6 research outputs found

    Preliminary experimental identification of a FEM human knee model

    Get PDF
    A customizable Finite Elements Model of human knee is proposed for improving inter-individual reproducibility in NSAIDs transdermal delivery measurement. The model simulates: (i) the measurement system, based on Bio-Impedance Spectroscopy, and (ii) the system under test, namely the knee by five parallel, homogeneous, and concentric layers: bone, muscle, adipose tissue, wet skin, and dry skin. In this paper, first the equations and the architecture of the model are described. Then, the results of the numerical characterization and the preliminary experimental validation are reported. A sensitivity analysis was realized for reducing computational burden during Model customization. Only five parameters out of the 64 used in the Cole-Cole equation were sufficient for fitting experimental data of different subjects

    Energy-Efficient PRBS Impedance Spectroscopy on a Digital Versatile Platform

    Get PDF
    partially_open6siThis research has been partially funded by the Italian Ministry of University and Research (MUR) through the program “Dipartimenti di Eccellenza” (2018-2022). The research has also received partial support from the Italian Ministry of University and Research (MUR) and the Eranet FLAG ERA initiative within CONVERGENCE project (CUP B84I16000030005) through the IUNET Consortium.This paper presents the digital design of a versatile and low-power broadband impedance spectroscopy (IS) system based on pseudo-random binary sequence (PRBS) excitation. The PRBS technique allows fast, and low-power estimation of the impedance spectrum over a wide bandwidth with adequate accuracy, proving to be a good candidate for portable medical devices, especially. This paper covers the low-power design of the firmware algorithms and implements them on a versatile and reconfigurable digital platform that can be easily adjusted to the specific application. It will analyze the digital platform with the aim of reducing power consumption while maintaining adequate accuracy of the estimated spectrum. The paper studies two main algorithms (time-domain and frequency-domain) used for PRBS-based IS and implements both of them on the ultra-low-power GAP-8 digital platform. They are compared in terms of accuracy, measurement time, and power budget, while general design trade-offs are drawn out. The time-domain algorithm demonstrated the best accuracy while the frequency-domain one contributes more to save power and energy. However, analysis of the energy-per-error FOM revealed that the time-domain algorithm outperforms the frequency-domain algorithm offering better accuracy for the same energy consumption. Numerical methods and microprocessor resources are exploited to optimize the implementation of both algorithms achieving 27 ms in processing time, power consumption as low as 1.4 mW and a minimum energy consumption per measurement of 0.5 mJ, for a dense impedance spectrum estimation of 214 points.embargoed_20210525Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M.Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    Measurement techniques for microbial corrosion assessment

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Low-Cost Impedance Spectroscopy System Based on a Logarithmic Amplifier

    No full text
    Impedance spectroscopy (IS) involves measurements of impedance amplitudes, which often span more than six/seven decades. Currently available IS systems employ sophisticate front-ends to cope with this wide impedance range and, consequently, the cost of the measuring instrument greatly increases. This paper describes an alternative low-cost solution, which is based on a logarithmic front-end and on an off-the-shelf microcontroller board. Using these components, the cost remains below $100, while still having the capability of measuring over a frequency range of 0.01 Hz-100 kHz and for impedance values in the range of 100 Ω - 10 GΩ. The overall uncertainty remains below 5% of amplitude and few degrees of phase. The proposed system is, therefore, suitable for electrochemical impedance spectroscopy applications, as well as for bioelectrical impedance analysis
    corecore