7,935 research outputs found

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    A middleware for a large array of cameras

    Get PDF
    Large arrays of cameras are increasingly being employed for producing high quality image sequences needed for motion analysis research. This leads to the logistical problem with coordination and control of a large number of cameras. In this paper, we used a lightweight multi-agent system for coordinating such camera arrays. The agent framework provides more than a remote sensor access API. It allows reconfigurable and transparent access to cameras, as well as software agents capable of intelligent processing. Furthermore, it eases maintenance by encouraging code reuse. Additionally, our agent system includes an automatic discovery mechanism at startup, and multiple language bindings. Performance tests showed the lightweight nature of the framework while validating its correctness and scalability. Two different camera agents were implemented to provide access to a large array of distributed cameras. Correct operation of these camera agents was confirmed via several image processing agents

    A middleware for a large array of cameras

    No full text
    Large arrays of cameras are increasingly being employed for producing high quality image sequences needed for motion analysis research. This leads to the logistical problem with coordination and control of a large number of cameras. In this paper, we used a lightweight multi-agent system for coordinating such camera arrays. The agent framework provides more than a remote sensor access API. It allows reconfigurable and transparent access to cameras, as well as software agents capable of intelligent processing. Furthermore, it eases maintenance by encouraging code reuse. Additionally, our agent system includes an automatic discovery mechanism at startup, and multiple language bindings. Performance tests showed the lightweight nature of the framework while validating its correctness and scalability. Two different camera agents were implemented to provide access to a large array of distributed cameras. Correct operation of these camera agents was confirmed via several image processing agents

    IMPLEMENTATION OF A LOCALIZATION-ORIENTED HRI FOR WALKING ROBOTS IN THE ROBOCUP ENVIRONMENT

    Get PDF
    This paper presents the design and implementation of a human–robot interface capable of evaluating robot localization performance and maintaining full control of robot behaviors in the RoboCup domain. The system consists of legged robots, behavior modules, an overhead visual tracking system, and a graphic user interface. A human–robot communication framework is designed for executing cooperative and competitive processing tasks between users and robots by using object oriented and modularized software architecture, operability, and functionality. Some experimental results are presented to show the performance of the proposed system based on simulated and real-time information. </jats:p

    Mobile object location discovery in unpredictable environments

    Get PDF
    Emerging mobile and ubiquitous computing environments present hard challenges to software engineering. The use of mobile code has been suggested as a natural fit for simplifing software development for these environments. However, the task of discovering mobile code location becomes a problem in unpredictable environments when using existing strategies, designed with fixed and relatively stable networks in mind. This paper introduces AMOS, a mobile code platform augmented with a structured overlay network. We demonstrate how the location discovery strategy of AMOS has better reliability and scalability properties than existing approaches, with minimal communication overhead. Finally, we demonstrate how AMOS can provide autonomous distribution of effort fairly throughout a network using probabilistic methods that requires no global knowledge of host capabilities
    corecore