847 research outputs found

    User-Centric Interference Nulling in Downlink Multi-Antenna Heterogeneous Networks

    Full text link
    In heterogeneous networks (HetNets), strong interference due to spectrum reuse affects each user's signal-to-interference ratio (SIR), and hence is one limiting factor of network performance. In this paper, we propose a user-centric interference nulling (IN) scheme in a downlink large-scale HetNet to improve coverage/outage probability by improving each user's SIR. This IN scheme utilizes at most maximum IN degree of freedom (DoF) at each macro-BS to avoid interference to uniformly selected macro (pico) users with signal-to-individual-interference ratio (SIIR) below a macro (pico) IN threshold, where the maximum IN DoF and the two IN thresholds are three design parameters. Using tools from stochastic geometry, we first obtain a tractable expression of the coverage (equivalently outage) probability. Then, we analyze the asymptotic coverage/outage probability in the low and high SIR threshold regimes. The analytical results indicate that the maximum IN DoF can affect the order gain of the outage probability in the low SIR threshold regime, but cannot affect the order gain of the coverage probability in the high SIR threshold regime. Moreover, we characterize the optimal maximum IN DoF which optimizes the asymptotic coverage/outage probability. The optimization results reveal that the IN scheme can linearly improve the outage probability in the low SIR threshold regime, but cannot improve the coverage probability in the high SIR threshold regime. Finally, numerical results show that the proposed scheme can achieve good gains in coverage/outage probability over a maximum ratio beamforming scheme and a user-centric almost blank subframes (ABS) scheme.Comment: Transactions on Wireless Communications (under revision). arXiv admin note: text overlap with arXiv:1504.0528

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)
    corecore