58 research outputs found

    Conceptual communications system design in the 25.25-27.5 and 37.0-40.5 GHz frequency bands

    Get PDF
    Future space applications are likely to rely heavily on Ka-band frequencies (20-40 GHz) for communications traffic. Many space research activities are now conducted using S-band and X-band frequencies, which are becoming congested and require a degree of pre-coordination. In addition to providing relief from frequency congestion, Ka-band technologies offer potential size, weight, and power savings when compared to lower frequency bands. The use of the 37.0-37.5 and 40.0-40.5 GHz bands for future planetary missions was recently approved at the 1992 World Administrative Radio Conference (WARC-92). WARC-92 also allocated the band 25.25-27.5 GHz to the Intersatellite Service on a primary basis to accommodate Data Relay Satellite return link requirements. Intersatellite links are defined to be between artificial satellites and thus a communication link with the surface of a planetary body, such as the moon, and a relay satellite orbiting that body are not permitted in this frequency band. This report provides information about preliminary communications system concepts for forward and return links for earth-Mars and earth-lunar links using the 37.0-37.5 (return link) and 40.0-40.5 (forward link) GHz frequency bands. In this study we concentrate primarily on a conceptual system for communications between earth and a single lunar surface terminal (LST), and between earth and a single Mars surface terminal (MST). Due to large space losses, these links have the most stringent link requirements for an overall interplanetary system. The earth ground station is assumed to be the Deep Space Network (DSN) using either 34 meter or 70 meter antennas. We also develop preliminary communications concepts for a space-to-space system operating at near 26 GHz. Space-to-space applications can encompass a variety of operating conditions, and we consider several 'typical' scenarios described in more detail later in this report. Among these scenarios are vehicle-to-vehicle communications, vehicle-to-geosyncronous satellite (GEO) communications, and GEO-to-GEO communications. Additional details about both the interplanetary and space-to-space communications systems are provided in an 'expanded' final report which has been submitted to the Tracking and Communications Division (TCD) at the NASA Johnson Space Center

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Resource Allocation and Performance Analysis for Multiuser Video Transmission over Doubly Selective Channels

    Get PDF
    We consider an uplink multicarrier system with multiple video users who want to send compressed video data to the base station. In the time domain, we model the time varying channel using Jakes’ model, and in the frequency domain, each subcarrier is assumed to be independently fading. The video is scalably coded in units of group of pictures (GOP), and users have different video rate distortion (RD) functions. At the beginning of the GOP, the base station collects both the RD information and instantaneous channel state information (CSI) for subcarrier allocation purposes. We design a cross layer resource allocation algorithm to assign subcarriers to the users based on both the demand of the video and the quality of the channel. Once the resource allocation decision is made, the users then periodically adapt the modulation format of the subcarriers allocated according to the evolution of the CSI for the duration of the GOP. We show that our cross layer resource allocation robustly outperforms two baseline algorithms, each of which uses only one layer of information for resource allocation

    Mapping and Semantic Perception for Service Robotics

    Get PDF
    Para realizar una tarea, los robots deben ser capaces de ubicarse en el entorno. Si un robot no sabe dónde se encuentra, es imposible que sea capaz de desplazarse para alcanzar el objetivo de su tarea. La localización y construcción de mapas simultánea, llamado SLAM, es un problema estudiado en la literatura que ofrece una solución a este problema. El objetivo de esta tesis es desarrollar técnicas que permitan a un robot comprender el entorno mediante la incorporación de información semántica. Esta información también proporcionará una mejora en la localización y navegación de las plataformas robóticas. Además, también demostramos cómo un robot con capacidades limitadas puede construir de forma fiable y eficiente los mapas semánticos necesarios para realizar sus tareas cotidianas.El sistema de construcción de mapas presentado tiene las siguientes características: En el lado de la construcción de mapas proponemos la externalización de cálculos costosos a un servidor en nube. Además, proponemos métodos para registrar información semántica relevante con respecto a los mapas geométricos estimados. En cuanto a la reutilización de los mapas construidos, proponemos un método que combina la construcción de mapas con la navegación de un robot para explorar mejor un entorno y disponer de un mapa semántico con los objetos relevantes para una misión determinada.En primer lugar, desarrollamos un algoritmo semántico de SLAM visual que se fusiona los puntos estimados en el mapa, carentes de sentido, con objetos conocidos. Utilizamos un sistema monocular de SLAM basado en un EKF (Filtro Extendido de Kalman) centrado principalmente en la construcción de mapas geométricos compuestos únicamente por puntos o bordes; pero sin ningún significado o contenido semántico asociado. El mapa no anotado se construye utilizando sólo la información extraída de una secuencia de imágenes monoculares. La parte semántica o anotada del mapa -los objetos- se estiman utilizando la información de la secuencia de imágenes y los modelos de objetos precalculados. Como segundo paso, mejoramos el método de SLAM presentado anteriormente mediante el diseño y la implementación de un método distribuido. La optimización de mapas y el almacenamiento se realiza como un servicio en la nube, mientras que el cliente con poca necesidad de computo, se ejecuta en un equipo local ubicado en el robot y realiza el cálculo de la trayectoria de la cámara. Los ordenadores con los que está equipado el robot se liberan de la mayor parte de los cálculos y el único requisito adicional es una conexión a Internet.El siguiente paso es explotar la información semántica que somos capaces de generar para ver cómo mejorar la navegación de un robot. La contribución en esta tesis se centra en la detección 3D y en el diseño e implementación de un sistema de construcción de mapas semántico.A continuación, diseñamos e implementamos un sistema de SLAM visual capaz de funcionar con robustez en entornos poblados debido a que los robots de servicio trabajan en espacios compartidos con personas. El sistema presentado es capaz de enmascarar las zonas de imagen ocupadas por las personas, lo que aumenta la robustez, la reubicación, la precisión y la reutilización del mapa geométrico. Además, calcula la trayectoria completa de cada persona detectada con respecto al mapa global de la escena, independientemente de la ubicación de la cámara cuando la persona fue detectada.Por último, centramos nuestra investigación en aplicaciones de rescate y seguridad. Desplegamos un equipo de robots en entornos que plantean múltiples retos que implican la planificación de tareas, la planificación del movimiento, la localización y construcción de mapas, la navegación segura, la coordinación y las comunicaciones entre todos los robots. La arquitectura propuesta integra todas las funcionalidades mencionadas, asi como varios aspectos de investigación novedosos para lograr una exploración real, como son: localización basada en características semánticas-topológicas, planificación de despliegue en términos de las características semánticas aprendidas y reconocidas, y construcción de mapas.In order to perform a task, robots need to be able to locate themselves in the environment. If a robot does not know where it is, it is impossible for it to move, reach its goal and complete the task. Simultaneous Localization and Mapping, known as SLAM, is a problem extensively studied in the literature for enabling robots to locate themselves in unknown environments. The goal of this thesis is to develop and describe techniques to allow a service robot to understand the environment by incorporating semantic information. This information will also provide an improvement in the localization and navigation of robotic platforms. In addition, we also demonstrate how a simple robot can reliably and efficiently build the semantic maps needed to perform its quotidian tasks. The mapping system as built has the following features. On the map building side we propose the externalization of expensive computations to a cloud server. Additionally, we propose methods to register relevant semantic information with respect to the estimated geometrical maps. Regarding the reuse of the maps built, we propose a method that combines map building with robot navigation to better explore a room in order to obtain a semantic map with the relevant objects for a given mission. Firstly, we develop a semantic Visual SLAM algorithm that merges traditional with known objects in the estimated map. We use a monocular EKF (Extended Kalman Filter) SLAM system that has mainly been focused on producing geometric maps composed simply of points or edges but without any associated meaning or semantic content. The non-annotated map is built using only the information extracted from an image sequence. The semantic or annotated parts of the map –the objects– are estimated using the information in the image sequence and the precomputed object models. As a second step we improve the EKF SLAM presented previously by designing and implementing a visual SLAM system based on a distributed framework. The expensive map optimization and storage is allocated as a service in the Cloud, while a light camera tracking client runs on a local computer. The robot’s onboard computers are freed from most of the computation, the only extra requirement being an internet connection. The next step is to exploit the semantic information that we are able to generate to see how to improve the navigation of a robot. The contribution of this thesis is focused on 3D sensing which we use to design and implement a semantic mapping system. We then design and implement a visual SLAM system able to perform robustly in populated environments due to service robots work in environments where people are present. The system is able to mask the image regions occupied by people out of the rigid SLAM pipeline, which boosts the robustness, the relocation, the accuracy and the reusability of the geometrical map. In addition, it estimates the full trajectory of each detected person with respect to the scene global map, irrespective of the location of the moving camera at the point when the people were imaged. Finally, we focus our research on rescue and security applications. The deployment of a multirobot team in confined environments poses multiple challenges that involve task planning, motion planning, localization and mapping, safe navigation, coordination and communications among all the robots. The architecture integrates, jointly with all the above-mentioned functionalities, several novel features to achieve real exploration: localization based on semantic-topological features, deployment planning in terms of the semantic features learned and recognized, and map building.<br /

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Integration of control, communication, computation, com- plexity and energy considerations in a coherent design strategy

    Get PDF
    This report is an overview of the research activities regarding WP06 (C4E co-design) of the FeedNetBack project. The objective of WP6 of Feed- NetBack is to propose a co-design framework, which allows the integration of control-estimation, communication, computation, complexity, and energy considerations in networked control systems. In this report we outline gen- eral guidelines for co-design and illustrate their applicability to the following case studies: (i) surveillance systems using a network of smart cameras and (ii) eets of Autonomous Underwater Vehicles (AUVs).

    Management system for Unmanned Aircraft Systems teams

    Get PDF
    This thesis investigates new schemes to improve the operability of heterogeneous Unmanned Aircraft Systems (UAS) teams through the exploitation of inter-vehicular communications. Releasing ground links from unnecessary data exchanges saves resources (power, bandwidth, etc) and alleviates the inherent scalability problem resulting from the increase in the number of UAS to be controlled simultaneously. In first place, a framework to classify UAS according to their level of autonomy is presented along with efficient methodologies to assess the autonomy level of either individual or multiple UAS. An architecture based on an aerial Mobile Ad-hoc Network (MANET) is proposed for the management of the data exchange among all the vehicles in the team. A performance evaluation of the two most relevant MANET approaches for path discovery (namely, reactive and proactive) has been carried out by means of simulation of two well-known routing protocols: Ad-hoc On-demand Distance Vector (AODV) and Destination Sequenced Distance Vector (DSDV). Several network configurations are generated to emulate different possible contingencies that might occur in real UAS team operations. Network topology evolution, vehicle flight dynamics and data traffic patterns are considered as input parameters to the simulation model. The analysis of the system behaviour for each possible network configuration is used to evaluate the appropriateness of both approaches in different mission scenarios. Alternative network solutions based on Delay Tolerant Networking (DTN) for situations of intermittent connectivity and network partitioning are outlined. Finally, an assessment of the simulation results is presented along with a discussion about further research challenges
    • …
    corecore