method of the construction matrix and feature extraction; the work
achieves simplification and improvement in the classification output of the Hopfield neuromor-
phic algorithm. It assigns different samples to neurons by constructing a feature matrix, which
changes the weights of different categories to classify sensor data. Meanwhile, the preprocess-
ing realises the sensor data fusion process, which helps to improve the classification accuracy
and avoids falling into local optimal value caused by single sensor data. Experimental results
show that the framework has high classification accuracy with necessary robustness. Through
the proposed method, the classification and recognition accuracy of the Hopfield neuromorphic
algorithm on the three classes of human activities is 96.3%. Compared with traditional machine
learning algorithms, the proposed framework only requires learning samples once to get the fea-
ture matrix for human activities, complementing the limited sample databases while improving
the classification accuracy.

3.1 Introduction

Human activities are movement postures with various features that human beings do while at
study, work, production and other situations [182], including regular or irregular movement pat-
terns and states such as running, walking, standing, sitting, lying, etc. [183]. As society is con-
sistently changing; science and technology are advancing rapidly, while artificial intelligence is

28
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becoming more and more popular. Research methods for human activity recognition are contin-
ually evolving, and it has become the primary technology for many applications such as health
care [184] [185], human-computer interaction [186] and robotic control [187]. Meanwhile, with
the development of mobile computing and sensing technology, wearable sensor signals have
become common data [188]. When an object stays in a different position, performs different ac-
tivities, or performs different gestures, it will have different effects on the signal characteristics
of surrounding sensors [189].

At present, the human activity recognition of wearable devices has strong applicability and
use-value. For instance, the intelligent nursing scene system for the elderly detects and analy-
ses the actions in real-time through portable sensors. It can determine whether the elderly has
eaten, medicated, or carried out the minimum exercise. To ensure the health and safety of the
elderly, information around the amount of exercise and detection of abnormal actions such as
falling [190] is vital. For the human-computer interaction system, through the recognition of
human activity, timely and accurate responses are highly vital for the different actions [191].
For the robotic control, the rehabilitation training within hospitals by identifying the degree of
standardization of movement behaviour, the recovery can be evaluated to provide better rehabil-
itation guidance [192].

Compared with the activity monitoring of external means such as radar [193] and cam-
eras [194]. The advantages of wearable sensors are more concentrated in open scene applica-
tions. The user is not limited to a specific monitoring area, and can freely enter and exit places,
and carry-on behaviour without the obstacles of blind spot recording and capturing [195]. There-
fore, human activity recognition based on wearable sensor signals overcomes the drawbacks of
traditional methods and becomes a promising technology for future mobile computing applica-
tions. It will play an essential role in intelligent applications such as smart health [196], smart
space [197] and behavioural analysis [198].

Currently, machine learning methods, especially deep learning algorithms, have been widely
used for Human Activity Recognition (HAR). However, due to existing machine learning, espe-
cially Convolutional Neural Network (CNN) models, induces overwhelming training data col-
lection overhead. The problems caused by massive samples’ algorithm requirement to learning
for the feature are not suitable for small datasets, which greatly reduced machine learning algo-
rithm practicability. Such as Ayman et al [199] realized multi-activity recognition by Support
Vector Machine (SVM) algorithm, with preprocessed activity data, and Chavarriaga et al [200]
used cluster recognition activities by Naive Bayes (NB) and K-Nearest Neighbors (KNN) algo-
rithm. However, these are all traditional machine learning algorithms. Its algorithm capability
limits its robustness, and since it focuses on a single operation, it lacks consistency and shows
poor recognition effect in complicated and diverse human movement scenes. Lately, there has
been a growing trend in improving recognition accuracy and applicability by deep learning.
For example, Terry et al [201] proposed a CNN model that can better classify to the nonlinear
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model, to avoid the hysteresis and time-varying behaviours in sensors with higher frequency
strain rate. Francisco et al [11] uses the LSTM algorithm to improve the CNN structure and
introduces the concept of time series of activity sensor data. This implementation is a deep
learning framework composed of convolutional layers and Long Short Term Memory (LSTM)
recursive layers, which can automatically learn feature representations and build-time dependen-
cies between activity models. However, the costs of training samples for deep learning methods
are not friendly to small datasets and it depends on a wide variety of training datasets to achieve
correct activity recognition. The aforementioned factors cause uncertainties, resulting in high
computational complexity for training and large dataset requirements for datasets. With lim-
ited sample datasets, the classification accuracy cannot meet the requirements [8]. Researchers
have also implemented the unsupervised learning method to clustering analysis limited datasets;
however, the idea of learning transfer approaches complex algorithms, soft labeling examples
increases which also leads to the design missing feature calculations [202]. Following our pre-
vious study [203], reducing the need for training data without losing classification accuracy has
been a significant problem for researchers in the science community.

In this study, a novel framework has been presented that is based on the Hopfield neural
network for wearable multi-sensor data knowledge fusion pre-processing and classification. The
Hopfield neural network can be used for a single task, such as human fall recognition, as seen in
earlier studies [204]. Following to extend the research on the data fusion of multiple sensors with
the Hopfield neural network to a series of human movements. The work builds a dimensionality
reduction matrix, place it into the SVD (Singular Value Decomposition) algorithm for feature
extraction, also termed as data preprocessing method. Then, it follows the Hebbian learning
method for training the Hopfield neural network based on the corresponding human activity
feature matrix. Finally, the work achieves multiple human activities recognition result output
by similarity calculation. Rather than considering separate single activity data in isolation, it
studied the comprehensive data of three activities for comparative output to obtain significantly
different feature templates for each human activity. It ensures the Hopfield algorithm can learn
the related activities through the corresponding feature templates. Hence, reducing the number
of training samples required while maintaining a high classification accuracy.

The rest of this chapter is organized as follows: Section 3.2 presents data collection, prepro-
cessing and feature extraction method. Section 3.3 shows the implementation, evaluation and
results. Section 3.4 discussed and compared the project with others. Finally, section 3.5 focuses
on conclusions and future work.

3.2 Data PreProcessing and Feature Extraction

The dataset used in this work comes from Li et al [205] who works at the University of Glasgow,
and the dataset can be requested from the authors. It collects multiple activities of 20 volunteers
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aged between 22 and 32, where each activity is repeated three times. Although the sample of
this dataset is limited, it is still in the top 3% in terms of the number of subjects compared with
other wearable human motion analysis works [205] [206] [207]. All activities are collected by
IMU (Inertial Measurement Unit) sensors worn on the wrist. In work, the dataset is 60 data for
each activity, and only requests one data in training as one-shot learning.

Ortiz [208] defines how to divide human activity classes. Short events activity generally
refer to fast transitions between human body postures and behaviours. The basic activity lasts
longer than short events activity, and are usually the most frequently occurring episodes during
daily human life, such as sitting, standing, running and other behaviours. Meanwhile, these are
also further divided into static activity and dynamic activity, according to the state of the human
body. Moreover, there are two ways for complex activity; one is a combined activity that is ag-
gregated through a variety of basic activities, and the other includes multiple users participating
during the activity. Therefore, complex behaviours are usually divided into two further strains,
i.e., multi-activity and multi-user. Table 3.1 shows the details of selected activities based on the
activity principles of duration, complexity, type etc., the work selects three classes and activities
data for experimentation which includes: Fall, Carry and Bending to tie shoelaces. These activi-
ties have been purposefully selected into different types and include a potential class that can be
misclassified as falls, such as the complex activity of bending to tie shoelaces, it involves chang-
ing the position of the bow and the complex motion of the hand. This helps to test the robustness
of neuromorphic computing classification. Falls a severe impact on the health of the elderly or
the disabled, it is incredibly essential to achieve reliable recognition of low false positive alarms
and low missed detections.

Table 3.1: Activity selected and details

Duration
Complexity

Activity
Type

Activity Detail Activity
Times

Collected
Count

Short Events Transitions Fall Fall over while walk-
ing

5 seconds 60 times

Basic Activi-
ties (BAs)

Dynamic Carry Walking while carry-
ing an object

10 sec-
onds

60 times

Complex
Activities
(CAs)

Multi-
activity

Bending to
tie shoelaces

Stand first, then bend-
ing to tie shoelaces

5 seconds 60 times

IMU (Inertial Measurement Unit) sensors contain three specific sensors: gyroscope, ac-
celerometer and magnetometer. The gyroscope sensor measures the angular velocity, that is the
speed at which the object rotates. It multiplies the speed and time to get the angle that the object
rotates in a particular period. It captures the angle between the vertical axis of the gyrorotor with
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the device in the three-dimensional coordinate system and then calculates the angular velocity.
Finally, it judges the movement state of the object in the three-dimensional space (X, Y, Z axis)
through the included angle and angular velocity.

The accelerometer measures the gravitational acceleration of the object. It can sense ac-
celeration in any direction, expressed in the three axial (X, Y, Z axis) acceleration magnitude
and direction. The magnetometer is used to record the strength and direction of the magnetic
field, subsequently locating the orientation (heading direction) of the device. The principle of
the magnetometer is similar to the compass, which can measure the included angle between the
current device and the four directions of the south, east, north and west. Finally, the gyroscope
sensor records the rotation of the device itself, the accelerometer sensor records the force exerted
on the device, and the magnetometer positions the device’s orientation.

All of the activities will get a 9-axis data by each sensor of gyroscopex,y,z, accelerometerx,y,z

and magnetometerx,y,z axis.

3.2.1 Sensor Fusion by Quaternion and Euler Angle

The accelerometer sensor’s data provides an absolute reference for the horizontal position, but
can not provide the azimuth reference. The angle is not accurately measured by the accelerom-
eter sensor alone, which can be addressed by data fusion with a gyroscope sensor. While the
magnetic field information is in a stable environment, the sensor achieves the same magnetic
field intensity in each activity. Although, it can help correct the gyroscope angular velocity pa-
rameter. Therefore, the appropriate algorithm can fuse the data from various sensors to make
up for the shortage of a single sensor in calculating the accurate position and direction, thereby
achieving high-precision activity recognition. Meanwhile, to reduce the computational complex-
ity of multi-dimensional data, the signal processing needs to consider dimensionality reduction
to simplify the calculation. Here, the Quaternion [209] and Euler Angle (EA) [210] computing
is used for the sensor data fusion. Depending on the accelerometer, magnetometer and gyro-
scope sensors’ data, the work updates the Quaternion output and then converts it to Euler Angle.
Finally, the 9-axis data of three sensors are fused and reduced to a 3-dimensional dataset. This
computing is presented as follows explanations.

Following the raw 9-axis data calculated into the coordinate system from the three sensors,
the respective three components of the gravity vector and the magnetic field vector in the world
coordinate system can be obtained. Subsequently, the accelerometer achieves the three com-
ponents of the gravity vector in the sensor coordinate system. And finally, the magnetometer
measures the magnetic field vector in the sensor coordinate system. Let dE=[0,dex,dey,dez] be
the vector coordinates in the world coordinate system. Let q be the sensor attitude. So that
it can be used q−1 to transform dE into the vector coordinate dS=[0,dsx,dsy,dsz] in the sensor
coordinate system. The gyroscope sensor data achieves the angular velocity (ω) by integrated
computation, and then follows the accelerometer and magnetometer attitude (dS) to update the
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q as Quaternion at each sampling interval by equation as follows:

dS = q−1 ∗dE ∗q (3.1)

where f is the device attitude fitting error, which can be calculated from the current attitude q

and the attitude dS.
These are following the Equation 3.2 [211] to achieve Equation 3.3 [211] which is an in-

tegrated computation. The 1
2qt ∗ω∆t is calculated by angular velocity, and ▽ f

∥▽ f∥ is calculated
by accelerometer and magnetometer values. The weight β represents the error of the angular
velocity.

qt+1 = qt +
1
2qt ∗ω∆t

qt+1 = qt −µ
▽ f
∥▽ f∥ ,

(3.2)

qt+1 = qt +
1
2

qt ∗ω∆t −β
▽ f

∥▽ f∥
∆t (3.3)

Since combined rotation and vector transformation are frequently used in attitude calcu-
lation, the Quaternion can simplify the calculation and smoothen interpolation. Quaternion
parametrisation (of the rotation) only needs a four-dimensional quaternion to express arbitrary
rotation, which is more efficient than the matrix method [212].

Euler Angle is used to define the rotation of the device in space. It rotates as a fixed angle to
sequence around the coordinate system of Z, Y and X axis. Using the Roll angle (φ ), Pitch angle
(θ ) and Yaw angle (ψ) to represent the rotation angle around X, Y and Z axis on the coordinate
system of the object [213]. The attitude matrix determined by Euler Angle is the product of the
cubic coordinate transformation matrix.

For the sensor fusion, this work first converts the accelerometer and magnetometer sensor’s
data to the coordinate system, and then calculates the deviation with the corresponding reference
gravity vector and magnetic field vector. This deviation is used to correct the output of the
gyroscope, after that it uses the gyroscope data to update the Quaternion to the 4-dimensional
feature expression of activity. Finally, the work follows the Euler Angle computing to convert
the Quaternion. Figure 3.1 shows 9-axis sensor’s raw data (Figure 3.1a) which is dimensionally
fused and given to the 3-dimensional Euler Angle feature (Figure 3.1b), without affecting the
expression of the corresponding action.
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Figure 3.1: Three activities (First column:Fall, Second column:Carry and Third column:Tie
Shoelaces) calculated from IMU raw sensor data to Euler Angle feature: a, IMU 9-axis sensor
data. b, Euler Angle Feature

3.2.2 Feature Extraction by SVD: Singular Value Decomposition

When performing dimensionality reduction processing on a high-dimensional vector space model,
there are usually two methods that are feature selection and feature extraction. Feature extrac-
tion has changed the original feature space, which is created and refines new features on the
basis of the original features. It converts the original data into a set of apparent physical fea-
tures, or kernel features. Feature selection only filters the original features that are selecting a
set of statistically significant features from a set of predefined features, and hence it can also be
called feature subset selection. Therefore, feature extraction is different from feature selection
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solution. Therefore, feature extraction is different from feature selection solutions. The feature
extraction computing transforms the data into a new feature space. In contrast, the feature se-
lection maintained original features from the data. Its extract the abstract features contained in
the original features according to a specific algorithm.

The simple way to obtain a low-dimensional feature subspace expression is to perform a
linear transformation on the original high-dimensional feature space. Here, the chapter chooses
the SVD (Singular Value Decomposition) [214] to extract features of different human activities.
It is a crucial matrix decomposition in linear algebra, which is based on the SVD method to
calculate the feature spaces and feature vectors of the matrix, so that low-dimensional features
can represent the original data. SVD used three submatrices U, Σ, V T to decomposes the original
matrix as following: [215]

Am∗n =Um∗mΣm∗nV T
n∗n (3.4)

The U is an m*m size matrix, Σ is an m*n size matrix, and V T is an n*n size matrix, which
is the conjugate transpose of V . U and V T are two sets of orthogonal vectors, which means the
work gets two sets of orthogonal basis. The A matrix as an original data, which rotates a vector
from orthogonal basis vector space of V T to orthogonal basis vector space of U, with a certain
scaling in each direction. Then it achieves the scaling factor as singular values of Σ. Σ being a
diagonal matrix, which should sort the diagonal values in descending order. It is corresponding
to the singular values of the original data, and the matrix values are all 0 except the values on
the main diagonal, where each element on the main diagonal is called a singular value.

The singular value can be used as a feature to express a rectangular matrix or a singular
matrix, which can be regarded as mapping from one feature space to another feature space.
Whereby, the project complete the feature extraction of the Euler angle feature to each activity
matrix pattern. Figure 3.2 shows the Euler Angle data through 3 times of SVD computing for
dimension reduction and feature extraction that is scaled to a 5*5 feature matrix to distinguish
different human activities. Figure 3.2a is a construction matrix from Euler Angle value, and the
matrix size is the product of time and frequency (where sensor’s sampling frequency is 50Hz).
The roll angle (φ ) data is loaded in the first row, the pitch angle (θ ) data is put into the first
column and the yaw angle (ψ) data on the diagonal of the construction matrix. Then, Figure
3.2b, 3.2c and 3.2d are following the three times SVD processing for dimension reduction and
feature extraction on the construction matrix. Carrying out matrix decomposition through SVD
computing, the large matrix can be decomposed into a product of three small matrices. The mid-
dle Σ matrix of the upper left corner are the most important feature values, which represents the
main component of the matrix decomposition. At this point, the work keeps the upper-left data
as a new matrix, and the rest of the positions are regarded as zero for data dimension reduction.
It still retains the significant features of the data. After three times SVD computing, the Hankel
computing to compress the singular value matrix into 5*5 as the following calculation [216]:
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H (i, j) = H (i+1, j−1) (3.5)

For Hankel computing, it specifies the first column is the first n values of the diagonal on the
matrix and the last row is the last m values of the diagonal on the matrix (n×m = final matrix
size). All other elements in the Hankel matrix are equal to the adjacent position of the lower-left
corner. Figure 3.2e shows the singular values obtained after Hankel computing. Finally, Figure
3.2f converts the Hankel matrix into Binary Pattern by the manual threshold value, which is
significant to distinguish the three activities as different feature matrices.

Figure 3.2: The workflow for Euler Angle Value to Feature Matrix of Activity Binary Pattern
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The achieved feature matrix of each human activity can improve the accuracy of recogni-
tion, construct a faster and less expensive classification model, and a better understanding and
interpretation of the model than Euler Angle. Meanwhile, the binarised pattern is convenient for
further transmission to the Hopfield neural network to a training classification model.

3.2.3 Hopfield Neural Network: Binary Pattern

Figure 3.3: Discrete Hopfield Neural Network Neuron and Weight trained by three activities
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The Hopfield neural network training phase is illustrated in Figure 3.3 with the three activities.
Figure 3.3a depicts one Hopfield neural network state-space neuron that processes the training.
The weight of DHNN is calculated using a feature matrix (5*5 feature pattern of human activity)
and the constructed Hebbian learning law, and it indicates that the neuron has reached a stable
state after the 5 steps of training. Figure 3.3b displays the entire DHNN weight output after the
algorithm trained the three preprocessed binary patterns of activities. Since the DHNN has the
smallest space, it memorizes three patterns for Fall, Carry and Tie Shoelaces activities: 5*5=25
(storage capacity equal to 0.14N) [142] neurons, hence the above data preprocessing stage is
used to obtain the 5x5 feature matrix as the behavior pattern.

3.2.4 Cosine Similarity work for Recognition

When the Hopfield algorithm is used for associative memory, it only needs to give part of the
information of the input mode, and then the algorithm can associate itself to the complete output
mode. At this point, it is fault-tolerant, which is conducive to the input of the sensor data at
different time frames into the algorithm. Finally, the work obtain a usable matrix output while
reducing the time-sensitivity of the algorithm with data. After the output the matrix is obtained
by the Hopfield algorithm, furthermore, the vectors representing each matrix feature can be
calculated by the cosine of the angle of the inner product space. These measure the similarity
between the matrices, and achieves the classification of the data. Cosine similarity [217] is based
on cosine distance computing, which is a measure of the difference between two individual
matrix data. It uses the cosine of the angle calculation between two vectors in vector space.
When the cosine value is closer to 1 it implies that the angle is closer to 0 degrees, meaning
there is a relatively higher level of similarity between the vectors. This calculation method of
cosine distance is suitable for n-dimensional vectors. Following the Equation 3.6, A and B are
two n dimensional vectors (n=1,2,3,...), and i is components of vector A and B. The cosine of
the angle θ between A and B can be calculated as follows: [218]

cos(θ) =
A ·B

∥A∥ · ∥B∥

=
∑

n
i=1 Ai ∗Bi√

∑
n
i=1 (Ai)

2 ∗
√

∑
n
i=1 (Bi)

2

(3.6)

In this regard, all sensor signals will undergo the previous feature extraction to output differ-
ent feature patterns. In the subsequent neural network, except for the trained 3 activity models,
any other data cannot activate the neurons. Then, the output of the Hopfield neural network
linked to the cosine similarity, achieves human activity recognition. Three trained activities will
get a high probability of similarity output, and other data signals will be output low cosine simi-
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larity since the neurons are not activated. Finally, a classifier based on neuromorphic computing
achieves effective human activity recognition as elaborated in the following Results Evaluation
Section.

3.3 Results Evaluation

The Figure 3.4 is the workflow of the algorithm framework, which shows each working step
from the sensor’s raw data into the algorithm until the final output of the classification result.
According to the profile report of the Pie Chart in Figure 3.4, it depicts the relative importance
of each function in the entire system and explains how to distribute work and coordinate with
one another. The system’s primary focus is on Hopfield neural network, which explains that the
recognition work is the most essential and complex calculation in the system. At this point, the
first challenging is how to make a suitable feature map input as a training template on the Hop-
field neural network. The system’s second challenging task is SVD processing, which mainly
depends on the Discrete Hopfield Neural Network input requirement. Since the neural network
uses binary information instead of raw data, the SVD algorithm can perform data pre-processing
for feature extraction, resulting in a binary feature map with activities. It requests feature extrac-
tion computing to raw sensor data and then converts it into a binary feature matrix controlled by
a threshold value. The following are additional details:

Figure 3.4: Workflow for Sensor data to achieve human activity recognition

Sensor Fusion: The purpose of this step is to fuse the raw data of the sensors. Using Eu-
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ler Angle to reduce the 9-axis data of the three sensors with increasing data differentiation of
activities.

Construction matrix: Based on the Hopfield neural network for memory storage of three
activities, the processing on 25 neurons of 5x5 binarised matrix input becomes the optimal
design. The fused data can then be constructed as a matrix to achieve feature extraction and
binarisation pattern. The feature matrix is output to the template of different activities to suitable
Hopfield neural network processing.

SVD algorithm: Depending on the three times singular value decomposition, it is mainly
working for dimension reduction and feature extraction. After the computing, there are three
activities that can achieve totally different feature matrices on the 5x5 size. This can then be
efficiently input into Hopfield neural network training.

Hopfield neural network: This step is to obtain the advantages of neuromorphic computing
by loading the designed binarised feature matrix into the Hopfield algorithm. The neural network
weight is calculated by standardised activity data without the massive training samples, and the
three activities memories are stored in neurons.

Classification function: During the test, all the input signal work with the data preprocessing
is fed into the Hopfield algorithm achieving our desired output. At this point, the work calculates
cosine similarity between the output signal of the neural network and the standardised feature
matrix. The Hopfield algorithm acts as a filter blocking the data outside the memory and only
outputs the activity data that satisfies the memory. Through the threshold of cosine similarity,
the accuracy confusion matrix can then be obtained to complete the human activity recognition.

In the algorithm, feature extraction determines the input of the network, which is one of the
most critical aspects of the framework. The extracted features must reflect the category differ-
ences of the object data. It needs excellent tolerance to the randomness and noise of sensor data.
Meanwhile, it should be convenient to add new categories as a flexible framework. Depend-
ing on the specific project, it can include steps such as removing unique attributes, processing
missing values, attribute encoding, data normalisation, feature selection and principal compo-
nent analysis. The data for this project is processed using coarse grid feature extraction and
binarisation, which is suitable for the DHNN algorithm training.

Table 3.2: Confusion Matrix of Classification Precision
Target Class

% Fall Carry Tie

Fall 94.4% 0 5.3%

Carry 5.6% 100% 0Output Class

Tie 0 0 94.7%
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Table 3.3: Confusion Matrix of Classification Recall
Target Class

% Fall Carry Tie

Fall 94.4% 0 5.6%

Carry 5.6% 94.4% 0Output Class

Tie 0 0 100%

The two confusion matrices representing the algorithm’s classification presents the results
for the three classes of human activities. The confusion matrix summarises the results of the
dataset in the matrix form by the real category and the predicted category. The columns of
the matrix represent the true values, and the rows of the matrix represent the predicted values.
Table 3.2 is the precision results of the algorithm classification, which indicates the percentage
of samples that are classified to be positive. That is calculated by True Positive (TP) / (True
Positive (TP) + False Positive (FP)). Among the three human activities, the classification of
’Carry’ activity is correct, which indicates the algorithm’s classification has the highest success
rate for ’Carry’ activity, and it will not misidentify other activities as ’Carry’. Table 3.3 is the
Recall rate of the classification, which represents the percentage of correctly classified positive
samples in the truly positive sample and is calculated by True Positive (TP) / (True Positive
(TP) + False Negative (FN)). The result shows that the algorithm is most sensitive to shoelace
tie activity. Finally, the algorithm classification accuracy calculated as (True Positive (TP) +
True Negative(TN)) / (True Positive (TP) + False Positive(FP) + True negative(TN) + False
negative(FN)), for the three human activities comes to be 96.3%.

Table 3.4 shows a comparison against traditional machine learning algorithms and proves
that better results are achieved through the proposed neuromorphic algorithm under a suitable
feature extraction model. As discussed before, this depends on the associative memory function
of the Hopfield neural network and generates activity weights after learning the one training
sample, based on the SVD and computation of the feature matrix. Li et al [205] based on
traditional machine learning algorithms work on the same dataset, which achieved classifica-
tion result by Support Vector Machine (SVM) and Artificial Neural Network (ANN). Although
existing machine learning a good recognition effect has been obtained, there is overwhelming
training data collection overhead. Spiros et al [219] propose a method from a change detection
algorithm along with deep learning, which is wide generalization by operation upon raw sensor
accelerometer signal. Then, use it as an activity feature input to the CNN algorithm to achieve
fall recognition. Ashry et al [220] following the Bi-LSTM (Long Short Term Memory) algo-
rithm to input autocorrelation, median, entropy, and instantaneous frequency as stream features
that achieves IMU sensing human activity recognition. However, as existing machine learning,
especially deep learning a good recognition effect has been obtained, there induces overwhelm-
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ing training data collection overhead. Taylor et al [221] tried some neural network method on
the same activities for recognition. Meanwhile, they used the Fast Fourier Transformer (FFT)
method to improve the classification accuracy of limited datasets, which is based on Orthogonal
Frequency Division Multiplexing (OFDM) for 64 points of FFT producing 64 frequency carri-
ers. However, these use Universal Software Radio Peripheral (USRP) radar signal data, and the
method cannot extend to sensor data. Comparing their work, we believed that the recognition
findings are preferable, demonstrating that Neuromorphic computation is effective in recogniz-
ing human behavior. Furthermore, our proposed framework has greater robustness and can adapt
to more different types of matrix data. Meanwhile, the Hopfield neural network benefits from
only one training sample to achieve good classification accuracy, which addresses the limited
datasets problem.

3.4 Discussion

Simple feature maps of different classes are realised by feature extraction for sensors data, while
a discrete Hopfield neural network is utilised to compensate similar data that achieves robustness
in human activity features. For example, some drift in the angle calculations of the IMU sensor
sometimes makes it impossible to keep clear of errors from acquiring activities data. Traditional
deep learning has weak learning ability and often requires massive data and repeated training to
generalise sufficient accuracy. Such deep neural networks are usually good at learning features
from high-dimensional data; however, they require training with a large sample dataset.

In contrast, when SVD pre-processes the new input data, the calculated activity features are
improved by the associative memory function of the Hopfield neural network, which then disas-
sociates corrupted data and outputs correct activity feature information. This makes it one-shot
learning for different activities to achieve prior knowledge and form a knowledge structure and
is based on associative memory to expand the data generalisation processing. The resulting as-
sociative memory helps in generalising data to quickly match the correct activity feature map
and, finally, accurately classify human activities. One-shot learning was completed to imple-
ment HAR for limited datasets, and high-precision results were obtained. Meanwhile, randomly
selecting a single training sample that is verified the robustness of the designed algorithm, and
is convenient to promote more datasets.

Based on the neuromorphic computing of the Hopfield neural network to realise one-shot
learning, the associative memory of data works somewhat like the human brain; it aims to
achieve feature information about the object classes from one training sample. Randomly select
one data in the dataset as the training sample for the Hopfield Neuron Network, And then the
feature matric obtained after the feature extraction calculation, which is can be mapped into the
feature template of the corresponding activity. The associative memory function of the Hopfield
Neuron Network with the similarity of the distance calculation that is composition Learn the



CHAPTER 3. IMU SENSING-BASED HOPFIELD NEUROMORPHIC COMPUTING 43

Table 3.4: Comparison table with other machine learning methods
Project Algorithm Feature Extrac-

tion
Training Method Activity

Classes
Accuracy

Our
Work

Hopeld Neu-
ral Network

SVD prepro-
cessing Euler
Angle data to
achieve activity
binary pattern

One-Shot Learning: 1 Sensor
sample to generate a standard
pattern for each activity

3 96.3%

Li et al
[205]

Support Vec-
tor Machine

Sequential Fea-
ture Selection
(SFS) for 30
features of IMU
Sensor data

Machine Learning: Using a
70% Sensor dataset as training
data (20 volunteers * 3 repeti-
tions * 70% = 42 training sam-
ples for each activity)

10 92%

Articial Neu-
ral Network

Sequential Fea-
ture Selection
(SFS) for 30
features of IMU
Sensor data, and
10 features for
the Radar data

Machine Learning: Combine
the Sensor and Radar dataset
and then use 70% samples to
training (20 volunteers * 3 rep-
etitions * 70% = 42 readings
for each Sensor and Radar,
there are totally 84 training
samples for each activity)

96%

Spiros
et al
[219]

Convolutional
Neural Net-
work

Wide gener-
alization by
operation upon
raw sensor
accelerometer
signal

Deep Learning: In the MSB
dataset, the number of obser-
vations for the raw data was
294,679 of which 8,516 were
labeled as falls

1 92%

Ashry
et al
[220]

Bi-LSTM
(Long Short
Term Mem-
ory)

Stream features
for autocorre-
lation, median,
entropy, and
instantaneous
frequency

Deep Learning: The total num-
ber of streams in the dataset
is 470 samples, and 70% of
the data are randomly chosen
for training while the remain-
ing 30% is used for testing

10 91%

K Nearest
Neighbours

90.71%

Taylor
et al
[221]

Neural Net-
work mode

Used USRP
Radar to collect
30 samples of
each activity,
which each
contain 64
subcarriers by
Fast Fourier
Transformer
(FFT) produced

Machine Learning: 70% USRP
radio signal dataset training al-
gorithm ( 70% * 64 * 30 = 1344
samples each activity)

2 93.40%

Ensemble
Classier

93.83%
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required elements once. These constitute one-shot learning elements, and are finally achieved
HAR by the associative memory function of the Hopfield Neuron Network with the similarity
of the distance calculation. Of course, this method also has certain limitations. For instance,
the number of learning activities is limited to the neurons. The more activity classes require
more neurons to remember patterns to avoid spurious patterns in Hopfield neural networks. The
feature extraction process (achieve the memory pattern to the Hopfield neural network) also has
a significant disadvantage. The SVD algorithm works with massive matrix data and then reduce
it to useful feature maps of each activity. It should design an elaborate construction matrix to
feature map for adapting Hopfield neural network memory learning, which then achieves suit-
able binary patterns for different activities without interference. Nevertheless, as the number of
learned activity classes increases, the task becomes more difficult. This is because the associa-
tive memory function of the Hopfield Neuron Network has the limitation of the storage capacity
proportion. Generally, it can only store 0.14N data (N is the number of neurons) [142]. When
a large number of feature templates need to be memorized, more neurons need to be added into
network to meet the demand.

3.5 Summary

In this chapter, first use the Quaternion and Euler Angle to fuse multiple sensors data, followed
by extracting the features against each human activity with the SVD algorithm. Finally, follow-
ing the designed activity feature matrix to train and test on the Hopfield neural network achieves
human activity recognition. The proposed approach shows 96.3% classification accuracy after
one training sample of each activity while improving performances and robustness compared
with traditional machine learning approaches. The research suggests that Hopfield neural net-
work can avoid large training dataset requirements when preprocessing is used for designing the
activity feature matrix. The neural network weight specified by the Neural Dynamics operation
follows the Hebbian learning method to train the Hopfield algorithm. It is one-shot learning that
only requests one sample of information to calculate the feature template, which is simple and
fast. The algorithm starts to associate memory and feedback with the output matrix informa-
tion, making it much less dependent on training samples of the dataset. Following the results,
it is verified that the proposed framework is suitable for general datasets to reduce the training
samples request, which is limited datasets can also build a high-accuracy recognition model.



Chapter 4

An Intelligent Implementation of
Multi-Sensing Data Fusion with
Neuromorphic Computing for Human
Activity Recognition

The increasing demand for considering multi-sensor data fusion technology has drawn attention
for precise human activity recognition over standalone technology due to its reliability and ro-
bustness. This paper presents a framework that fuses data from multiple sensing systems and
applies Neuromorphic computing to sense and classify human activities. The data is collected
by utilizing Inertial Measurement Unit (IMU) sensors, software-defined radios, and radars and
feature extraction and selection are performed on the data. For each of the actions, such as sitting
and standing, an activity matrix is generated, which is then fed into a discrete Hopfield neural
network as a binary feature pattern for one-shot learning. Following the Hopfield network neu-
rons’ feedback output, the conformity to the standard activity feature pattern is also determined.
Following the Hopfield network neurons’ feedback output, the training of neurons is completed
after 2 steps under the Hebbian learning law, and the conformity to the standard activity feature
pattern is also determined. According to probabilistic statistics on inference predictions, the
proposed method that Neuromorphic computing of the three data fused framework achieved the
Box-plot for highest lower quartile output of 95.34%, while the confusion matrix classification
accuracy of the two activities was 98.98%. The results have shown that Neuromorphic comput-
ing is most capable for multi-sensor data fusion-based human activity recognition. Furthermore,
the proposed method can be enhanced by incorporating additional hardware signal processing
in the system to enable the flexible integration of human activity data.

45
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4.1 Introduction

In recent years, the application of multi-sensor data fusion technology has become popular for
military, industry, and emerging technology development applications [222]. Multi-sensor In-
formation Fusion (MSIF) is an information processing technique in which the data from multi-
sensor or multi-source hardware are fused and analyzed to complete the required decision-
making and estimation [223].

MSIF technology is widely used in industrial control [224], robotics [225], object recog-
nition [226], traffic control [227], inertial navigation [228], agriculture [229], remote sens-
ing [230], medical diagnosis [231] and other fields [232]. Research studies have proven that
compared with single-sensor systems, the use of MSIF technology results in accurate detection
and tracking of subjects’ activities [233]. Moreover, it can enhance the validity, reliability, and
robustness of the entire system, improve data credibility to increase accuracy, expand the time
and space coverage, and reinforce the system’s real-time performance and information utiliza-
tion [234].

Muhammad et al [235] proposed a data fusion-based system for ensemble computing with
the Random Forest Classifier algorithm to predict results from multiple sensors. The results of
the study was promising as it recorded an average accuracy of more than 90% after performing
data fusion. The authors in [205] used the Sequential Feature Selection (SFS) method to fuse
the Inertial Measurement Unit (IMU) and Radar information to form time series data, which can
be used as features to train the Support Vector Machine (SVM) and Artificial Neural Network
(ANN) algorithm for classification computing, which increases the accuracy by approximately
6% compared to using a single type of data.

In view of the uneven data quality of different hardware platforms [236], Huang et al [9] used
multi-scale features by three sparsity-invariant operations. It depends on a hierarchical multi-
scale encoder-decoder Neural Network, which is used to process sparse input and feature maps
for multi-hardware data. The features of multiple sensors can be fused further to improve the
performance of deep learning algorithms. However, a multi-sensing system normally requests
hardware platforms to work synchronously to ensure the collected data time axis is unified in
the coordinate system.

A current research focus revolves around the development of high accuracy Human Activity
Recognition (HAR) systems using the limited datasets available. Traditional machine learning
(especially deep learning models) has achieved practicable results in the HAR field [237], but
it has also led to a large amount of training data collection overhead [7]. On the upside, deep
neural networks are friendly to high-dimensional data learning and it completes the end-to-end
calculation without the more cumbersome process of feature engineering. On the downside, it
causes problems such as huge demand for training samples, complex model structure, and time-
consuming training [238]. Moreover, it loses the cognition of features, and there are challenges
to knowing the importance of data features [239]. On the other hand, neuromorphic computing



CHAPTER 4. IMPLEMENTATION OF MULTI-SENSING DATA FUSION 47

has required fewer training samples to achieve high accuracy recognition results [240]. It is
based on the combination of feature engineering for the abstract expression on the object and
the associative memory function of neuromorphic computing, which achieves one-shot learning
for HAR.

This chapter first explores a new multi-hardware data fusion method that makes use of IMU
sensors and Universal Software Radio Peripheral (USRP) for human motion recognition. Our
approach is based on using building a constructing feature matrix to fuse different hardware
information as unified data. Different hardware signals are difficult to match due to the signal
shapes between the object. The difference in location and time axis is the main disadvantage
of this data fusion. In order to overcome this limitation, this work constructed matrices from
vectors based on principal component analysis to combine IMU and USRP signals, then helps
multi-hardware data fusion, and finally achieve better classification and recognition effect than
traditional data fusion results.

And then, the research has been extended to a novel multi-sensing HAR system, which is
a Neuromorphic Computing-based data fusion method. It is based on the above data fusion
idea with IMU sensors and USRP, and adds Radar signals are complete the HAR task. The
method is to construct a feature matrix to fuse different hardware information as a unified data
input to a Hopfield Neural Network. Constructed activity feature matrices depend on attention
mechanisms to combine IMU, Radar and USRP signals for feature extraction and selection. The
multi-hardware data are then fused for better classification and recognition accuracies using the
Hopfield Neural Network as compared to traditional data fusion results.

The chapter is organised as follows: Section 4.2 outlines how the human motion data from
the IMU, Radar, and USRP are collected and modelled. Section 4.3 is a case study to show
the traditional machine learning workflow for the IMU sensor and USRP data fusion method.
Follows Section 4.4 is the ANN algorithm’s HAR accuracy for the fused signals. In Section
4.5, there are details of the proposed feature matrix for the data fusion method, and the algo-
rithm calculation workflow. Section 4.6, presents a quantitative evaluation of the application of
neuromorphic computing on the fused dataset in the context of existing studies in the literature.
Finally, Section 4.7 summarizes the multi-sensing data fusion implementation of the Hopfield
neuromorphic computing to HAR and outlines the potential future direction.

4.2 Materials and Methods

At present, there are many types of sensing hardware that can capture human movement infor-
mation, but the acquisition of signals by a single device is relatively limited. In general, IMU
sensors are low-cost, easy to use, and less restricted by usage scenarios, and have been inte-
grated into many wearable devices. However, its serviceable range and accuracy are inferior
to those of USRP and Radar, and its performance is constrained by other components such as
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batteries and microprocessors. USRP can achieve higher precision object detection through the
Doppler frequency shift principle. Depending on high power support, hardware performance
can be better released. However, it is generally used in fixed scenes that cannot move quickly,
which means that the capture of object signals is easily affected by some factors such as oc-
clusion and limited angle. Comparatively, radar mainly transmits electromagnetic waves and
receives echoes to obtain the distance, speed and angle of objects. It has good penetration and a
strong resolution ratio. However, it is bulky and complicated to install. Therefore, following the
advantages of these different types of devices, we can integrate them together to form a multi-
sensing human activity perception system, which complements each other and realizes a more
stable and reliable human activity recognition task. After the data fusion method is adopted,
the Sensor, USRP and Radar will provide different perception information, which can overcome
the limitations and discrepancy of a single device in terms of geometric, spectral and spatial
resolution. Finally, it improves the data quality, and thus facilitates the positioning, recognition
and interpretation of human movement information.

4.2.1 Experimental Setup and Data Collection

The data collection of human body movements was performed using three sensing hardware
platforms, as listed below:

• Shimmer 3 IMU sensor [241].

• Walabot Radar DIY model [242].

• Universal Software-defined Radio Peripheral (USRP) [243] X300 unit.

First, the IMU sensor was worn on the wrist where the three axes of the coordinates system
of each sensor (gyroscope, accelerometer and magnetometer) have the spatial coordinate infor-
mation of X, Y and Z respectively. Then, the Radar and the USRP were positioned at a distance
of 2 meters from the fixed human activity position (Shown on Figure 4.1).

The IMU [244] constitutes a gyroscope, an accelerometer and a magnetometer, used in mea-
suring the attitude angle of an object. The gyroscope detects the angular velocity signals relative
to the three degrees of freedom (X, Y and Z) in the coordinate navigation system, and the ac-
celerometer monitors the acceleration signals of the independent three axes of the object carrier
coordinate system in X, Y and Z directions. The magnetometer can obtain the surrounding
magnetic field information. It can calculate the angle between the module with the north di-
rection through the geomagnetic vector and help correct the angular velocity parameters of the
gyroscope. The real-time output that includes the three-dimensional angular velocity signal,
acceleration signal, and magnetic field information is used to calculate the object’s posture. To
capture this information, the voltage signals of the X, Y, and Z axes in the IMU sensor are digi-
tised at sampling frequencies of 20Hz for the magnetic field and 400Hz for the accelerometer
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Figure 4.1: Device Setting-up and Environment for Human Activity Data Collection.

and gyroscope. The working current of the sensor is 500µA with a power supply voltage of
3.3V, resulting in a total power consumption of 1.65mW.

The Radar device used in this chapter is an off the shelf "Walabot DIY" device. The device
is designed to use radar technology to detect metal and wooden studs as well as electrical wires
inside of a wall to assist users with DIY tasks around the home. However, it can also be used
to detect human movements [193, 245]. The Walabot radar is a Multiple Input Multiple Output
(MIMO) device and does not allow for its preset parameter to be tuned. Hence, the data for this
experiment was collected using the predefined settings of the product.

The USRP device is a Softare Defined Radio (SDR) used to enable Radio Frequency (RF)
communication between two antennas. Two Omnidirectional antennas are connected to a single
USRP device, that is, one as a transmitter and one as a receiver. The data collection window
was set to 5 seconds during which the activity took place. During the 5 second communication
window, the Channel State Information (CSI) are captured, reflecting the activity performed.
This process is repeated multiple times to capture several samples for each activity, where the
amplitude of the RF signals is extracted from the CSI. The USRP was configured to operate at
2.4 Ghz frequency similar to Wi-FI, with a 20 MHz bandwidth.
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In this chapter, the USRP is set up to communicate using Orthogonal Frequency Division
Multiplexing (OFDM) [246]. Channel estimation is an important feature of OFDM as it moni-
tors the state of the channel for the purpose of improving performance. Channel estimation does
this by using a specified set of symbols known as pilot symbols. These symbols are used in
the transmission of the data and once the receiver antenna receives the data the received pilot
symbols are compared to the expected pilot symbols and this provides details of the state of the
channel.

4.2.2 IMU Sensor, USRP and Radar Modeling

• IMU Sensor Modeling: The IMU [244] constitutes a gyroscope, an accelerometer and a mag-
netometer, used in measuring the attitude angle of an object. The gyroscope detects the angular
velocity signals relative to the three degrees of freedom (X, Y and Z) in the coordinate navi-
gation system, and the accelerometer monitors the acceleration signals of the independent three
axes of the object carrier coordinate system in X, Y and Z directions. The magnetometer can ob-
tain the surrounding magnetic field information. It can calculate the angle between the module
with the north direction through the geomagnetic vector and help correct the angular velocity
parameters of the gyroscope. The real-time output that includes the three-dimensional angular
velocity signal, acceleration signal, and magnetic field information is used to calculate the ob-
ject’s posture. To capture this information, the voltage signals of the X, Y, and Z axes in the
IMU sensor are digitised at sampling frequencies of 20Hz for the magnetic field and 400Hz for
the accelerometer and gyroscope. The working current of the sensor is 500µA with a power
supply voltage of 3.3V, resulting in a total power consumption of 1.65mW.
• Radar Modeling: The Radar device used in this paper is an off the shelf "Walabot DIY"
device. The device is designed to use radar technology to detect metal and wooden studs as well
as electrical wires inside of a wall to assist users with DIY tasks around the home. However, it
can also be used to detect human movements [193, 245]. The Walabot radar is a multiple-input
and multiple-output (MIMO) device and does not allow for its preset parameter to be tuned.
Hence, the data for this experiment was collected using the predefined settings of the product.
• USRP Modeling: The USRP device is a softare Defined Radio (SDR) used to enable Ra-
dio Frequency (RF) communication between two antennas. Two Omnidirectional antennas are
connected to a single USRP device, that is, one as a transmitter and one as a receiver. The
data collection window was set to 5 seconds during which the activity took place. During the
5 second communication window, the channel state information (CSI) are captured, reflecting
the activity performed. This process is repeated multiple times to capture several samples for
each activity, where the amplitude of the RF signals is extracted from the CSI. The USRP was
configured to operate at 2.4 Ghz frequency similar to Wi-FI, with a 20 MHz bandwidth.
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Figure 4.2: The multi-sensing raw activity signal data.

Figure 4.2 shows the raw data as captured by the IMU sensor, Radar and USRP devices
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where Figure 4.2.a and Figure 4.2.b represent those of the sitting and standing activities, respec-
tively. It is worth mentioning that the data collected from all three devices was not synchronised
due to the difficulty of controlling the start and end of the data collection window and the sam-
pling of each sensor was independent and different from each other. This resulted in an incon-
sistent time stamp of the collected actions, as shown in Figure 4.2c. Due to different devices
requiring different initial times, the collected data of time series are non-uniform. It means data
length and interval are different that are difficult directly to process.

The work summarized the error formula of the action state variable inheres:

δk =
j

∑
i

(∫
s(t)′△t ·dt

)
dt (4.1)

Here δk is the error value between time i and time j, and time i should be the first activity time
timestamp, s is the state quantity, t is the time difference, and dt represents the microvariable
with t as the variable. Following the normalization process of the raw data from each sensing
unit, the measured values are then converted to unified coordinate system, which eliminates the
time stamp of the information. This is shown for the sitting and standing activities in Figures
4.2d and Figure 4.2e, respectively.

4.3 Case Study: Data Fusion for IMU and USRP Signals

Data fusion utilises comprehensive and complete information about the object and environment
obtained by multiple hardware devices, which is mainly reflected in the data fusion algorithm.
Therefore, the signal processing’s core point on a multi-hardware system is to construct a suit-
able data fusion algorithm. For multi-type sensor hardware, which acquired information is di-
verse and complex. Moreover, the basic requirements for information data fusion methods are
robustness and parallel processing capabilities. There are also requests for the speed and ac-
curacy of the method, and the previous preprocessing calculations and subsequent recognition
algorithms interface compatibility that to coordinate with different technologies and methods;
reduce information sample requirements, etc. In general, data fusion methods are based on non-
linear mathematical computing. It can achieve fault tolerance, adaptability, associative memory,
and parallel processing capabilities.

There is two separate single hardware to acquire activity data, and how to fuse the two
hardware’s signal information becomes the key point. The hardware’s different sampling rate
makes the time axis difficult to achieve with the unified coordinates system. At this point, the raw
data need to reduce the time dimension of the activity feature. The PCA [247] algorithm used
for data dimension reduction can be achieved a time-independent activity features. Furthermore,
after analysing the two types of signal, it can find that the sensor data has more dimensions than
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USRP data. Therefore, this research designed a big sub-matrix to represent the sensor signal
of human activity after data dimension reduction and a small sub-matrix to represent the USRP
signal after data dimension reduction. The big sub-matrix can more accurately represent the
sensor’s data feature that is can keep more origin data information. Comparatively, USRP data
is simple and can be represented as a small sub-matrix, it is enough to save all of the features on
the small matrix.

Meanwhile, this design also facilitates subsequent machine learning, which requests nor-
malise the fused data to obtain a standard feature map pattern [248] of each activity, and then
loaded the feature map template into the Neural network algorithm for training. It gets the com-
bination matrix of the feature map pattern. Its activity feature matrix of the sensor and USRP
is combined by a direct row arrangement method of previous sub-matrices. Finally, the neural
network obtains the classification function of the two activities based on the training. The neu-
ral network as a classifier to output recognition result. Figure 4.3 shows the entire calculation
workflow from feature extraction to recognition.

Figure 4.3: The entire calculation workflow of feature extraction to human activity recognition.

4.3.1 Principal Component Analysis for Feature Extraction

The PCA algorithm for data dimensionality reduction calculates the covariance matrix of one
dimension with sample information, and then solves the feature value and corresponding feature
vector of the covariance matrix. It arranges these feature vectors according to their correspond-
ing feature values from large to small as a new projection matrix. In this case, the projection
matrix as the feature vector pattern after sample data transformation. It maps n-dimension fea-
tures to k-dimension space, which is a brand new orthogonal feature as the principal component.
It is a re-constructed k-dimension feature based on the original n-dimension features. Following
the first K-dimension vectors are the essential features of the high-dimension data retained to
remove noise and unimportant interference factors to improve data information quality.
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4.4 Experimental Evaluation for Two Sensing Accuracy

After PCA feature extraction of the hardware signal, it is evaluated the training and testing per-
formance following by the Artificial Neural Network (ANN). Figure 4.4 illustrates the recog-
nition accuracy of sensors data applied to the machine learning algorithm. The evaluation for
the performance of a single sensor and fused data modality in activity recognition. It is the two
layers ANN algorithm classification results of the confusion matrix for Sit down and Stand Up
activities. Following feature extraction through the PCA algorithm, the ANN algorithm presents
the results in terms of classification accuracy for different hardware (IMU Sensor and USRP) of
direct processing and data fusion when fused the different features.

Figure 4.4: The ANN algorithm classification confusion matrix of IMU Sensor, USRP and IMU
Sensor fused USRP data.
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Table 4.1: Comparison table with other data fusion methods.

Project Hardware Algorithm Data Fusion Activity
Classes

Accuracy

Our IMU sensor
(magne-
tometer +
accelerometer
+ gyroscope)
+ USRP

Artificial
Neural Net-
work

Using PCA algorithm for
feature fusion

2 99.2%

Chen
et al

[249]

IMU sensor
(accelerom-
eter + gyro-
scope)

K Nearest
Neighbor

two-stage genetic
algorithm-based fea-
ture selection algorithm
with a fixed activation
number

9 99.1%

Random For-
est Classifier

99.1%

Support Vec-
tor Machine

98.9%

Chung
et al

[250]

IMU sensor
(magne-
tometer +
accelerometer
+ gyroscope)

LSTM net-
work

Using various combi-
nations of sensors, and
two voting ensemble
techniques adopting all
sensor modalities.

9 94.47%

Calvo
et al

[251]

Kinect + IMU
+ EMG

Hidden
Markov
Model Classi-
fication

From each sensor, it is
keep track of a succes-
sion of primitive move-
ments over a time win-
dow, and combine them
to uniquely describe the
overall activity performed
by the human.

5 98.81%

Zou
et al

[252]

WiFi-enabled
IoT devices
and camera

C3D model
and CNN
model en-
semble DNN
model

Performs multimodal fu-
sion at the decision level
to combine the strength
of WiFi and vision by
constructing an ensem-
bled DNN model.

3 97.5%
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By comparing the single hardware data’s classification performance with the data fusion
method on the machine learning of neural network algorithm, this work designed the fusion
method to increase the activity classification accuracy from single signal data of 90.5% from
IMU sensor and 81.8% from USRP signal to 99.2% after the IMU and USRP data fusion. This
evaluation proves that our solution can pass the method of constructing the matrix helps the data
fusion between different hardware, and the fused data can obtain higher accuracy. When the
sensors are used individually, the IMU Sensor is more suitable for measures human activity. For
multi-hardware of both IMU sensor and USRP, it improves single type signal quality with more
angle and dimensionality on the feature extraction.

Table 4.1 shows a comparison against traditional machine learning algorithms’ accuracy and
proves that better results are achieved through the proposed data fusion method. Such as Chen
et al worked on the IMU Sensor with accelerometer and gyroscope, and they used traditional
machine learning algorithms (K Nearest Neighbor (KNN), Random Forest Classifier (RFC) and
Support Vector Machine (SVM)) to classify human activities. Furthermore, Chung et al im-
prove the data fusion method to suitable for 9 axes IMU Sensor ( magnetometer, accelerometer
and gyroscope ) and achieve results from the LSTM network. Based on the Kinect, IMU and
EMG of the multi-hardware platform, Calvo et al implements the Hidden Markov Model Clas-
sifier to recognise human activity signal, and Zou et al design a Deep Neural Network (DNN)
framework to ensembled the C3D and Convolutional Neural Network(CNN) model to process-
ing fused data of WiFi-enabled IoT devices and camera. However, through comparing accuracy,
our implementation is more accurate than their classification. We believed that the recognition
findings are preferable, demonstrating that the PCA model to fuse multi-hardware signal fea-
tures effectively recognises human behavior. Furthermore, our proposed workflow has greater
robustness and can adapt to more different types of matrix data.

4.5 The Proposed Structure Matrix to Data Fusion for IMU,
Radar and USRP Signals

Figure 4.5 shows the framework and the data flow from the multi-sensing stage to the neuromor-
phic computing stage, for HAR. Firstly, human motion information is respectively collected on
different hardware platforms, and features are extracted from the collected raw data.
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Figure 4.5: The multi-sensing entire calculation workflow to human activity recognition.

4.5.1 Feature Extraction and Feature Selection

Feature selection and feature extraction are two important sub-contents of Feature Engineering.
Among them, feature extraction can find the attributes that best represent the uniqueness of
the data [253]. Feature extraction obtains a new feature space by transforming or mapping the
original raw data, such as mapping from three-dimensional space to two-dimensional space. The
purpose of feature extraction is to use fewer features to represent most of the information in the
original data space. Thus, it can improve computing efficiency and reduce dimension disasters.

However, after observing the raw data of multi-sensing devices, it can be found that the
data dimensionality reduction calculation of previous used PCA and SVD feature extraction
algorithms is no longer suitable for feature expression on the multi-sensing signal processing.
Because with the increase of sensing devices, directly reducing the dimension of the raw data to
obtain the feature matrix will cause uneven feature distribution. In extreme cases, the obtained
activity feature matrix will lose part of the data of the sensing devices, and only rely on one or a
few devices’ information to express the feature matrix without all of the multi-sensing devices’
signals. In this case, not only feature extraction algorithm is used, but also feature selection
methods are needed. Feature selection is to select the appropriate feature from the candidate
features [254]. It can reduce the dimension of the data, and improve and optimize the ML
model’s performance.

Figure 4.6 shows the process from Raw data feature extraction to the Attention Mechanism
[255] of TopK [255] feature selection [256], and binarization for human activity features map.
Figure 4.6a is the raw multi-sensing data calculated by a tree-based prediction model that can be
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used to list features and obtain the heat map after TopK order [255] [256] for a feature selection
method. That is, all elements of the feature array are sorted in ascending order, and then the first
k numbers are taken. Figure 4.6b is the 5*5 feature matrix after extracting the best 25 features
of TopK computing. Finally, Figures 4.6c and d are the human activity feature pattern after
binarization (-1/1) by features values (Following positive and negative values to binarization).

Figure 4.6: Feature Extraction for HeatMap.

The Attention Mechanism [255] of neural networks is a resource allocation scheme. In neu-
ral network learning, the stronger expression ability of the model requests more parameters on
the neurons. Meanwhile, more information can store on neurons, but this will bring information
overload. Therefore, depending on the attention mechanism, the neuron network pays more at-
tention to the high critical information on the current task. Meanwhile, filtering out irrelevant
information and reducing attention to other information. As a result, information overload can
be solved, and the accuracy and efficiency of task operation can be improved, by allocating
computing resources to high important tasks.
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Inhere, the Attention Mechanism selectively ignoring unimportant information by the fol-
lowing activity features‘ importance. Then, it focuses on these features to express the corre-
sponding activity. The focusing process is reflected in the calculation of feature weight co-
efficients. The weight shows the essential features of data. Through the heat map of feature
correlation, there are TopK [257] (K=25) features selected to represent the original information
of the activity.

The formula of the Attention mechanism’s distribution probability is represented below:
[258]

Attention(Query,Source) =
Lx

∑
i=1

Similarity(Query,Keyi)•Valuei (4.2)

Source is the stored data, and Query is for fetching the corresponding value in the memory
of stored data as the attention value. The Lx denotes the length of the Source, it is a series of
<Key, Value> data pairs. In this case, the weight coefficient of the corresponding Value of
each Key can be obtained by element Query in the Target. First, it calculates the correlation
or similarity between Query and each Key and then, the Value is weighted and summed to get
the final Attention value. Essentially, the Attention mechanism is a weighted sum for the values
of elements in the Source, while Query and Key are used to calculate the weight coefficient of
corresponding values.

4.5.2 Hopfield Neural Network and Euclidean Distance

Designing neuromorphic computing for end-to-end signal processing. Firstly, the raw data is
feature extracted through data preprocessing, and the feature map of the corresponding activ-
ity is obtained as explained earlier in section 4.5.1. The binary feature pattern is then fed to
the Hopfield neural network [203] for training. Finally, the output signal is compared by the
Hopfield neural network and the corresponding activity feature map. It can recognise the input
signal that has been trained or not to achieve the inference result of the activity. Depending on
Hopfield neural network that is a fully connected structure of recurrent feedback neural network
to achieve the associative memory of neuromorphic computing.

The Discrete Hopfield Neural Network (DHNN) [259] is based on binary feedback to re-
alise associative memory work. Following the step function of activation calculation to each
neuron, its input and output of the neuron are binary values of -1 and 1. The Hopfield neural
network training phase is illustrated in Figure 4.7 for the sitting and standing activities. Figure
4.7a depicts one Hopfield neural network state-space neuron that processes the training for both
activities. The weight of the DHNN is calculated using a binary feature matrix (5*5 feature
pattern achieved by above feature extraction and selection of human activity), and trained by
Hebbian learning law [203]. It indicates that the neuron has reached a stable state after the 2
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steps of training. Figure 4.7b displays the entire DHNN weight output after training the Hebbian
learning algorithmusing the two preprocessed binary patterns of activities. It shows the weight
value distribution for each neuron’s connection, which is easy to analyse the weight value range.

Figure 4.7: Hopfield Neural Network Neuron State and Weight Output.
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All device signals will go through the feature extraction to output different feature patterns.
The input data is transferred to the neurons, and it is like a filter that only passes the data for
trained two activity feature patterns on the activation state. Then, the Hopfield neural network
output links to the Euclidean distance algorithm. It is based on the similarity to estimate the
recognition result of the HAR, which compares the output of the neural network and trained
feature patterns. The Euclidean distance to calculate the similarity is the distance between two
points and it is always a non-negative number [260]. Thus, the similarity value range is be-
tween [-1,1], and its reciprocal will control the result between [0,1]. At this point, distance is
negatively correlated with similarity. Two trained activities will get a high probability similarity
output, while other data signals will output a low probability similarity because the neuron is
not activated. Finally, the classifier for neuromorphic computing is completed to realise effective
HAR.

Algorithm 4.1: Multi-Sensing Data for Human Activity Recognition.
1: Load Multi-Sensing Hardware data:
2: [Gx, Gy, Gz] = Gyroscope [:column_1, column_2, column_3]
3: [Ax, Ay, Az] = Accelerometor [:column_1, column_2, column_3]
4: [Mx, My, Mz] = Magnetometor [:column_1, column_2, column_3]
5: [Ux] = USRP data Matrix [:1]
6: [Rx] = Radar data Matrix [:1]

Require: :
7: Feature Extraction: Tree-based prediction model
8: FIMU (G,A,M) = ( f(Gx)) +( f(Gy)) + ( f(Gz)) + ( f(Ax)) + ( f(Ay))+ ( f(Az) + ( f(Mx))+ (

f(My))+ ( f(Mz));
9: FUSRP(U) = f(Ux);

10: FRadar(R) = f(Rx);
11: Feature Selection:Attention Mechanism
12: F‘ = Sort F1(G), F1(A), F1(M), F1(U), F1(R)
13: M f = TopK(F‘) : K = 5*5
14: Binarization Matrix: Depending on a threshold value
15: Threshold value = t
16: for ni = 0:24 do : out[ni][n j] = (M f > t[n i]) ? 0 : 1;
17: return Matrix BM(5:5);
18: HNN = Hopfield(BM)
19: Out(Confidence) = Euclidean_Similarity(HNN-BM)
20: return Recognition Result;
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Table 4.2: Algorithm Hyper-Parameter and Value Setting

Hyper-Parameter Value

1. Gx, Gy, Gz Initial to 0, and then load to sensors data for 1-3 column

2. Ax, Ay, Az Initial to 0, and then load to sensors data for 4-6 column

3. Mx, My, Mz Initial to 0, and then load to sensors data for 7-9 column

4. Ux Initial to 0, and then load to USRP data

5. Rx Initial to 0, and then load to USRP data

6. Threshold t for 5x5 matrix 0.084158 0.169579 13.23165 41.138027 68.868009

0.001983 0.11178 3939.6904 0.089959 5200.0895

0.871498 0.74435 0.703459 0.800664 0.696558

1.36E-08 1.49E-07 7.80E-09 3.09E-09 8.75E-09

1.66E-09 1.07E-09 3.21E-09 3.73E-10 9.38E-10

4.5.3 Proposed Algorithm Implementation Scheme

Algorithm 4.1 verifies the feasibility of the whole framework theoretically, and shows the spe-
cific calculation process of each step in the workflow. In order to avoid interference between
the different types of hardware signals in the calculation, feature extraction will be performed
separately, first and then, work on the feature level fusion. This processing helps the different
types of signals keep the original information. Depending on the attention mechanism [258] of
TopK computing, the most important sub-features can be extracted from the fused feature-set. In
order to make the Hopfield neural network get better processing results, the activity feature ma-
trix is converted into the Binarized feature pattern by calculating the threshold values. Finally,
following the calculation of the similarity between the Hopfield neural network’s output and
feature pattern. The similarity output can work as the confidence of the activity classification to
be achieved in the HAR process, which means the similarity directly corresponds to confidence.
All of the algorithm 4.1 hyper-parameter and value settings have been shown in the Table 4.2.

4.6 Experimental Evaluation for Multi-Sensing Neuromorphic
Computing Accuracy and Discussion

As compared to the classification performance of data collected using a single hardware plat-
form, the data fusion methodology adopted in this chapter increases the activity classification ac-
curacy through feature-level fusion of the IMU sensor, Radar and USRP signal, which recorded
an accuracy of about 98.98% (see the multi-class confusion matrix in Figure 4.8). This is further
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shown in Figure 4.9 where a box and whiskers plot is use to compare the inference probability
when using single devices, as well as fusion of two and three of the devices together. As can be
seen, applying neuromorphic computing to fuse HAR data from three hardware devices is the
most stable compared to machine learning results from a single device and data fusion of two
hardware devices. Therefore, this evaluation proves that our solution can pass the method of
constructing the matrix to help the data fusion between different hardware, and the fused data
can obtain higher accuracy performance by the Neuromorphic computing algorithm.

Figure 4.8: Confusion Matrix for IMU, USRP and Radar sensor fusion of HAR accuracy.

Figure 4.9: Box and whiskers plot to compare the machine learning accuracy obtained from data
collected using single devices and fusion of two and three devices.
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Table 4.3: Comparison table with multi-sensing data fusion methods between neuromorphic
computing with traditional machine learning

Project Hardware Algorithm Feature Activity
Classes

Accuracy

Our
Method

IMU sensor
(magnetometer
+ accelerometer
+ gyroscope) +
USRP + Radar

Hopfield
Neural
Network(Ne-
uromorphic
Computing)

Tree-based prediction
model for feature extraction
and feature level fused of
feature selection by Atten-
tion Mechanism of TopK

2 98.98%

Bangaru
et

al [261]

EMG and IMU
sensors

Artificial
Neural Net-
work (ANN)

The EMG and IMU sen-
sor data is normalized by z-
score standardization to data
fusion

15 93.29%

Chung
et

al [250]

IMU sensor
(magnetometer
+ accelerometer
+ gyroscope)

Long Short
Term Mem-
ory (LSTM)
network

Using various combinations
of sensors, and two voting
ensemble techniques adopt-
ing all sensor modalities.

9 94.47%

Cao et

al [10]
Frequency
Modulated
Continuous
Wave (FMCW)
Radar

Convolutional
Neural Net-
work (CNN)

The coordination of both
labelling methods by the
neighbor-aggregating-
based labeling method
and incorporates with
clustering-based labelling
method that is motivated
to be implemented in the
weighted combination
form.

6 93.60%

Universal Soft-
ware Radio Pe-
ripheral (USRP)

K Nearest
Neighbours

2 90.71%

William
et

al [221]

Neural Net-
work mode

Used USRP Radar to collect
activity, which each con-
tain 64 subcarriers by fast
Fourier transformer (FFT)
produced

93.40%

Ensemble
Classier

93.83%
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Table 4.3 shows a comparison against traditional machine learning algorithms’ accuracy and
proves that better results are achieved through the proposed data fusion method. For instance,
Bangaru et al worked on the EMG and IMU Sensor, and they used Artificial Neural Network
(ANN) to classify human activities. Furthermore, Chung et al improve the data fusion method to
be suitable for 9 axes IMU Sensor (magnetometer, accelerometer and gyroscope) and achieve re-
sults from the LSTM network. Based on the Frequency Modulated Continuous Wave (FMCW)
Radar, Cao et al implements the Convolutional Neural Network Classifier to processing fused
data recognise human activity signal, and William et al design a framework to ensemble the
KNN, Neural Network and Ensemble Classier model to processing of USRP human activity
data. However, through comparing accuracy, our implementation is more accurate than their
classification. We believed that the recognition findings are preferable, demonstrating that the
Hopfield Neural Network of Neuromorphic computing to fuse multi-hardware signal features
effectively recognises human behaviour. Furthermore, our proposed workflow has greater ro-
bustness and accuracy performance.

4.7 Summary

This chapter proposed an architecture for a HAR system that uses Neuromorphic Computing to
integrate different hardware signal data for sensing and classifying human behaviours swiftly
and efficiently. The Hopfield Neural Network of associative memory function was applied for
one-shot learning to Human activities. This approach not only addresses the issues with tra-
ditional machine learning for large training sample requirements, but it also allows for greater
flexibility in fitting multi-sensing hardware signals. The suggested technique has the great po-
tential to assist the different types of measurement devices in achieving system-level data fusion
without affecting the accuracy of classification and recognition. Furthermore, validation meth-
ods are employed throughout to demonstrate that the method yields a significant improvement
in accuracy when a sensor, USRP, and radar data are fused. The proposed approach has shown
a classification accuracy of approximately 98.98% and has demonstrated the strong potential of
Neuromorphic Computing of multi-sensing data in human activity recognition.



Chapter 5

Hardware-Based Hopfield Neuromorphic
Computing for Fall Detection

With the popularity of smart wearable systems, sensor signal processing poses more challenges
to machine learning in embedded scenarios. For example, traditional machine-learning methods
for data classification, especially in real time, are computationally intensive. The deployment of
Artificial Intelligence algorithms on embedded hardware for fast data classification and accurate
fall detection poses a huge challenge in achieving power-efficient embedded systems. There-
fore, by exploiting the associative memory feature of Hopfield Neural Network, a hardware
module has been designed to simulate the Neural Network algorithm which uses sensor data
integration and data classification for recognizing the fall. By adopting the Hebbian learning
method for training neural networks, weights of human activity features are obtained and imple-
mented/embedded into the hardware design. Here, the neural network weight of fall activity is
achieved through data preprocessing, and then the weight is mapped to the amplification factor
setting in the hardware. The designs are checked with validation scenarios, and the experiment
is completed with a Hopfield neural network in the analog module. Through simulations, the
classification accuracy of the fall data reached 88.9% which compares well with some other re-
sults achieved by the software-based machine-learning algorithms, which verify the feasibility
of the hardware design. The designed system performs the complex signal calculations of the
hardware’s feedback signal, replacing the software-based method. A straightforward circuit de-
sign is used to meet the weight setting from the Hopfield neural network, which is maximizing
the reusability and flexibility of the circuit design.

5.1 Introduction

With the ever-improving living conditions, sensors-based healthcare has been widely adopted.
Embedded systems are used as monitoring tools for well-being or preventive purposes. Such
systems are composed of non-invasive and wearable sensors with processors [262]. Sensors
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acquire a variety of physiological signals and can be used for life-saving implants, medical
treatments, and long-term health monitoring of disabled or elderly persons [263]. For example,
real-time, reliable and accurate monitoring results provided by the sensor system are used for
fall recognition [264], blood glucose monitoring [265] and asthma tracking [266].

Presently, machine learning is being widely used for various applications in diverse fields and
health care is no exception. It can be used to improve the accuracy of monitoring and detection,
which is a popular method in the wearable field [267]. However, the combination of machine
learning and embedded devices still has a technological divide. Primarily, it is a huge challenge
to design low-power and real-time healthcare Artificial Intelligence (AI) systems. For instance,
an embedded system is not capable of running an AI algorithm of neural network for low-
power and real-time processing of multi-sensor signal [268], such as data fusion of magnetic,
acceleration and RF/Radar sensor signal processing for activity detection. Furthermore, if real-
time cloud solutions were used to collect and process the wearable device signals on the host
computer, it would use more data and become inconvenient and a risk for customers [269].

The problem is that the neural network algorithm requires a large number of differential
equations to be solved, to compute gradient descent, such as mean square error and regular-
ization calculations. The instruction set and architecture of a microprocessor constrain these
software-based calculations on a general-purpose processor, and it requires many consumption
thread resources to complete. In this respect, hardware-based neuromorphic computing systems
present a more efficient AI technology, that has been proposed by researchers and scientists at
various levels. It aims to stimulate neurons using specialized hardware that uses the discrete and
sparse nature of neuron pulse behavior to achieve desired results.

Neuromorphic computing hardware refers to a hardware system that supports the scale of
simulated neural network models and the speed of neural computing. Its initial hardware imple-
mentation includes Field Programmable Gate Array (FPGA) [270], Neuromorphic Chip (Based
on ASIC) [271] and Digital Signal Processor (DSP) [272]. The core of hardware implemen-
tation research is the construction of neural devices, which can be of electronic [273], opti-
cal [274] and biological [275] nature. In the research of neuromorphic computing, for neural
network algorithms to be effectively applied in applications, the neural network implementation
technology request to support the neuromorphic computing of scalable network architecture.
Meanwhile, the system shall minimize the cycle time of the neuromorphic computing process
to match real-time processing. However, the existing system based on the software environment
of various AI algorithms is difficult to support the large-scale and running time of the neural
network model, which cannot meet the application requirements. Therefore, the development of
hardware-implemented neural network computers is imperative to replace the software environ-
ment and achieve hardware acceleration.

Traditional neuromorphic computing of Hopfield neural network algorithms has been ap-
plied to data classification that relies on associative memory model. Data is processed directly
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by storing and memorizing standard data models. For example, Rong and Junfei [276] tried to
use the network for water quality detection. They designed a memory template by selecting the
water quality parameters for data preprocessing, and then passed the actual data back into the
network. They used the binary values 1 and −1 to indicate the water quality monitoring and
finally output the feedback matrix to match the classes of the water quality information in the
memory models. Cantini et al. [277] used the memory retrieval of the Hopfield neural network
to describe gene expression patterns and analyze the transcriptome data. They used discrete val-
ues to represent the signature genes in the sample and assigned corresponding neurons to them,
where the network used a different gene to mark the nodes. With the network convergence, the
model finally evolved to classify the genetic data. In another study, Ray and Majumder [278]
used the Hopfield neural network to perform feature matching on a two-dimensional array. By
comparing the features of the test scene and the object model, they used the neuron to output
the probability to achieve the data classification. López et al. [279] implemented the Hopfield
neural network on embedded systems such as the Arduino UNO, Tiva-C and BeagleBone de-
velopment boards, and achieved fast execution times that even performed machine-learning al-
gorithms. Furthermore, Boriskov [280] proposed Hopfield algorithm uses rate coding to expand
the capabilities of neuromorphic engineering by hardware design that uses the thresholds of zero
crossings of output voltages of neurons where spiking frequencies of oscillators are controlled
either by supply currents or by variable resistances. However, the main disadvantages of these
hardware implementations are their limited processing and storage capacity, therefore, such sys-
tems can only be used when there is scarce data [279], and request special hardware component
design (such as Leaky Integrated-and-Fire (LIF) Rate Coding (RC) oscillators) [280] to achieve
neuron function. It greatly limits scalability and extensibility of hardware-based neuromorphic
computing implementation.

This chapter focuses on the use of neuromorphic computing algorithms on hardware circuits,
so that low-power and real-time systems particularly for health care applications can be imple-
mented. It uses hardware circuit features for algorithm calculations, to reduce power consump-
tion due to the complexity of the computing architecture. The algorithm adopts the integrated
structure of storage and computing like human brain processing. It is different from the von
Neumann architecture where storage and computing are separated, and can process data more
efficiently as a neuron model. The neuromorphic computing can process data in real time that
does not require data interaction between multiple modules during the calculation. In the Al
field, its conditions in terms of flexible architecture, modular design, and non-declining comput-
ing efficiency are rather good, and development potential is very significant [281]. Meanwhile,
the neuromorphic computing of the feasibility of the design way of hardware, which to take
advantage of low power consumption and real-time processing [282].

The chapter is structured as follows. Section 5.2 introduces the neuromorphic computing
with data classification of the Hopfield neural network. Section 5.3 shows the details of hard-
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ware architecture. In Section 5.4, fall recognition results and comparison of the application
with other AI methods is presented, which discusses in detail the hardware-based neuromorphic
computing and software-based machine-learning method. Section 5.5 summarizes the entire
hardware implementation of the Hopfield neuromorphic computing algorithm and outlines the
potential future direction.

5.2 Neuromorphic Computing Implementation

Traditional human fall recognition techniques mostly rely on the Microprogrammed Control
Unit (MCU)-based embedded systems that only sense but process human activity. However,
such an approach has an inherent disadvantage in terms of the speed with which any recognition
can be detected. Therefore, it is difficult to support the complex calculations any machine-
learning algorithm requires. Moreover, most embedded systems are limited to low power, and
hence sensor data cannot be processed in real time, something which is critical in designing
prediction-based systems.

In this chapter, it proposed a system that first collects data in real-time from an IMU sensor
related to human activities, and then pre-processes this sensor data by posture calculation to es-
timate the fall feature during human movement. Finally, the data is passed to a hardware-based
neural network, which replaces the software-based machine-learning method to perform the
recognition calculations. The proposed hardware-based neural network has lower power con-
sumption and real-time processing speed, which is designed by congenital advantage of lower
power analog components, and no latency processing to match the sensors input. Thus, it im-
proves application quality for human activity recognition scenarios. Here, a hardware circuit
has been designed that implements a Hopfield neural network algorithm. Through our system,
the human fall activity can be processed on analog circuits. In this chapter, the entire process
from the beginning of the IMU sensor data collection to the final recognition result on the cir-
cuits has been built and verified in a simulation environment. The experiment completed the
Hopfield neural network in the analog module by Cadence PSpice 17.4, and through the co-
simulation of MATLAB Simulink 2020B. As shown in Figure 5.1, the sensor is worn on the
wrist, and the real-time signal can be collected at a sampling rate of 50 Hz, which is then passed
to the front-end circuit for data preprocessing. The next step involves processing by the neural
network algorithm, hardware done on the system hardware. In Section 5.3, the work describes
in detail the working principle of the algorithm, specifically, how neuromorphic calculations are
generated based on Hopfield neural network. It further illustrates how to design and build the
analog circuit which can further enable the production of useful feedback signals.
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Figure 5.1: System Workflow from human activities to fall detection.

5.2.1 Hopfield Neural Network Algorithm and Training

The Hopfield neural network is a fully connected network proposed by J. Hopfield in 1982 [283]
that can be used as an associative memory. It is a recurrent neural network, which has feedback
connections from input to output. All neurons are the same structure and connected. Each
neuron receives feedback information from other neurons through connection weights, and the
signal can transfer in both positive and negative directions. Such a design allows the output of
neurons to be controlled by all other neurons, so that each neuron can interact with each other.

Hopfield network can be divided into discrete Hopfield neural network (DHNN) and contin-
uous Hopfield neural network (CHNN) [284]. Continuous Hopfield neural network is mainly
used for optimization calculation, and discrete Hopfield neural network is primarily used for
associative memory. Among them, the neuron variable function of discrete Hopfield network is
symbolic. The node states of the network take the binarized +1 and −1. Hopfield neural network
is derived from a nonlinear dynamical system, and DHNN can be described by a set of nonlin-
ear difference equations [285], while differential equations usually describe to the CHNN [286].
Compared to other machine-learning algorithms, the Hopfield neural network is more straight-
forward and less dependent on the data.

Discrete Hopfield neural network (DHNN) is an essential type of Hopfield neural network,
where both the input and output are binarized. The synaptic weight between neuron i and neuron
j is Wi j [287], so for a Hopfield neural network with N neurons, the weight matrix size is N * N,
and its unique associative memory of DHNN is through a series of iterative processes until the
system is stable. Meanwhile, neurons in the network are connected symmetrically, i.e., Wi j =
W ji. If Wii is output to 0, then the neuron has no connection with itself. It is called the Hopfield
network without self-feedback. If Wii output is not 0 it means a Hopfield neural network with



CHAPTER 5. HARDWARE-BASED HOPFIELD NEUROMORPHIC COMPUTING 71

self-feedback structure. However, considering the stability of the network, it should avoid using
networks with self-feedback. Each neuron of DHNN only takes discrete binary values of 0 or
1. Wi j determines the weight between neuron i and neuron j. Neurons have current state ui

and output vi [288]. The ui can be continuous value in the processing, but vi is binary value in
discrete models. The relationship between neuron state and output is as follows, which is the
discrete Hopfield neural network evolution Equations (5.1) [106] [107] and (5.2) [108].

ui (t+1) =
n

∑
j=1

Wijv j (t)+ Ii (5.1)

vi (t+1) = f (ui) =

1 if ui > 0

0 if ui ≤ 0
(5.2)

where Ii is the continuous external input of neuron i, and f () is the activation function of the
network. When used for associative memory applications, the weights remain stable after the
network training is completed. At this point, the network only two variable parameters, which
are updated state and the output of the neurons. Due to the random updating of the neurons,
the model is discrete and random on the network. When the network is updated, if the weight
matrix is symmetric to the non-negative diagonal, the energy function can achieve minimized
value until the system converges to a stable state. When DHNN is designing the connection
weight, the stable state of the system is proposed. At this point, the available weight matrix W

can be obtained through the learned memory of the network. After the learning, the associative
network can be achieved by the network weight calculation of output. For trained M models,
the DHNN can learn depending on Hebb rules.

The association memory process of the Hopfield neural network indicates that patterns mem-
orized in the neural network are stored on the weight matrix, so the training and learning pro-
cesses of the weight matrix on the Hopfield neural network becomes particularly important.
Hopfield neural networks usually use Hebb learning rules to complete the weight training of
neurons. This learning method, proposed by Hebb [289] is the earliest and most famous train-
ing algorithm; it still plays an important role in various neural network models. The Hebb rule
assumes that when two neurons are excited at the same time, the strength of the connection
between them should be strengthened. This rule is consistent with the biological theory of con-
ditioned reflex, which was later confirmed by the neurocyte theory. The Hebb algorithm in the
Hopfield neural network can be simply described as one processing node receiving an input
excitation signal from another processing node, and if both are at a high excitation level, the
weight between processing nodes should be enhanced. Mathematically, the connection weight
of the two nodes will be changed according to the product of the two nodes of excitation levels



CHAPTER 5. HARDWARE-BASED HOPFIELD NEUROMORPHIC COMPUTING 72

and can be described as:
Hebb Learning Rule on the Hopfield Neural Network [290] as follows [291]:

∆Wij = Wij (n+1)−Wij (n) = ηYiXj (5.3)

where Wi j (n) represents the connection weight from node j to node i before the n + 1 adjustment;
Wi j (n + 1) is the node n to node i after the n + 1 adjustment of connection weight; η is the
learning rate parameter; X j is the output of node j and input to node i; Yi is the output of node
i. The objective of using a Hopfield neural network with Hebb Learning method is for a set of
q different input samples Pnxq = [p1, p2, . . . pq]. It is to adjusts the weight matrix W to reach
a group of input samples pk, k = 1, 2, 3, . . . , q as the initial value of the network, the system
can converge to the respective input sample vectors.

5.3 Hardware Design

A specific application based on Neuromorphic computing hardware to implement neural net-
work model uses the physical unit simulating the neurons process, and the communication units
between the neurons to simulate connections of the neural network. Among them, each neuron
and each connection has corresponded to the physical design. The advantage of the hardware im-
plementation is processing speed and easiness of execution to satisfy the real-time requirement.
In addition, appropriate hardware design can further, reduce energy consumption on the system.
Figure 5.2a shows that the overall fall recognition system and data stream processing workflow.
It gives a schematic diagram of neuromorphic computing hardware. The work completed the
Hopfield neural network algorithm based on the design of 25 neuron modules construction, and
its dependence on the associative memory function to finally achieve the fall recognition result
by the sensor signal.

The Hopfield neural network hardware design uses analog circuits composed of resistors,
operational amplifiers and other components to describe the neurons. The objective function is
converted into the energy function of the neural network, and the model of the corresponding
pattern is memorized by the equilibrium point of the network energy function. Hopfield network
as a recurrent neural network that includes feedback connection from output to input. The
designed Hopfield neural network model is shown as in Figure 5.2b.
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Figure 5.2: Hardware architecture for system blocks.
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5.3.1 Neuron’s Hardware Design

The state of neurons expresses the result of the neuromorphic processing information. Neu-
rons are the smallest unit of information processing on the neural network. These neurons are
connected by a rule to form a physiological neuron network system to the brain. Among them,
the strength of the connection between each neuron changes adaptively according to the excita-
tion degree of the external signal. Each neuron presents a state of excitation or inhibition state
with the combined magnitude of the received multiple excitation signals. Excitation state refers
to the change of neurons from relative rest to relative activity, while inhibition state refers to
the change of neurons from relative activity to relative rest. As a result, there are two kinds
of connections between the transmission of information between neurons. Positive connections
stimulate each other, and negative connections inhibit each other.

Figure 5.3: The Hopfield neural network of one Neuron circuit design.

The structure of the discrete Hopfield neural network is a single-layer full feedback network
architecture, and in this work, it used a total of 25 neurons as 5 * 5 network. Each neuron through
the connection weight to receives information from the output of all other neurons. The purpose
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is to make the output of any neuron controlled by all other neurons, which means each neuron
can restrict each other. The essence of associative memory on the discrete Hopfield neural
network is that the memory sample to be stored and represented by a vector. After inputting
the memory sample, the neural network weight is stable on the memory sample after evolution.
When the input of the neural network is a nonlinear memory sample, the output of the network
should be either stable in the memory sample; or it is stable in the nonlinear sample. Therefore,
the output of the neural network should be stable regardless of the external input.

The dynamic differential system of biological neurons on the neural network can be simu-
lated by the operational amplifier to achieve learning and associate function such as the biologi-
cal brain. Therefore, in the Figure 5.2, each group of operational amplifiers and their associated
resistors constitute a model for representing a neuron function. Each neuron has two sets of
inputs, one is a constant bias source signal, and the other is a positive or negative feedback
connection from the output of other operational amplifiers (other neurons).

Figure 5.3 shows the circuit design for one of the neurons, which is a general neuron module
for the neuromorphic computing of the Hopfield neural network. Based on the neurons connect
concept, it includes Neurons signal input module, Weight module and Source fusion module.
There are three circuit model designs all based on sample analog components, which are ampli-
fier and resistor. The Neurons signal input module is designed by 25 amplifiers, each amplifier
as an input port. The Neurons’ signal input module is to link the other neurons’ output, so that
the work is complete in 24 modules to connect with the other 24 neurons (This Hopfield neural
network designed 25 neurons, and each neuron links to each other neurons). The Weight module
is constructed by resistors, and it works for amplification factor control. The Weight module is
designed for neuron connection strength representation, which depends on the resistors to con-
trol the amplifier gain. The corresponding parameters are calculated by Hebb learning when the
neural network is training. For the Source fusion module, it is a summing unit designed by an
amplifier that is additional computing to fuse the bias source and 24 neurons input. Meanwhile,
this module is a data input interface on the Hopfield neural network hardware. The 25 neurons
of the Hopfield neural network can input 5 * 5 matrix data size to processing, which is each
neuron to match one of the matrix dots (Arranged dot by rows to input).

So, one neuron’s design should include 24 amplifiers on the Neurons signal input module
and one amplifier on the Source fusion module, meaning each neuron design has 25 amplifiers.
The whole 25 neurons are 25 * 25 = 625 amplifiers completed neuron network structure. At this
point, the Cadence Pspice hardware simulation chooses the OPA227 amplifier on the library. All
the hardware components’ hyper-parameters has shown in the Table 5.1. As the amplifier of the
Gain–BandWidth(GBW) is a maximum of 8 MHz, which is easy to real-time process the IMU
sensor’s sampling rate for 50Hz. And the system’s total power dissipation is 493.75 uw, which
is lower by more than an order of magnitude for the traditional embedded system (Normally,
embedded system hardware power consumption for 5 -10 watts). Following these output, the
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low power and real-time neuromorphic computing hardware for HAR tasks are completed.

Table 5.1: Amplifier hyper-parameters

Hyper-Parameter Value

1. Wide Supply Range ±2.5 V to ±18 V

2. GBW (Typ) 8 MHz

3. IMU sensor sampling rate 50 Hz

4. Low Noise 3nV/
√

Hz

5. High CMRR 138 dB

6. High Open-loop Gain 160 dB

7. Slew rate (Typ) 2.3 V/µs

8. Operating Power Current 790 uA

9. Voltage Supply 12V

10. Input Bias Voltage 0.001V

11. Input Equivalent Noise 0.2 pA/
√

Hz

12. System Power Dissipation 493.75 uw

Figure 5.4: The equivalent circuit of Hopfield neural network.

In the equivalent circuit design of one neuron in Figure 5.4, the internal membrane potential
of the neuron i is Vi (i = 1, 2, . . . , n without self-position, it is a bias source input point), the
transmission resistance of the cell membrane is Ri, the output potential of the neuron is Vout ,
the external input current is Vbias. The resistance Ri (i = 1, 2, . . . , n) to simulate the synaptic
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properties between the i and j neurons. Among them, fi represents the transfer function of the
neuron i, and defines W = Ri j (i, j = 1, 2, . . . , n) as the weight coefficient matrix of the neural
network. Each operational amplifier simulates the nonlinear characteristics between the input
and output by the neuron through the following calculation [292]:

Vout (t) = fi

(
n

∑
i=1

Vi (t)

)
(5.4)

Figure 5.5: The Hopfield neural network of Neuron Matrix and Weight.

At this point, the function of the amplifier as a summing circuit is to simulate the activation
function of the neural network, and the parallel resistance can adjust the connection strength
between the neurons. In the equivalent circuit calculation of a neuron, which is based on Kirch-
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hoff’s Current Law (KCL), in a lumped circuit, all the node at any moment, it is the algebraic
sum on the identity of the branch currents for all outgoing nodes is zero. The inflow current
and outflow current at the input node of the amplifier is maintained balance to achieves neuron
voltage signal output. The rest 24 neurons can be done in the same manner that is following
by corresponding connection strength. The weight is derived from the matrix value obtained by
training on the Hebb algorithm. Figure 5.5 shows the details about the relationships between the
weight and matrix.

5.4 Evaluation and Results

In this study, the Cadence PSpice has been used for circuit design and hardware simulation,
which is integrated with MATLAB Simulink to complete the system construction and valida-
tion. Following the hardware simulation result, which is can show the hardware performance
information. It is can be used for theoretical analysis of how to complete low-power and real-
time neuromorphic computing hardware. However, hardware simulation tools cannot layout the
circuit design, so the size of the hardware design is unable to known, but it can achieve the size
result for future work on hardware fabrication. Meanwhile, for data analysis, the IMU sensors
captured 5 classes of human activities as a dataset to achieve data classification for fall detec-
tion, which includes Fall, Sit down, Stand up, Under and Walk sensor signals. The neuromorphic
computing of the Hopfield neural network algorithm was used to classify the human fall activity
data as a positive sample and other activities as negative samples to complete fall detection.

5.4.1 Data Preprocessing for Feature Extraction

First, the matrix sample template of human fall activity is achieved by feature extraction com-
puting that is based on data preprocessing for IMU sensor data. There are 9 axis signals acquired
by the IMU Sensors, which is sampling frequency is 50 Hz and capture 5 classes activities for
5–10 s. Figure 5.6a shows the raw IMU signal output to the Fall activity. The project uses a
construction matrix to fuse 9-axis sensor data, and then depend on threshold selection to iden-
tify human fall activity. The processing results are shown in Figure 5.6b. It shows the output
of the human fall signal in the data has a different value with other classes human activities. To
adjust Hopfield Neurons circuits design, a sample template of human fall activity is extracted
from the fused computing results. Due to the symmetry characteristics of the Hopfield neural
network, it flipped the fall signal output to 5 * 5 feature template to facilitate the visualization
of the weight output. The 5 * 5 Fall sample template as shown in Figure 5.6c, which is matched
with 25 neurons matrix on the circuits design. For the hardware design, the Neuron Weight is
calculated by the Hebb Learning algorithm. The 5 * 5 Fall activity feature matrix is applied as
input to the Hebb Learning algorithm to train with Hopfield neural network architecture of 25
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neurons. The trained Weight output is shown in Figure 5.6d, which is shown the neuron con-
nection relationship on the neural network architecture. Finally, setting the weight value into the
Hopfield neural network is taken as circuit parameters to complete hardware design. Algorithm
5.1 describes the main steps of the sensor data feature extraction and binary conversion, where
the first step involves calculating the 9 axes of three sensors data, which is shown in Figure 5.6a.
After the threshold value processing, it achieves a 5 * N binary matrix for which the results
are shown in Figure 5.6 B. The suitable threshold values were obtained through iterative trial
and error steps, so that the fall activity with other data can be accurately classified. Finally, a
sliding 5 * 5 window box decides which 5 * 5 feature map for a fall activity is captured, and it
is illustrated in Figure 5.6 C.

Figure 5.6: The Sensor data converted into Hopfield neural network of sample and weight, (a)
Raw IMU sensor signal output, (b) Sensor data feature extraction and binary conversion, (c) Fall
activity sample matrix of feature map, (d) Hebb learning algorithm output the Hopfield neural
network weight.

5.4.2 Comparison with State-of-the-Art Machine-Learning Algorithm and
Discussion

In the test, saving the Hopfield Neuron’s output feedback signal as a binary matrix (high voltage
level represents Binary value 1, and low voltage level represents Binary value −1), and then us-
ing the cosine distance method [293] the feedback matrix is computed to achieve the confidence
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level and accuracy of the classification. Finally, following the accuracy calculation (True Posi-
tive (TP) + True Negative(TN))/(True Positive (TP) + False Positive(FP) + True Negative(TN) +
False Negative(FN)), the fall activity classification result that has been achieved is 88.9% on the
hardware-based design. Table 5.2 shows comparison results for different algorithms and their
respective platform accuracy. Such as Li et al. [294] worked on the same dataset, and they used
traditional machine-learning algorithms on the MATLAB software-based platform, which is a
good software comparison result with neuromorphic computing for the HAR task. Meanwhile,
there are many machine-learning algorithms on low-power platforms to achieve fall detection.
Based on the ZYNQ hardware of the FPGA platform, Nguyen [295] implements the Gaussian
Mixture Model by digital design, and Garg et al. [296] deploys the Deep Neural Network (DNN)
algorithm through the ARM processor to calculate the sensor data of the fall activity. However,
through comparing accuracy, our implementation is more accurate than their classification. In
addition, comparing training dataset requirements, it can be found that machine learning and
deep learning rely on a large number of samples to learn features. The learning strategy of
neuromorphic computing is more friendly with limited sample datasets. The model template of
the fall sensor signal is obtained by preprocessing the fall feature extraction. Depending on the
Hebb learning method, the associative memory of the sample is realized on the Hopfield neural
network. In this way, only one sample learning is requested on the training and then the fall
activity recognition weight is achieved for the Hopfield neural network.

Algorithm 5.1: Sensor data feature extraction and binary conversion.
1: Initialize matrix M(s, s) to full zero matrices.
2: Load three Sensors data:
3: [Gx, Gy, Gz] = Gyroscope Sensor data Matrix [:1, 2, 3]
4: [Ax, Ay, Az] = Accelerometor Sensor data Matrix [:1, 2, 3]
5: [Mx, My, Mz] = Magnetometor Sensor data Matrix [:1, 2, 3]

Require: :
6: M1(n) = (abs(Gx) + 1) * (abs(Gy)) + 1) * (abs(Gz)) + 1);
7: M2(n) = (abs(Ax)) + 1) * (abs(Ay)) + 1) * (abs(Az)) + 1);
8: M3(n) = (abs(Mx)) + 1) * (abs(My)) + 1) * (abs(Mz)) + 1);
9: M4(n) = (1/2) * (Ax * My * Gz − Gx * My * Az)

10: M5(n) = (1/2) * (Gx * Ay + Ax * My + Mx * Gy − Gx * My − Ax * Gy − Mx * Ay)
11: Binarization and Feature Extraction:
12: Threshold value: t = [16, 24, 32, 40, 48];
13: for i = 0:4 do
14: out[n][i] = (M > t[i]) ? 1 : − 1;
15: Update the Matrix M with the Binarization line by line.
16: return Matrix M(5:N);
17: Sliding window box do M = M(starti:starti + 4, :)
18: end
19: return Matrix M(5:5);
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Table 5.2: Comparison table with different methods and hardware environments

Project Algorithm Environment Training Dataset Accuracy

Our Work
(Hard-
ware
based)

Hopfield
Neuron
design on
analog
circuit

PSpice
(Analog
Design)
+ Matlab
Simulink
(Only Data
Transit) Co-
Simulation

1 Sensor sample to generate a
standard pattern for each activity

88.9%

Our Work
(Software
based)

Hopfield
Neural
Network

Matlab
(Code)

94.4%

Li et al

[294]
Support
Vector
Machine
(SVM)

Matlab
(Code)

Using a 70% Sensor dataset as
training data (20 volunteers * 3
repetitions * 70% = 42 training
samples for each activity)

79.83%

Artificial
Neural
Network
(ANN)

Using a 70% Radar dataset as
training data (20 volunteers * 3
repetitions * 70% = 42 training
samples for each activity)

85.53%

Nguyen
[295]

Gaussian
Mixture
Model-
Hidden
Markov
Model
(GMM-
HMM)

FPGA (Dig-
ital Design)

DUT-HBU dataset is used and all
video data are compressed in avi
format and captured by a single
camera in a small room with the
changeable conditions

87.3%

Garg et al

[296]
Deep
Neural
Network

ARM (Ten-
sorflow)

A sample of data points from
2.5 seconds before and after the
spike, making a total of 200 * 5 =
1000 discrete samples [296]

86.2%

Furthermore, our proposed project also compares the software-based (MATLAB) output
with Hardware-based approaches (PSpice-Matlab Simulink co-simulation results). For the hard-
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ware circuit design, slight differences can occur between analog signal transmission, which is
different from the software environment and its respective ideal calculation. However, Hop-
field neural network can ignore part of analog noise, which is based on associative memory
function to restore noised distortion analog signals. It is depending on the signal associative
recovery effect on neuromorphic computing. Compared with conventional machine-learning al-
gorithms, better outcomes are obtained with neuromorphic computation after careful extraction
of the function and configuration of the model models. Both software-based and hardware-
based HAR task Hopfield neural network results are good than other related work. Especially,
Li et al work with the same dataset, but the machine learning algorithms’ accuracy are low than
the neuromorphic computing. However, it prevents the cycle of internal loss and noise effects
on the analog circuit, relying on the binary approximation to create the neuromorphic comput-
ing algorithm. For the complexity and precision requirements of analog and digital conversion
equipment, neuromorphic computing is closely integrated with the analog circuit’s performance,
which enables systems to reduce the impact on the accuracy.

5.5 Summary

In this chapter, a neuromorphic computing hardware design both in the software and hardware
domains with a sensor data fusion method is proposed. It is co-designed especially for health
care applications. where it uses neural network hardware to achieve low-power and real-time
operation for multiple sensors data in an embedded system. The neurons are stimulated by
amplifiers, resistors and other components, which are used for processing inhibition and acti-
vation signals on the neurons. The neural network is then constructed by combining neurons.
By designing the front-end feature extraction algorithm, the multiple sensor data fusion results
are achieved, which are then passed to the hardware-based neural network to finally generate
the recognition result. This proposed hardware and software co-design solution can be used for
smart wearable devices in healthcare applications and can perform local real-time data process-
ing, which does not require the additional cloud computing processes for data interaction with
sensors. The low-power and real-time hardware can simulate neuromorphic computing with the
help of which machine learning can be applied for data processing. Results show that through
simulations, the hardware-based neuromorphic computing of the fall data reached an accuracy
of 88.9% which is at least 1.6% greater than the state-of-the-art algorithms, such as SVM, ANN
and DNN. The neuromorphic computing hardware design proposed in this chapter is a simple,
fast and reliable solution. In the design, a straightforward circuit design is used to control the
weight setting from the Hopfield neural network which is based on the resistance to vary the am-
plification factor, which essentially maximizes the reusability and flexibility of the circuit design.
The proposed design can reduce the design time and help avoid separate debugging processes
of the amplifier to easily adjust the weight setting. Following hardware simulation parameter
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setting, and depending on the theoretical analysis, the low power and real-time neuromorphic
computing hardware for HAR tasks are completed. I believe that the design has the potential to
exploit the neuromorphic computing framework for data fusion in healthcare applications.



Chapter 6

Human Activity Recognition and Case
Study of Benchmark NodeNS Sensor
Datasets

This Chapter provides a new benchmark dataset for 3D point cloud classification in which the
manually labelled human activity data exceeds 100 point clouds per frame and is capable of
meeting the training needs for data-intensive learning approaches. In this study, a case study
is considered for evaluating the benchmark using a deep LSTM neural network, which demon-
strated a significant performance improvement over the state-of-the-art human activity recog-
nition area. To date, numerous types of collection devices have been used in the recognition
of human activities. However, due to the scarcity of training data, the task of 3D point cloud
labelling has not yet made significant progress. To overcome this challenge, it is aimed to de-
duce this data requirements gap, allowing deep learning methods to reach their full potential in
3D point cloud tasks. The dataset used for this process is comprised of dense point clouds ac-
quired with the static ground sensor by the NodeNs company supported MIMO radar (NodeNs
ZERO 60 GHz IQ radar) [297]. It contains multiple types of human being data ranging from
one to four individuals and encompasses a range of human action scenarios, including standing,
sitting, picking up, falling, and walking. Furthermore, it also investigated sensor locations and
requirements for human being data collection that is from a single subject to multiple subjects,
as well as identified and analysed various sensing devices and applications that collect activity
data. In this regard, a thorough study is conducted on several benchmark datasets, examining
sensors, characteristics, activity categories, and other data. Finally, it compares and analyses
the activity recognition methods used in several benchmark datasets based on the current study.
Unlike existing devices, the new NodeNs sensor provides more accessible and straightforward
point cloud data to capture human movement information. Depending on an advanced detection
algorithm to process point cloud data it achieved more than 95% accuracy on the benchmark
dataset.

84
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6.1 Introduction

Human Activity Recognition (HAR) using low power embedded systems has recently made
significant progress. It has attracted increasing attention in many research areas, including ma-
chine learning, pattern recognition, context awareness and human body perception. In the past
few years, the HAR field has been one of the most prominent topics in much research. It aims
to understand a person’s daily behaviour by analysing their movements and their surrounding
living environment [298]. The information is gathered from different hardware embedded in
smartphones, wearables and fixed position capture devices [299].

In the process of data collection, researchers have to face many difficulties such as tech-
nical challenges, subjects’ privacy issues [300], and organizational permissions [301]. Due to
these difficulties, few datasets are currently available in sensor-based activity recognition. Some
well-known repositories have collected sensor benchmark datasets related to human movements,
which are described in detail below, including focused area and data collection devices:

• UCI Machine Learning Repository [302]: Datasets hosted by the University of Califor-
nia Irvine Machine Learning Repository, in CSV format. The dataset in this repository
contains information about attribute types, missing values, target domains, etc. The main
advantage is the flexibility of data donation and the diversity of data. It contains smart
phones and wearable sensor-based activity recognition datasets. Such as the Single Chest
benchmark dataset [303]. It is continuous data collected by wearing a 52Hz accelerometer
on the chest, which includes climbing stairs, standing, talking, walking and working.

• Datasets based on wearable sensors: Wearable devices are designed with flexibility in
mind for the customer’s daily use. Lightweight, stylish and comfortable wearables with
embedded sensors for activity monitoring have been used in multiple datasets. The REAL-
DISP benchmark dataset [304] uses wearable devices including Accelerometers, Gyro-
scopes and Magnetic sensors to collect continuous movement signals from the human
body.

• In medical activity related datasets: Medical activity identification has many applications
in remote monitoring of patients, pregnant women and elderly people. Among them,
the medical activity-related benchmark dataset Nursing Activity [305] uses iPod’s Ac-
celerometer for monitoring nursing activities in the hospital.

• Dataset based on smartphone sensors: Nowadays, smartphones have become the daily
companions of most people. Therefore, it is easy to monitor user activity data by em-
bedded sensor from smartphones. Due to the availability of sensors and cost-effective
methods, activity recognition based on smartphone sensors has attracted the interest of
many researchers. The Smart Devices benchmark dataset [306] uses the Accelerometer,
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Figure 6.1: Approaches Employed for Human Activity Recognition.

Gyroscope, EOG, and Pressure sensor of Smartphone and Smartwatch to complete Human
behaviour recognition.

There are currently four main types of technologies widely used to perform HAR: Wear-
able Sensors, Radar, Radio Frequency (RF) signals, and Cameras. In order to achieve the goal
of human activity recognition, there is a need for systems with perceptual capabilities [204].
Considering cost constraints, the two most common methods used for this purpose are based on
sensors and radar to collect activity data. Their principles are different, radar mainly obtains the
distance, speed and angle of the object by sending electromagnetic waves and receiving echoes.
It can realise object detection with higher precision through the Doppler frequency shift prin-
ciple [307]. Moreover, it is not constrained by power, and the hardware performance can be
better released. Sensors are based on wearable devices to collect physical quantities of human
movements, such as angular velocity [308], linear velocity relative to the ground [309], accel-
eration [310], vibration [311] and direction based on contact [312]. It is low cost, easy to use,
and less limited by usage scenarios. It is now necessary hardware for mobile portable devices
to realise motion recognition. Depending on these research points, the Figure 6.1 draws the
categorises of activity recognition, and points out the environmental sensor-based method is our
focused research work. The proposed benchmark dataset is based on the new NodeNs ZERO 60
GHz IQ sensor [297] of MIMO radar that provides more accessible and straightforward point
cloud data to capture human movement information. Point cloud data refers to a set of vectors
with geometric positions in a spatial coordinates system. It is sampling points that scan objects
and record them as points data, each of which contains three-dimensional coordinates, and the
number of points is large and dense which means point cloud data.
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The main contributions of this paper are as follows:
• We construct a large-scale point cloud benchmark dataset for HAR. It is a publicly avail-

able, high-resolution dataset that contains more classes and more subjects than the current HAR
datasets.

• In contrast to previous research, we explored state-of-the-art methods in the domains of the
HAR field. We have discussed the technology from traditional handcrafted features to recently
developed deep learning.

• We evaluate the advanced detection algorithm to process this benchmark point cloud
dataset under consistent experimental conditions. This provides the literature with extensive
baseline results for future research on HAR tasks.

In this chapter, Section 6.1 has a brief introduction to human activity recognition systems.
Section 6.2 describes the raw-sensor device’s human activities and data collection method. Fur-
thermore, the work has provided a case study and evaluated results in Section 6.3, which shows
the benchmark challenges in activity recognition. Finally, Section 6.4 discussed the HAR bench-
mark datasets and compared some related works to prove our contributions, and Section 6.5
indicate directions for future research.

6.2 Materials and Methods

For daily activities of humans, the complexity of the actions may be different, and human move-
ments are classified according to various situations, including the number of activities [313], the
types of activities [314], data collection energy consumption [315], and significance [316].

Figure 6.2 shows, human activities can be divided into three basic types: static activi-
ties [317], dynamic activities [318] and activities with posture transitions [301]. Static activities
generally refer to activities, such as Sitting and Standing, which basically do not involve human
movement. Compared with static activities, dynamic activities have a motion trend and it rep-
resents more intense environmental interactions. For example, walking, falling and other short-
lived behaviours, which are the interaction between human body posture and behaviour [298]. It
is usually some high-frequency behaviours of the human being in daily life. Activities with pos-
ture transition are combinatorial behaviours that are aggregated through multiple basic activities,
and multiple users may participate during the behaviour [208].

Static activities (such as Sit and Stand, etc.) are more accessible to recognise than regular
activities (Walking, Picking up some things, etc.). However, highly similar posture transitions,
such as Sitting and Standing, will cause great complexity in the case of separation in that the
activity feature space has obvious overlap. In the static activities of Sit and Stand, which means
completed action without movements, and dynamic activities or posture transitions for Sitting
down and Standing up which means action in progress, it is continuous movement. In addition,
dynamic activities (standing up and sitting down) with a high degree of similarity in the activity
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Figure 6.2: Different Types of Human Activities.

feature space are also difficult to distinguish due to related activity patterns.
In most cases, the correspondence between the activities performed is not similar during

the entire activity period, which makes the HAR task more difficult. For example, sitting and
standing are very similar, so it is hard to tell them differently from frame data. However, they
are remarkable gaps from walking and are easy to separate from activities data at this point.
Therefore, transition activities can be further divided into four types: static to static posture
transition (Stand to Sit), static to dynamic (Stand to Walk), and dynamic to static (Walk to
Stand) and dynamic to dynamic (Walk to Fall).

Several variations have been built that represent various difficulty levels of the human ac-
tivities dataset based on the selected activity objects. This allows researchers to explore the
robustness of existing classification methods on benchmark datasets in more extreme real-world
scenarios.

6.2.1 Proposed Benchmark Dataset Overview

The HAR data in this work that is collected at the University of Glasgow with a group of 4
volunteers. A concept figure 6.3 represents the activities recording environment and equipment
arrangement plan. Figure 6.3a shows the NodeNs sensor has been fixed setting at the table and
keeps 2 meters to acquire for human beings signal. There are 15 different sequences of contin-
uous activities that were designed, which are from a single subject to multi-subjects (maximum
4 subjects). All the participants were asked to simulate the designed daily activities in the setup
zone in front of the NodeNs sensors, approximately 3m × 3m, which the experimental setup
zone has been shown in figure 6.3b. The dataset was divided into 4 classes, that is, a total of
1011 data samples/files, each represents a particular number of subjects and activities. The main
data folder is subdivided into 15 folders corresponding to the 15 classes. The detail about the
benchmark dataset are shown in Table 6.1.
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Table 6.1: Benchmark Dataset details about the Classes and Samples
Number
of Sub-
jects

Activity Number of Subjects
and Corresponding
Activity

Description Number
of sam-
ples

1 Sit down,
Stand up,
Walking,
Fall, Pick
up.

• P1 (All activities) • One subject performing each Action
single

101 /
Activity
class * 5
= 505

2 • Sit down
+ Stand up,
• Sit down
+ Pick up, •
Stand up +
Pick up

• P2(Sit) +
P1(Stand), • P1(Sit)
+ P2(Stand), •
P2(Sit) + P1 (Pick),
• P1(Sit) + P2 (Pick)

• One subject performing the action of
"Sitting" and one subject performing the
action of "Standing", at the same time.
• One subject performing the action of
"Sitting" and one subject performing the
action of "Pick up a box", at the same
time. • One subject performing the ac-
tion of "Standing" and one subject per-
forming the action of "Pick up a box", at
the same time

40 + 40 +
39 = 119

3 • Sit down
+ Stand up
+ Pick up,
• Stand up
+ Pick up
+ Sit down,
• Pick up +
Sit down +
Stand up.

• P3(Sit) + P2(Stand)
+ P1(Pick), • P1(Sit)
+ P3(Stand) +
P2(Pick), • P2(Sit)
+ P1(Stand) +
P3(Pick), • P1(Sit)
+ P3(Stand) +
P2(Pick), • P3(Sit)
+ P2(Stand) +
P1(Pick), • P2(Sit)
+ P1(Stand) +
P3(Pick), • P3(Sit) +
P2(Stand) + P1(Pick)

• One subject performing the action of
"Sitting", one subject performing the ac-
tion of "Standing" and one subject per-
forming the action of "Pick up a box", at
the same time. • One subject perform-
ing the action of "Standing", one sub-
ject performing the action of "Pick up a
box" and one subject performing the ac-
tion of "Sitting", at the same time. • One
subject performing the action of "Pick
up a box", one subject performing the
action of "Sitting" and one subject per-
forming the action of "Standing", at the
same time

62 + 93 +
62 = 217

4 • Sit down
+ Stand up
+ Pick up
+Sit down,
• Sit down
+Sit down +
Stand up +
Pick up, •
Pick up +
Sit down +
Sit down +
Stand up, •
Stand up +
Pick up +
Sit down +
Sit down.

• P3(Sit) + P2(Stand)
+ P4(Pick) + P1(Sit),
• P1(Sit) + P3(Stand)
+ P2(Pick) + P4(Sit),
• P4(Sit) + P1(Stand)
+ P3(Pick) + P2(Sit),
• P4(Sit) + P1(Stand)
+ P2(Pick) + P3(Sit),
• P3(Sit) + P2(Sit)
+ P4(Stand) +
P1(Pick), • P3(Pick)
+ P2(Sit) + P4(Sit)
+ P1(Pick), •
P3(Pick) + P2(Sit) +
P4(Sit) + P1(Pick), •
P3(Stand) + P2(Pick)
+ P4(Sit) + P1(Sit), •
P1(Stand) + P2(Pick)
+ P3(Sit) + P4(Sit)

• One subjects performing the action of
"Sitting", one subject performing the ac-
tion of "Standing", one subject perform-
ing the action of "Pick up a box" and one
subjects performing the action of "Sit-
ting", at the same time. • One subjects
performing the action of "Sitting", one
subject performing the action of "Sit-
ting", one subject performing the action
of "Standing" and one subjects perform-
ing the action of "Pick up a box", at
the same time. • One subjects perform-
ing the action of "Pick up a box", one
subject performing the action of "Sit-
ting", one subject performing the action
of "Sitting" and one subjects perform-
ing the action of "Standing", at the same
time. • One subjects performing the ac-
tion of "Standing", one subject perform-
ing the action of "Pick up a box", one
subject performing the action of "Sit-
ting" and one subjects performing the
action of "Sitting", at the same time

30 + 30 +
80 + 30 =
170
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Figure 6.3: Experimental Setup Data Collection.

6.3 Case Study

For a clearer picture of the maturity of the point cloud-based HAR task to the designed bench-
mark dataset, this work uses representative methods to benchmark test. The goal is to identify
the contributions and limitations of the current work on the HAR task. In this case study, the first
is data preprocessing to the point cloud data through DBSCAN (Density-Based Spatial Cluster-
ing of Applications with Noise) for clustering computing and then training and testing the HAR
task on the LSTM (Long Short-Term Memory) neural network for classification to demonstrate
the functionality of the benchmark dataset. Meanwhile, to prove that training on data sets with
accurate attributes can help improve classification performance. The evaluation of LSTM is
based on the labelled dataset are randomly divided into two subsets: training set (80%) and test
set (20%), and make sure that the training set and test set contain objects from different scenes.
The workflow is shown in the figure 6.4.

6.3.1 Point Cloud Data Pre-processing

Point cloud data analysis often needs to segment the point cloud data and extract the region of
interest. The methods of point cloud segmentation include model fitting, graph-based comput-
ing, deep learning, and clustering is popularly deployed. For 3D point cloud data, its feature
attributes are usually used for clustering, and feature extraction or transformation is performed
for each point space or local space. In this way, various attributes can be obtained, such as
normal vector, density, distance, elevation, intensity, which segments point clouds with different
attributes. For example, for density clustering, a cluster is defined as the most extensive set of



CHAPTER 6. BENCHMARK NODENS SENSOR DATASETS 91

Figure 6.4: Experimental Workflow for HAR Task.

density-connected points, dividing regions with high density into clusters and finding clusters of
arbitrary shape in the spatial database of noise.

At this point, DBSCAN is a density-based clustering algorithm, which generally assumes
that the tightness of the sample distribution can determine the point cloud categories. For the
same category samples, the points between them are closely connected. Therefore, there must
be points of the same category around the sample points in this category. So, it is a density-based
spatial clustering calculation. There are advantages of anti-noise, no need to specify the number
of categories and clustering of arbitrary shapes in spatial data, which is suitable for clustering
point cloud data.

The core of the DBSCAN algorithm is to find the most extensive set of densely connected
points. It is based on two parameters to describe the tightness of the sample. One is the radius of
the neighbourhood, which is used to express the neighbourhood distance threshold of the current
point; The second is the number of points, which is used to represent the minimum number of
data points in the neighbourhood. The DBSCAN algorithm 6.1 flow is shown in pseudo-code.

The algorithm first traverses the point cloud data for point by point. If the point is not a core
point, it is considered as a noise point and ignored, and the noise point may be classified into
clusters by the core point later. If it is a core point, create a new cluster, and all neighbourhood
point is added to the cluster. The core point in the neighbourhood point is added to the cluster
recursively. Following this way, until no point can be added to the cluster, and then start working
for new points to establish a new cluster.

In general, if the data set is dense and not convex set, then using the DBSCAN algorithm will
be better than other clustering algorithms, such as K-Means. The K-Means clustering algorithm
can only deal with spherical clusters, which is solid mass clusters. This is a limitation of the
algorithm based on calculating the average distance to cluster. If the data set is not dense, it
is not recommended to use DBSCAN for clustering. Compared with the traditional K-Means
algorithm, the most significant difference of DBSCAN is that there is no need to input the
number of categories K. Meanwhile, DBSCAN’s most significant advantage is finding clusters
of arbitrary shapes rather than K-Means, which is generally only used for convex sample set
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Algorithm 6.1: DBSCAN Algorithm
1: Input: D is a data set containing n objects, ε is a Radius parameter, M is a Neighborhood

density threshold.
2: Output: A set of of density-based clusters

Require: :
3: Initial Dataframe to Zero, and then load data D as Dataframe in the algorithm
4: Setting ε: Radius parameter to 0.4
5: Setting M: Neighborhood density threshold to 1
6: Mark all objects as unvisited
7: while Objects marked unvisited do
8: Randomly select an unvisited object p:
9: Mark p as visited

10: if There are at least M objects in the ε-neighborhood of p then
11: Create a new cluster C, and then add p to C
12: Let N as p’s ε-neighborhood for the set of objects.
13: for Each point p‘ in N do
14: if p‘ is unvisited then
15: Mark p‘ as unvisited;
16: if The ε-neighborhood of p‘ has at least M points then
17: Add these points to N
18: end if
19: if p‘ is still not a member of any cluster then
20: add p‘ to C:
21: end if
22: end if
23: end for
24: Output C:
25: else Mark p‘ as noise
26: end if
27: end while

clustering. Finally, the DBSCAN algorithm can also find outliers while clustering, similar to the
BIRCH clustering algorithm.

6.3.2 Human Activity Recognition

As the RNN (Recurrent Neural Network) has the problem of gradient explosion and gradient
disappearance in dealing with nonlinear time problems, a temporal recursive neural network
LSTM is widely used in time series data. Due to the advantage of the network structure, it can
process and predict highly time-dependent and strongly coupled events.

Traditional neural networks are affected by short-term memory. If the time-series data is
too long, it will be difficult to transfer information from the earlier time step to the later time
step. For time-series data, RNN may miss important information from the start. Because during
backpropagation, RNN will face the problem of gradient disappearance. The gradient is used to
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Figure 6.5: Confusion Matrices for single subject to multiple subjects, A is for single subject of
5 activities classification results, B is for two subjects of 3 activities, C is for three subjects of 3
activities and D is for four subjects of 4 activities.

update the weight value of neural networks, and the problem of gradient disappearance is that
the gradient decreases as the gradient spreads over time. If the gradient becomes very small, the
learning cannot be continued.

Compared with the classical method, the LSTM using the Long Short-Term memory unit
can directly connect the feature data of DBSCAN’s pre-processing data, input it into the neural
network processing, and model the data properly. Diversified with the hidden state of the original
RNN, LSTM adds a cell state. For the human being point cloud data after DBSCAN clustering,
it is the time series structure, and the data is divided into t parts and fed to LSTM. Finally, the
LSTM output the classified result about the HAR.

6.3.3 Evaluation and Results

Evaluate the LSTM algorithm training and testing performance after DBSCAN feature extrac-
tion on point cloud data. Figure 6.5 illustrates confusion matrices from single subject to multiple
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subjects. Figure 6.5.A is for single subject of 5 activities classification results that is for Fall,
Pickup, sit down, stand up and walk, and the accuracy is 95.75%. Figure 6.5.B is for two sub-
jects of 3 activities, which including Sit down + Stand up, Sit down + Pick up and Stand up +
Pick up, the accuracy is 97.59%. Figure 6.5.C is for three subjects of 3 activities, it contains Sit
down + Stand up + Pick up, Stand up + Pick up + Sit down and Pick up + Sit down + Stand up,
the accuracy is for 98.01%. Figure 6.5.D is for four subjects of 4 activities, there is arrangement
and combination from sit down, stand up and pick up. The activities sequence are Sit down +
Stand up + Pick up +Sit down, Sit down +Sit down + Stand up + Pick up, Pick up + Sit down
+ Sit down + Stand up and Stand up + Pick up + Sit down + Sit down, which is accuracy for
96.90%. This result reflect the performance evaluation of popular LSTM algorithms in activity
recognition task.

6.4 Discussion

In this paper, the focus has been on processing of point cloud data for human movement classi-
fication. This is largely motivated by the prominence of HAR datasets, which have been greatly
expanding and improving in recent years. Recent work in this area, and corresponding bench-
mark datasets, have been discussed. Targeting point cloud data in the HAR field, the early
ideas were developed by deep learning and extension of image processing concepts. For exam-
ple, multiple view images [319] or convolutional calculations on 3D voxel grids [320] for point
cloud data processing. With processing improvements, convolution operations evolved from 2D
convolution kernels to 3D convolution kernels on the neural network. However, running con-
volutional calculations on point cloud data is a complicated matter. The main difficulty stems
from the cat that the point cloud data does not clearly define the point order for performing
convolution calculations [321]. Qi et al [322] solved this problem by using symmetric functions
with constant order of points, and using it to learn the global characteristics of point cloud data.
Alternatively, some other methods are proposed to learn local features from convolution [323],
and algorithms such as autoencoders are used to remedy the defects [324]. Further research uses
data fusion methods, based on point cloud data and multi-view projection data to learn features
jointly [325]. Meanwhile, Han demonstrated serializing the point cloud processing and views to
analyse data [326]. Finally, some studies directly use the unsupervised learning method [327] to
complete the HAR task.

Here, the work has conducted a comparative analysis of some HAR benchmark datasets
shown in Table 6.2. For example, Karantonis et al [328] designed a benchmark dataset that
includes 12 daily activities collected by volunteers’ waist accelerometer data.It uses embedded
intelligence and a real-time classification system on the wearable unit’s board that provides
the most significant signal processing. On their benchmark dataset, the HAR task achieved
an overall accuracy of 90.8%, the recognition accuracy of the posture direction was 94.1%,
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and the possible fall detection accuracy was 95.6%. On the other hand, in Hanai et al.’s work
[329], they proposed a benchmark dataset based on 1D Haar-like filtering computing. It uses
this feature extraction technology that only requires a lower amount of calculation. Moreover,
compared with direct raw data processing, the proposed method achieved a HAR accuracy of
93.91%. For Hassan et al [237], the point cloud data is further processed by kernel principal
component analysis and linear discriminant analysis, making them more robust on HAR feature
extraction. Finally, they use the Deep Belief Network (DBN) algorithm to train the extracted
features. The accuracy rate is 89.61%, which is better than typical multi-class support vector
machines with 82.02% and artificial neural networks of 65.31%. On the benchmark dataset
designed by Machado et al [330], the unsupervised machine learning method based on the K-
Means clustering algorithm helps the human activities achieve the 88.57% recognise accuracy.

Table 6.2: Comparison table with different benchmark dataset and environments

Dataset Subjects Activities Device Data Format Accuracy

Our Pro-
posed
Work

Single Subject 5

NodeNs Sensor Point Cloud

95.75%

Multi Subjects
for Two

3 97.59%

Multi Subjects
for Three

3 98.01%

Multi Subjects
for Four

4 96.90%

Karantonis
et al [328]

Single Subject 6 Wearable Ac-
celerometer
Sensor

Acceleration
signal

90.8%

Hanai et

al [329]
Single Subject 5 Wireless Ac-

celerometer
Sensor

1D Haar-like
biaxial filtering
data

93.91%

Hassan et

al [237]
Single Subject 4(12) Smartphone Acceleration

and Gyroscopes
signal

89.61%

Machado
et al [330]

Single Subject 7 Accelerometer
Sensor

Body Accelera-
tion and Gravi-
tational Acceler-
ation

88.57%
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Before the work, there are some real-world human being scanned datasets released [306].
However, most of them are small in scale, which usually with thousands of parameters for
data classification tasks are not suitable for training on deep learning networks. Moreover, the
performance of these methods is limited when there is a mixture of static and dynamic activity in
the aforementioned benchmark dataset. After comprehensive consideration, this work proposes
a new point cloud benchmark dataset to help the deep learning algorithm applied by the HAR
task for training and increasing recognition accuracy. All human beings are sampled by point
cloud data format through accurate scanning of human movements. It is different from existing
HAR datasets based on Lidar data collection. Our quantitative evaluations indicate that the
proposed benchmark dataset categorising real-world human motion data is challenging. The
benchmark’s most advanced detection algorithm (DBSCAN+LSTM) achieved more than 95%
accuracy on our dataset.

6.5 Summary

With the growing development and technological innovation in the sensor industry, human ac-
tivity identification has become a popular application in many developing computing fields. The
work, on the other hand, has revisited a state-of-the-art point cloud dataset of human movements,
thanks to the rise of the point cloud data format. In most situations, however, researchers are
unable to obtain an appropriate benchmark dataset to finish the algorithm training. As a result, it
advocated using the new NodeNs sensor’s human point cloud benchmark dataset to complete the
HAR task using a comprehensive analysis of the previous activity recognition dataset. Depend-
ing on an advanced detection algorithm, which is based on DBSCAN for clustering NodeNs’s
point cloud data and LSTM neural network for activity classification. Greater than 95% accuracy
is achieved when classifying from a single subject to multiple subjects based on an advanced de-
tection algorithm. The results shows that it is more suitable for deep learning algorithm training
than traditional sensor data format and can gather point cloud data more efficiently than Lidar
devices. In comparison to the current benchmark dataset, the suggested dataset is significant
for realistic issues and has higher detection performance accuracy. Meanwhile, the case stud-
ies in the offered benchmark dataset can also provide a better comparison and insight into the
benefits and challenges of various classification approaches for HAR processing point clouds.
In future research work, hardware resource consumption can be considered, including Memory,
CPU, number of sensors, and battery usage. In addition, the most prevalent trade-offs between
recognition accuracy, precision, and resource usage should be investigated further.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The main contribution of this thesis is to propose neuromorphic computing for the data fusion
framework of multi-sensing signal, and then achieve the algorithm hardware design to complete
HAR tasks. It is a software and hardware co-design to achieve health care applications to suitable
for a different types of human movement data acquisition devices. It can use neural network
hardware to low power and real-time process multiple sensors data in an embedded system.
The neurons are stimulated by amplifiers, resistors and other components, which to processing
inhibition and activation signals on the neurons. And then, the neural network is constructed
by combining neurons. The multiple sensor data fusion results are achieved by designing the
front-end feature extraction algorithm, and passing it into the hardware-based neural network
to output the recognition result to complete the health care application finally. This proposed
hardware and software co-design solution can be used for smart wearable devices to perform
local real-time data processing, which does not require additional cloud computing processes for
data interaction with sensors. The significance of this thesis is to design a low-power and real-
time hardware to simulate neuromorphic computing, which to helping machine learning of data
processing to go beyond relying on the software environment. This neuromorphic computing
hardware design is a simple, fast and reliable solution. It can build the data fusion neuromorphic
computing system flexibly to health care applications. The proposed neuromorphic computing
data fusion framework has been successfully validated by the human activities classification
results of different human being datasets collected by the CSI laboratory at the University of
Glasgow.

This thesis provides a comprehensive overview to review the design process and hardware
implementation ideas of HNN neuromorphic computing, and discusses the characteristics of
different algorithms (neuromorphic computing, machine learning and neural network) in the
field of data processing. As well as the realization of the neuromorphic computing recognition
function of case studies and research for related fields of work that gives feasible workflow.

97
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The thesis explores the robustness and computational process of neuromorphic computing
for classifying human activities and movements data. Compared with HAR tasks based on tradi-
tional machine learning and deep neural network, the use of HNN neuromorphic computing has
significant advantages in limited datasets. Because traditional algorithms have a huge demand
for training samples, there are high-precision results often require many learning costs. HNN
algorithm can use the associative memory function to complete the learning of the samples, and
only need one-shot learning to obtain the memory weights of the samples. As a result, it can
provide higher precision performance than deep learning on limited datasets.

This thesis starts with a single human activity acquisition device, and researches the wear-
able IMU sensor to measure the acceleration, angular velocity and magnetic field strength of
an individual body part (wrist) to obtain the recognition of human movement by neuromorphic
computing. At this point, it only works for a single acquisition device, but the IMU device
included has three 3-axis sensors. There are sensor data preprocessed by euler angle and quater-
nion calculation. Then, the three sensor data are fused by the SVD algorithm to complete the
preliminary neuromorphic computing of data fusion for the HAR task. This method is verified
on the human motion dataset captured by the IMU sensor, and the recognition accuracy of 96.3%
is obtained.

The neuromorphic computing data fusion framework is improved and optimized by further
adding human movement acquisition devices, including USRP based on RF sensor and Radar
with fixed signal transmitting position. They are different from dynamic physical data of the
human body represented by wearable sensors. Radar and USRP data can be represented envi-
ronment information in 3D space, including relatively static physical data of the object’s physical
distance, time, and object radial velocity based on the Doppler effect. At this time, the thesis
begins to think about how to signal process and make trade-offs with multiple devices. Further-
more, it completes the attention mechanism of neural networks on neuromorphic computing to
achieve more efficient learning effects. Finally, a flexible neuromorphic computing framework
of multi-device signal data fusion is achieved, and achieve more accurate recognition results
than a single device. With the increase of data types and acquisition devices, the algorithm’s
accuracy has also been improved. Compared with the previous single IMU sensor data, the
accuracy of the multi-hardware data fusion framework has reached 98.98%.

In addition to combining IMU, Radar and RF sensors in the framework as the data fusion
method, this thesis also introduces the implementation of HNN neuromorphic computing in
hardware design in detail. Some simple hardware components such as amplifiers and summers
are used to flexible build neurons, and then structure the neural network architecture of HNN.
According to the preprocessed feature matrix, the switching of recognition samples can be effi-
ciently completed, which is a step forward compared to the previous inflexible hardware design
research of neuromorphic computing. Under the test of hardware simulation, the training and
testing of the HNN algorithm through electrical signals on the input and output, it still achieved
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an accuracy of 88.9%. Although the results are not as good as the software-only environment,
it helps neuromorphic computing obtain hardware acceleration effects. Due to the resource uti-
lization of neuromorphic computing being almost 80% in the software environment, which is
difficult to real-time processing the HAR tasks.

Moreover, this thesis also introduces how to work on the benchmark dataset of human ac-
tivities. Through the study of human activities data, the definition of different types of human
movements is completed, and various difficulties of human activities are evaluated. It collected
and sorted the point cloud human being data by the new NodeNS sensor, and then packaged it
into a standard benchmark HAR dataset.

7.2 Future Work

Although the proposed data fusion framework based on HNN neuromorphic computing shows a
significant improvement in classification accuracy compared with traditional machine learning.
It is still possible to further improve the system performance. The most critical work in the future
is further to advance the completion of the HNN hardware design, and ultimately to achieve the
verification and tapeout as the neuromorphic hardware chip.

From the design concept, neuromorphic computing has a hardware-friendly advantage. How-
ever, software simulation works with neuromorphic computing at this stage, which takes up
most of the hardware resources utilization. In relative terms, traditional artificial intelligence
algorithms are more suitable on the software simulation end. The hardware of neuromorphic
computing is based on ASIC, and a part of worked on the FPGA; only the hardware as above-
mentioned can reflect its advantages. A more comprehensive range of applications by tradi-
tional artificial intelligence algorithms that it can work on general-purpose computing chips.
Therefore, once the hardware design of neuromorphic computing is completed, its advantages
suddenly manifest. There are no requirements for Memory, Cache and BUS. The memory-
computing integrated architecture makes the hardware design less resource-intensive, and PPA
(Performance, Power, Area) is better. At this point, the modular design of neurons is more
flexible to structure the network architecture. The hardware imitates the working principle of
the human brain, using neurons and synapses to replace the traditional von-Neumann architec-
ture, enabling the chip to perform asynchronous, parallel, low-power and distributed processing
information. It has the ability to perceive, recognize and learn independently.

For neuromorphic computing, HNN as an associative memory algorithm is hardware-friendly
and implemented with only simple circuits by amplifier and summer. The algorithm can be up-
dated to the latest Spiking Neural Network(SNN) algorithm in the future. It is recognized as the
third generation of neural networks developed after the current MLP-based second-generation
neural networks (ANN). However, its hardware design is more complicated and mainly involves
neurons’ synapses. The signal processing can simulate the changes in synaptic connections be-
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tween neurons, and it is a neural model that focuses more on biological interpretation. Other
points need to be further optimized for the storage-to-capacity ratio in neuromorphic computing.
For example, the current HNN neuromorphic computing adopts the traditional Hebb learning
method. As a result, only the memory capacity is approximately 0.14N (N is Neurons) can
be achieved. Nevertheless, a higher storage-to-capacity ratio can be achieved by optimizing
the learning methods, such as using pseudo inverse matrix, non-monotonic continuous neurons
and polynomial interaction function. These allow neuromorphic computing neurons to perform
more associative memory functions.

For the data fusion part, the current framework has adopted TopK as an attention mecha-
nism for feature selection. In the case of large-scale feature sets, the TopK calculation can be
optimized to speed up feature sorting and help the framework to obtain the required feature ma-
trix more quickly. At this point, the method will be validated in a broader range of acquisition
hardware, including more different data types (such as with Doppler data).
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