213 research outputs found

    Implantable Micro-Device for Epilepsy Seizure Detection and Subsequent Treatment

    Get PDF
    RÉSUMÉ L’émergence des micro-dispositifs implantables est une voie prometteuse pour le traitement de troubles neurologiques. Ces systèmes biomédicaux ont été exploités comme traitements non-conventionnels sur des patients chez qui les remèdes habituels sont inefficaces. Les récents progrès qui ont été faits sur les interfaces neuronales directes ont permis aux chercheurs d’analyser l’activité EEG intracérébrale (icEEG) en temps réel pour des fins de traitements. Cette thèse présente un dispositif implantable à base de microsystèmes pouvant capter efficacement des signaux neuronaux, détecter des crises d’épilepsie et y apporter un traitement afin de l’arrêter. Les contributions principales présentées ici ont été rapportées dans cinq articles scientifiques, publiés ou acceptés pour publication dans les revues IEEE, et plusieurs autres tels que «Low Power Electronics» et «Emerging Technologies in Computing». Le microsystème proposé inclus un circuit intégré (CI) à faible consommation énergétique permettant la détection de crises d’épilepsie en temps réel. Cet CI comporte une pré-amplification initiale et un détecteur de crises d’épilepsie. Le pré-amplificateur est constitué d’une nouvelle topologie de stabilisateur d’hacheur réduisant le bruit et la puissance dissipée. Les CI fabriqués ont été testés sur des enregistrements d’icEEG provenant de sept patients épileptiques réfractaires au traitement antiépileptique. Le délai moyen de la détection d’une crise est de 13,5 secondes, soit avant le début des manifestations cliniques évidentes. La consommation totale d’énergie mesurée de cette puce est de 51 μW. Un neurostimulateur à boucle fermée (NSBF), quant à lui, détecte automatiquement les crises en se basant sur les signaux icEEG captés par des électrodes intracrâniennes et permet une rétroaction par une stimulation électrique au même endroit afin d’interrompre ces crises. La puce de détection de crises et le stimulateur électrique à base sur FPGA ont été assemblés à des électrodes afin de compléter la prothèse proposée. Ce NSBF a été validé en utilisant des enregistrements d’icEEG de dix patients souffrant d’épilepsie réfractaire. Les résultats révèlent une performance excellente pour la détection précoce de crises et pour l’auto-déclenchement subséquent d’une stimulation électrique. La consommation énergétique totale du NSBF est de 16 mW. Une autre alternative à la stimulation électrique est l’injection locale de médicaments, un traitement prometteur de l’épilepsie. Un système local de livraison de médicament basé sur un nouveau détecteur asynchrone des crises est présenté.----------ABSTRACT Emerging implantable microdevices hold great promise for the treatment of patients with neurological conditions. These biomedical systems have been exploited as unconventional treatment for the conventionally untreatable patients. Recent progress in brain-machine-interface activities has led the researchers to analyze the intracerebral EEG (icEEG) recording in real-time and deliver subsequent treatments. We present in this thesis a long-term safe and reliable low-power microsystem-based implantable device to perform efficient neural signal recording, seizure detection and subsequent treatment for epilepsy. The main contributions presented in this thesis are reported in five journal manuscripts, published or accepted for publication in IEEE Journals, and many others such as Low Power Electronics, and Emerging Technologies in Computing. The proposed microsystem includes a low-power integrated circuit (IC) intended for real-time epileptic seizure detection. This IC integrates a front-end preamplifier and epileptic seizure detector. The preamplifier is based on a new chopper stabilizer topology that reduces noise and power dissipation. The fabricated IC was tested using icEEG recordings from seven patients with drug-resistant epilepsy. The average seizure detection delay was 13.5 sec, well before the onset of clinical manifestations. The measured total power consumption of this chip is 51 µW. A closed-loop neurostimulator (CLNS) is next introduced, which is dedicated to automatically detect seizure based on icEEG recordings from intracranial electrode contacts and provide an electrical stimulation feedback to the same contacts in order to disrupt these seizures. The seizure detector chip and a dedicated FPGA-based electrical stimulator were assembled together with common recording electrodes to complete the proposed prosthesis. This CLNS was validated offline using recording from ten patients with refractory epilepsy, and showed excellent performance for early detection of seizures and subsequent self-triggering electrical stimulation. Total power consumption of the CLNS is 16 mW. Alternatively, focal drug injection is the promising treatment for epilepsy. A responsive focal drug delivery system based on a new asynchronous seizure detector is also presented. The later system with data-dependent computation reduces up to 49% power consumption compared to the previous synchronous neurostimulator

    Neuromorphic Neuromodulation: Towards the next generation of on-device AI-revolution in electroceuticals

    Full text link
    Neuromodulation techniques have emerged as promising approaches for treating a wide range of neurological disorders, precisely delivering electrical stimulation to modulate abnormal neuronal activity. While leveraging the unique capabilities of artificial intelligence (AI) holds immense potential for responsive neurostimulation, it appears as an extremely challenging proposition where real-time (low-latency) processing, low power consumption, and heat constraints are limiting factors. The use of sophisticated AI-driven models for personalized neurostimulation depends on back-telemetry of data to external systems (e.g. cloud-based medical mesosystems and ecosystems). While this can be a solution, integrating continuous learning within implantable neuromodulation devices for several applications, such as seizure prediction in epilepsy, is an open question. We believe neuromorphic architectures hold an outstanding potential to open new avenues for sophisticated on-chip analysis of neural signals and AI-driven personalized treatments. With more than three orders of magnitude reduction in the total data required for data processing and feature extraction, the high power- and memory-efficiency of neuromorphic computing to hardware-firmware co-design can be considered as the solution-in-the-making to resource-constraint implantable neuromodulation systems. This could lead to a new breed of closed-loop responsive and personalised feedback, which we describe as Neuromorphic Neuromodulation. This can empower precise and adaptive modulation strategies by integrating neuromorphic AI as tightly as possible to the site of the sensors and stimulators. This paper presents a perspective on the potential of Neuromorphic Neuromodulation, emphasizing its capacity to revolutionize implantable brain-machine microsystems and significantly improve patient-specificity.Comment: 17 page

    Cortical Dynamics Underlying Seizure Mapping and Control

    Get PDF
    In one-third of epilepsy patients, antiepileptic drugs do not effectively control seizures, leaving resective surgery as the primary treatment option. In the absence of discrete focal lesions, long-term outcome after surgery is modest and often associated with side effects. In many cases, surgery cannot be performed due to the lack of a discrete region generating seizures. For these reasons, new therapeutic technologies have been developed to treat drug-resistant epilepsy with electrical stimulation. These devices are promising, but the efficacy of first-generation implants has been limited. The work in this thesis aims to advance current approaches to seizure monitoring and control by developing better hardware and building the foundational knowledge behind the cortical dynamics underlying seizure generation, propagation and neural stimulation. In this thesis, I first develop new technologies that sample local field potentials on the cortical surface with high spatial and temporal resolutions. These devices capture complex spatiotemporal patterns of epileptiform activity that are not detected on current clinical electrodes. By adding stimulation functionalities to these arrays, we position them as an ideal candidate for responsive, therapeutic neurostimulation. Next, I explore the effect of direct electrical stimulation in the cortex by recording responses with high spatial resolution on the surface and within the cortical laminae. The findings detail the capabilities and limitations of electrical stimulation as a means of modulating seizures. Finally, I use the same three-dimensional recording paradigm in feline neocortex to investigate the genesis and propagation of epileptiform activity in an isolated, chemically-induced epilepsy model. These experiments demonstrate that important circuit elements involved in seizure propagation are found deeper in the cortex and are not reflected in surface recordings. My investigations also present potential stimulation strategies to more effectively disrupt the spread of seizures in the neocortex. It is my hope that the results of this work will inform future technologies to better detect and prevent seizures, ultimately improving the lives of drug-resistant epilepsy patients through the next generation of implantable devices

    Algorithm-circuit co-design for detecting symptomatic patterns in biological signals

    Get PDF
    The advancement in scaled Silicon technology has accelerated the development of a wide range of applications in various fields including medical technology. It has immensely contributed to finding solutions for monitoring general health as well as alleviating intractable disorders in the form of implantable and wearable systems. This necessitates the development of energy efficient and functionally efficacious systems. This thesis has explored the algorithm-circuit co-design approach for developing an energy efficient epileptic seizure detection processor which could be used for implantable epilepsy prosthesis. Novel wavelet transform based algorithms are proposed for accurate detection of epileptic seizures. Energy efficient techniques at circuit level such as power and clock gating are utilized along with error resiliency at algorithm level to implement these algorithms in TSMC 6565nm bulk-Si technology. Furthermore, the methodology is extended to develop a generic pattern detection system, which could be used for health monitoring. The wavelet transform along with mathematical metrics and Mel cepstrum are used to develop an algorithm which can detect generic patterns in biological audio signals. The application of algorithm-circuit co-design methodology helps in practically implementing this system into a low power design. Using approximation of coefficients and multiplier-less implementation, the Mel cepstrum algorithm is modified to optimize the hardware cost without losing its functional efficacy. The system is user-specific and scalable for detecting various patterns in biological signals. The methodologies mentioned in this thesis are intended towards development of user-scalable, energy efficient and highly efficacious systems for detection of patterns in variety of biological signals

    2014 Epilepsy Benchmarks Area III: Improve Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects

    Get PDF
    The Epilepsy Benchmark goals in Area III focus on making progress in understanding and controlling seizures and related conditions as well as on developing biomarkers and new therapies that will reduce seizures and improve outcomes for individuals with epilepsy. Area III emphasizes a need to better understand the ways in which seizures start, propagate, and terminate and whether those network processes are common or unique in different forms of epilepsy. The application of that knowledge to improved seizure prediction and detection will also play a role in improving patient outcomes. Animal models of treatment-resistant epilepsy that are aligned with etiologies and clinical features of human epilepsies are especially encouraged as necessary tools to understand mechanisms and test potential therapies. Antiseizure therapies that target (either alone or in combination) novel or multiple seizure mechanisms are prioritized in this section of the Benchmarks. Area III goals also highlight validation of biomarkers of treatment response and safety risk, effective self-management, and patient-centered outcome measures as important areas of emphasis for the next five to ten years

    Optimized Design of a Self-Biased Amplifier for Seizure Detection Supplied by Piezoelectric Nanogenerator: Metaheuristic Algorithms versus ANN-Assisted Goal Attainment Method

    Get PDF
    This work is dedicated to parameter optimization for a self-biased amplifier to be used in preamplifiers for the diagnosis of seizures in neuro-diseases such as epilepsy. For the sake of maximum compactness, which is obligatory for all implantable devices, power is to be supplied by a piezoelectric nanogenerator (PENG). Several meta-heuristic optimization algorithms and an ANN (artificial neural network)-assisted goal attainment method were applied to the circuit, aiming to provide us with the set of optimal design parameters which ensure the minimal overall area of the preamplifier. These parameters are the slew rate, load capacitor, gain–bandwidth product, maximal input voltage, minimal input voltage, input voltage, reference voltage, and dissipation power. The results are re-evaluated and compared in the Cadence 180 nm SCL environment. It has been observed that, among the metaheuristic algorithms, the whale optimization technique reached the best values at low computational cost, decreased complexity, and the highest convergence speed. However, all metaheuristic algorithms were outperformed by the ANN-assisted goal attainment method, which produced a roughly 50% smaller overall area of the preamplifier. All the techniques described here are applicable to the design and optimization of wearable or implantable circuits

    Epileptic Seizure Detection on an Ultra-Low-Power Embedded RISC-V Processor Using a Convolutional Neural Network

    Get PDF
    The treatment of refractory epilepsy via closed-loop implantable devices that act on seizures either by drug release or electrostimulation is a highly attractive option. For such implantable medical devices, efficient and low energy consumption, small size, and efficient processing architectures are essential. To meet these requirements, epileptic seizure detection by analysis and classification of brain signals with a convolutional neural network (CNN) is an attractive approach. This work presents a CNN for epileptic seizure detection capable of running on an ultra-low-power microprocessor. The CNN is implemented and optimized in MATLAB. In addition, the CNN is also implemented on a GAP8 microprocessor with RISC-V architecture. The training, optimization, and evaluation of the proposed CNN are based on the CHB-MIT dataset. The CNN reaches a median sensitivity of 90% and a very high specificity over 99% corresponding to a median false positive rate of 6.8 s per hour. After implementation of the CNN on the microcontroller, a sensitivity of 85% is reached. The classification of 1 s of EEG data takes t=35 ms and consumes an average power of P≈140 μW. The proposed detector outperforms related approaches in terms of power consumption by a factor of 6. The universal applicability of the proposed CNN based detector is verified with recording of epileptic rats. This results enable the design of future medical devices for epilepsy treatment

    Development and application of inhibitory luminopsins for the treatment of epilepsy

    Get PDF
    Optogenetics has shown great promise as a direct neuromodulatory tool for halting seizure activity in various animal models of epilepsy. However, light delivery into the brain is still a major practical challenge that needs to be addressed before future clinical translation is feasible. Not only does light delivery into the brain require surgically implanted hardware that can be both invasive and restrictive, but it is also difficult to illuminate large or complicated structures in the brain due to light scatter and attenuation. We have bypassed the challenges of external light delivery by directly coupling a bioluminescent light source (a genetically encoded Renilla luciferase) to an inhibitory opsin (Natronomonas halorhodopsin) as a single fusion protein, which we term an inhibitory luminopsin (iLMO). iLMOs were developed and characterized in vitro and in vivo using intracellular recordings, multielectrode arrays, and behavioral testing. iLMO2 was shown to generate hyperpolarizing outward currents in response to both external light and luciferase substrate, which was sufficient to suppress action potential firing and synchronous bursting activity in vitro. iLMO2 was further shown to suppress single-unit firing rate and local field potentials in the hippocampus of anesthetized and awake animals. Finally, expression of iLMO was scaled up to multiple structures of the basal ganglia to modulate rotational behavior of freely moving animals in a hardware-independent fashion. iLMO2 was further utilized to acutely suppress focal epileptic discharges induced by intracerebral injection of bicuculline and generalized seizures resulting from systemic administration of pentylenetetrazol. Inhibitory luminopsins have enabled the possibility of optogenetic inhibition of neural activity in a non-invasive and hardware-independent fashion. This work increases the versatility, scalability, and practicality of utilizing optogenetic approaches for halting seizure activity in vivo.Ph.D

    Topics in Neuromodulation Treatment

    Get PDF
    "Topics in Neuromodulation Treatment" is a book that invites to the reader to make an update in this important and well-defined area involved in the Neuroscience world. The book pays attention in some aspects of the electrical therapy and also in the drug delivery management of several neurological illnesses including the classic ones like epilepsy, Parkinson's disease, pain, and other indications more recently incorporated to this important tool like bladder incontinency, heart ischemia and stroke. The manuscript is dedicated not only to the expert, but also to the scientist that begins in this amazing field. The authors are physicians of different specialties and they guarantee the clinical expertise to provide to the reader the best guide to treat the patient
    • …
    corecore