
2018 16

Luis Miguel Riazuelo Latas

Mapping and Semantic
Perception for Service

Robotics

Departamento

Director/es

Informática e Ingeniería de Sistemas

Martinez Montiel, José María
Montano Gella, Luis

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.

Luis Miguel Riazuelo Latas

MAPPING AND SEMANTIC
PERCEPTION FOR SERVICE

ROBOTICS

Director/es

Informática e Ingeniería de Sistemas

Martinez Montiel, José María
Montano Gella, Luis

Tesis Doctoral

Autor

2018

UNIVERSIDAD DE ZARAGOZA

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

PhD Thesis

Mapping and Semantic Perception for Service
Robotics

Luis Miguel Riazuelo Latas

Advisors

Luis Montano Gella

José Marı́a Martı́nez Montiel

Grupo de Robótica, Percepción y Tiempo Real
Instituto de Investigación en Ingenierı́a de Aragón

Universidad de Zaragoza

January 2018

To Ainara, Ane and Leo

i

ii

Acknowledgement

I want to firstly thank my supervisors Luis Montano Gella and José Marı́a Martı́nez Montiel for
encouraging me to start this thesis, and for his guidance and support through all these years.

I want also to express my gratitude to Javier Civera whose initial contribution in the development
of this thesis was really important. Thanks also for being always available for fruitful discussions.
During all these years, I have had the opportunity to participate in several research projects. I would
like to thank José Luis Villarroel and Carlos Sagües for the opportunity they gave me to work on the
projects under their direction and the trust they have placed in me.

I would also like to thank to all the members of Robotics, Perception and Real Time Group of the
University of Zaragoza, and many thanks to all my colleagues in the Robotics lab: Pablo, Oscar,
Domenico, Alex, Maite, Marta, Diana, Mayte, Carlos, Eduardo, Yarik, Dorian, Jesús. Special thanks
to Anacris and Danilo for adding the constant and necessary pressure during the last weeks of writing
this thesis.

Finnaly, I would like to thank to my parents and my brother who have always being there for me. The
most special thankfulness is for my wife Ainara who has been the best support in the most stressful
moments and for my children Ane and Leo for conveying me their enthusiasm and happiness and for
turning every day into a new experience.

iii

iv

Thesis framework

This thesis has been developed with the Robotics, Perception and Real Time group of the Aragón In-
stitute for Engineering Research (I3A), University of Zaragoza, within the framework of the following
research projects:

• Robots móviles en red para tareas de servicio y de intervención (NERO) DPI 2006-07928
The complex nature of mobile robot tasks leads to the necessity of systems with several coor-
dinated robots (agents) working in cooperation. Some international directives refer to robotic
elements connected to the communication nets or wireless nets including the robots themselves
and the sensors distributed in the working place (static agents) exchanging and sharing infor-
mation. This concept is extended to robot interactions between humans, the sensors and the
environment. We propose this project which is very related with previous MEC projects ob-
tained by this research team, to continue working on subjects related to multi-robot cooperation
techniques, computer vision, robot vision for motion and communications.

• Ubiquitous Networking Robotics in Urban Settings (URUS) IST-1-045062-URUS-STP
European cities are becoming difficult places to live due to noise, pollution and security. More-
over, the average age of people living European cities is growing and in a short period of time
there will be an important community of elderly people. City Halls are becoming conscious of
this problem and are studying solutions, for example by reducing the free car circulation areas
. Free car areas imply a revolution in the planning of urban settings, for example, by imposing
new means for transportation of goods, security issues, etc. In this project we want to analyse
and test the idea of incorporating a network of robots (robots, intelligent sensors, devices and
communications) in order to improve life quality in such urban areas.

• TEams of robots for Service and SEcurity missiOns (TESSEO) DPI 2009-08126
The project proposes to investigate techniques for a multi-robot team to act in coordination in
realistic scenarios. For the deployment, it is necessary to deal with algorithms and methods re-
lated to task planning and allocation, coordinated navigation planning, environment perception
from multiple views provided by every member of the team, while the communication connec-
tivity among all the elements of the system is maintained – robots, infrastructure, supervisor
team, etc. Although some of the techniques involved are usually proposed in the literature and
in many projects somehow independently, the research in this project will also be oriented to
develop techniques integrating the different subjects involved. Only in this way it will be possi-
ble to develop realistic applications using systems with autonomous and supervised behaviours.
Within the wide spectrum of scientific and technological challenges that appears in this kind

v

of systems, several research objectives, grouped in three interdependent blocks, are going to be
tackled in this project.

• Robots sharing a knowledge base for world modelling and learning of actions (RoboEarth)
FP7 ICT-248942
The aim of RoboEarth is to use the internet to create a giant open source network database
that can be accessed and continually updated by robots around the world. With knowledge
shared on such a vast scale, and with businesses and academics contributing independently on
a common language platform, RoboEarth has the potential to provide a powerful feed forward
to any robot’s 3D sensing, acting and learning capabilities.

• Tecnologı́as Inteligentes para el transporte autónomo de mercancı́as en interiores y exte-
riores (TITAM ie) IDI-20110855
The objective is the development of robust technologies for localization, mapping and au-
tonomous navigation of mobile robots for good transportation. A real prototype will be built and
the experimental validation will be developed in a large Industrial Park, in indoor and outdoor
scenarios.

• TEams of robots for LOgistics, MAintenance and eNvironment monitoring (TELOMAN)
DPI 2012-32100
The research project involves deployment and actuation techniques of a multi-robot team. It
is necessary to address problems of task planning and allocation, coordinated execution of the
navigation, perception of the environment from multiple views from each of the team members,
maintaining communication between all system components – robots, infrastructure, bridges,
monitoring equipment, etc. This project will address new goals and challenges for research and
their application in real, large and complex scenarios.

• Debris removal in tunnels through robotized dumpers (AUTODUMP) RTC-2015-4099-4
The objective of this project is to design and develop a new kit to robotize a conventional dumper
used in construction, transforming it to an autonomous mobile robot for tunnel construction. It
must be capable of reaching the excavation front without human intervention, then wait to be
loaded, and finally autonomously transport the debris outside of the tunnel towards the dump.
The new robotic kit will be a breakthrough in the technology used to carry out work perfor-
mances of various kinds. In addition, the kit developed also represents a major technological
challenge to maximize the autonomy of the process and its ability to react in a dynamic and
minimally structured environment such as a tunnel in construction. These factors besides offer-
ing a marketable product, require the development of different subsystems involved to ensure
robustness, compactness and economic viability of the system.

• Robot exploration and navigation in challenging environments (ROBOCHALLENGE)
DPI2016-76676-R-AEI/FEDER-UE
This project addresses theoretical and experimental research in the field of intervention and ex-
ploration of challenging environments by means of aerial and ground robots. A challenging
environment is one where, due to different reasons, current robotic techniques fail or do not
work properly and continuously. This failure is due to the characteristics of the environment,
such as lack of coverage GNSS (any environment confined), absence of visual or geometric
discriminant characteristics (tunnels, pipes), environments with sections of different character-
istics (tunnel construction, mine), complex patterns of communication signal propagation (side

vi

galleries, caves), dynamic environments (presence of workers or other vehicles), absence of
quality in lighting (tunnel construction, mine, pipeline, cave), or large (any real environment).

• Robotic Testbed in an ARt and Technology center (RT-ART) H2020- 645220-RAWFIE
The overall goal of RT-ART is to provide a realistic environment for ground robot experimen-
tation. This will be achieved by our contributed means integrated within the RAWFIE project
sharing infrastructure. Five different scenarios will be available within the ETOPIA: the large
museum entrance, an exhibition hall, a large gallery and connected corridors, a residential area
and an outdoor terrace, in which four UGV will be available. Monitoring tools, prior maps and
assistance with the experimentation will be provided according to RAWFIE infrastructure.

vii

viii

Resumen

Para realizar una tarea, los robots deben ser capaces de ubicarse en el entorno. Si un robot no sabe
dónde se encuentra, es imposible que sea capaz de desplazarse para alcanzar el objetivo de su tarea.
La localización y construcción de mapas simultánea, llamado SLAM, es un problema estudiado en la
literatura que ofrece una solución a este problema. El objetivo de esta tesis es desarrollar técnicas que
permitan a un robot comprender el entorno mediante la incorporación de información semántica. Esta
información también proporcionará una mejora en la localización y navegación de las plataformas
robóticas. Además, también demostramos cómo un robot con capacidades limitadas puede construir
de forma fiable y eficiente los mapas semánticos necesarios para realizar sus tareas cotidianas.

El sistema de construcción de mapas presentado tiene las siguientes caracterı́sticas: En el lado
de la construcción de mapas proponemos la externalización de cálculos costosos a un servidor en
nube. Además, proponemos métodos para registrar información semántica relevante con respecto a
los mapas geométricos estimados. En cuanto a la reutilización de los mapas construidos, proponemos
un método que combina la construcción de mapas con la navegación de un robot para explorar mejor
un entorno y disponer de un mapa semántico con los objetos relevantes para una misión determinada.

En primer lugar, desarrollamos un algoritmo semántico de SLAM visual que se fusiona los
puntos estimados en el mapa, carentes de sentido, con objetos conocidos. Utilizamos un sistema
monocular de SLAM basado en un EKF (Filtro Extendido de Kalman) centrado principalmente en
la construcción de mapas geométricos compuestos únicamente por puntos o bordes; pero sin ningún
significado o contenido semántico asociado. El mapa no anotado se construye utilizando sólo la in-
formación extraı́da de una secuencia de imágenes monoculares. La parte semántica o anotada del
mapa -los objetos- se estiman utilizando la información de la secuencia de imágenes y los modelos de
objetos precalculados.

Como segundo paso, mejoramos el método de SLAM presentado anteriormente mediante el
diseño y la implementación de un método distribuido. La optimización de mapas y el almacenamiento
se realiza como un servicio en la nube, mientras que el cliente con poca necesidad de computo, se
ejecuta en un equipo local ubicado en el robot y realiza el cálculo de la trayectoria de la cámara. Los
ordenadores con los que está equipado el robot se liberan de la mayor parte de los cálculos y el único
requisito adicional es una conexión a Internet.

El siguiente paso es explotar la información semántica que somos capaces de generar para ver
cómo mejorar la navegación de un robot. La contribución en esta tesis se centra en la detección 3D y
en el diseño e implementación de un sistema de construcción de mapas semántico.

A continuación, diseñamos e implementamos un sistema de SLAM visual capaz de funcionar
con robustez en entornos poblados debido a que los robots de servicio trabajan en espacios compar-
tidos con personas. El sistema presentado es capaz de enmascarar las zonas de imagen ocupadas

ix

por las personas, lo que aumenta la robustez, la reubicación, la precisión y la reutilización del mapa
geométrico. Además, calcula la trayectoria completa de cada persona detectada con respecto al mapa
global de la escena, independientemente de la ubicación de la cámara cuando la persona fue detectada.

Por último, centramos nuestra investigación en aplicaciones de rescate y seguridad. Despleg-
amos un equipo de robots en entornos que plantean múltiples retos que implican la planificación de
tareas, la planificación del movimiento, la localización y construcción de mapas, la navegación se-
gura, la coordinación y las comunicaciones entre todos los robots. La arquitectura propuesta integra
todas las funcionalidades mencionadas, asi como varios aspectos de investigación novedosos para lo-
grar una exploración real, como son: localización basada en caracterı́sticas semánticas-topológicas,
planificación de despliegue en términos de las caracterı́sticas semánticas aprendidas y reconocidas, y
construcción de mapas.

x

Abstract

In order to perform a task, robots need to be able to locate themselves in the environment. If a
robot does not know where it is, it is impossible for it to move, reach its goal and complete the
task. Simultaneous Localization and Mapping, known as SLAM, is a problem extensively studied
in the literature for enabling robots to locate themselves in unknown environments. The goal of this
thesis is to develop and describe techniques to allow a service robot to understand the environment
by incorporating semantic information. This information will also provide an improvement in the
localization and navigation of robotic platforms. In addition, we also demonstrate how a simple robot
can reliably and efficiently build the semantic maps needed to perform its quotidian tasks.

The mapping system as built has the following features. On the map building side we propose
the externalization of expensive computations to a cloud server. Additionally, we propose methods to
register relevant semantic information with respect to the estimated geometrical maps. Regarding the
reuse of the maps built, we propose a method that combines map building with robot navigation to
better explore a room in order to obtain a semantic map with the relevant objects for a given mission.

Firstly, we develop a semantic Visual SLAM algorithm that merges traditional with known ob-
jects in the estimated map. We use a monocular EKF (Extended Kalman Filter) SLAM system that has
mainly been focused on producing geometric maps composed simply of points or edges but without
any associated meaning or semantic content. The non-annotated map is built using only the informa-
tion extracted from an image sequence. The semantic or annotated parts of the map –the objects– are
estimated using the information in the image sequence and the precomputed object models.

As a second step we improve the EKF SLAM presented previously by designing and implement-
ing a visual SLAM system based on a distributed framework. The expensive map optimization and
storage is allocated as a service in the Cloud, while a light camera tracking client runs on a local
computer. The robot’s onboard computers are freed from most of the computation, the only extra
requirement being an internet connection.

The next step is to exploit the semantic information that we are able to generate to see how to
improve the navigation of a robot. The contribution of this thesis is focused on 3D sensing which we
use to design and implement a semantic mapping system.

We then design and implement a visual SLAM system able to perform robustly in populated
environments due to service robots work in environments where people are present. The system is
able to mask the image regions occupied by people out of the rigid SLAM pipeline, which boosts
the robustness, the relocation, the accuracy and the reusability of the geometrical map. In addition, it
estimates the full trajectory of each detected person with respect to the scene global map, irrespective
of the location of the moving camera at the point when the people were imaged.

Finally, we focus our research on rescue and security applications. The deployment of a multi-

xi

robot team in confined environments poses multiple challenges that involve task planning, motion
planning, localization and mapping, safe navigation, coordination and communications among all the
robots. The architecture integrates, jointly with all the above-mentioned functionalities, several novel
features to achieve real exploration: localization based on semantic-topological features, deployment
planning in terms of the semantic features learned and recognized, and map building.

xii

Contents

List of Figures xvii

List of Tables xxiii

1. Introduction 1
1.1. Service Robotics: Concept and Architecture . 2
1.2. Contributions and organization of the thesis . 4

1.2.1. Contributions . 10
1.2.2. Related contributions . 11
1.2.3. Open-Source Software . 11
1.2.4. Videos . 12

2. Towards Semantic SLAM using a Monocular Camera 13
2.1. Introduction . 13
2.2. Related work . 14
2.3. Notation and general overview . 15
2.4. Object model . 15
2.5. Object recognition . 17
2.6. Monocular SLAM . 18

2.6.1. Standard Mode EKF . 18
2.6.2. State Augmentation with Past Camera Pose 18
2.6.3. Object Insertion . 19
2.6.4. Relocalization . 19

2.7. Experimental results . 19
2.7.1. Desktop Environment . 19
2.7.2. Hospital Room Environment –RoboEarth Project 23

2.8. Discussion . 25

3. A Cloud framework for Cooperative Tracking And Mapping 27
3.1. Introduction . 27
3.2. Related work . 30
3.3. A discussion on the SLAM components . 30
3.4. The SLAM formulation as Tracking and Mapping 31

3.4.1. Mapping . 31
3.4.2. Tracking . 32

xiii

Contents

3.4.3. Relocation . 33
3.4.4. Place recognition and ego-location . 34
3.4.5. Map fusion . 34

3.5. C2TAM: A SLAM in the Cloud . 36
3.5.1. Mapping as a Cloud Service . 36
3.5.2. Tracking as a client in the robot . 36
3.5.3. Relocation as a client in the robot . 37
3.5.4. Place recognition and ego-location in two steps 37
3.5.5. Map fusion as a Cloud service . 39

3.6. Experimental results . 39
3.6.1. Cost and Bandwidth Analysis . 39
3.6.2. Relocation in Multiple Maps . 41
3.6.3. Overlapping map fusion . 44
3.6.4. Cooperative SLAM . 46

3.7. Discussion . 49

4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach 53
4.1. Introduction . 53
4.2. Related Work . 55
4.3. System overview . 56
4.4. Action Recipes for Active Perception Tasks . 56

4.4.1. SemanticMapping Action Recipe . 57
4.4.2. ObjectSearch Action Recipe . 58

4.5. Robot Capabilities for Active Perception . 59
4.6. Reasoning about Object Locations . 62
4.7. Experiments . 63

4.7.1. Real-world experiments . 64
4.7.2. Simulation Experiments . 66
4.7.3. Performance Improvements . 67

4.8. Discussion . 71

5. Semantic Visual SLAM in Populated Environments 73
5.1. Introduction . 73
5.2. Related work . 75
5.3. System Description . 76

5.3.1. Frontend process . 76
5.3.2. Backend process . 78
5.3.3. Camera Relocation . 79
5.3.4. People detection and human activity layer 79

5.4. Experiments . 80
5.5. Discussion . 84

6. Service robotics in confined and structured environments 85
6.1. Introduction . 85
6.2. Related Work . 87

6.2.1. Challenges . 88

xiv

Contents

6.3. System Description . 90
6.3.1. Overview . 90
6.3.2. Localization and Map Building . 91
6.3.3. Navigation and obstacle avoidance . 91
6.3.4. Recognition of Semantic Features . 93
6.3.5. Communication module . 94

6.4. Deployment Planning and Navigation . 95
6.5. Experiments . 97

6.5.1. Simulations . 98
6.5.2. Field experiments . 101

6.6. Lessons learned . 104
6.6.1. Localization . 105
6.6.2. Navigation . 105
6.6.3. Semantic feature recognition . 106
6.6.4. Communication . 107

6.7. Discussion . 107

7. Conclusions 109
7.1. Future work . 110

8. Conclusiones 113
8.1. Trabajo futuro . 114

A. Creating and using RoboEarth object models 117
A.1. Introduction . 117
A.2. Related work . 117
A.3. Recording arbitrary objects . 117
A.4. Database . 118
A.5. Object detection and pose estimation . 119

A.5.1. RGB camera . 119
A.5.2. Kinect camera . 119

A.6. Conclusion . 120

B. Real-Time 3D Reconstruction using the Cloud 121
B.1. Introduction . 121
B.2. System overview . 121

B.2.1. Client-side . 122
B.2.2. Server-side . 122

B.3. Experimental results . 123
B.4. Conclusions . 123

Bibliography 125

xv

xvi

List of Figures

1.1. Service robots in different scenario applications. 2
1.2. Components that implements the main capabilities of a service robots. 3
1.3. Left: Features map an camera trajectory computed by a classical visual SLAM algo-

rithm. Right: known objects detected in the scene and introduced in the map. 4
1.4. Two camera clients building a cooperative map of the same environments using C2TAM

algorithm. 5
1.5. Action recipe execution by a service robot. Right upper image presents the semantic

map and Octomap generated, and features and 3D reconstruction is showed in right
lower image. 6

1.6. Left: Features extracted on the image and people detections. Right: 3D map recon-
struction using depth information and people instances and its trajectories. 7

1.7. Robot deployment in a maze-like environment, corresponding to a real mine (Santa
Marta, Toledo) and high level plan performed. 9

2.1. Overview of the algorithm using figures from our experiments. 16
2.2. The top row and bottom left images show 3 out of the 20 images that were used for

the model of the teddy bear in our first experiment. Notice the SURF features used for
recognition superimposed over the images. The bottom right image shows the dense
3D model that will be registered in the SLAM map. 17

2.3. Object recognition thread results, showing columnwise the specific frames where the
six objects were detected. The top row shows the image in the monocular sequence
input to the Semantic SLAM, the middle row shows the face of the object model, and
the coloured lines are the matches. The object is inserted in the map based on those
correspondences. The bottom row shows the dense point cloud of the object over the
image, proving the correct alignment. 20

2.4. Representative images (at the top) and 3D estimation at their respective times (at the
bottom) for the desktop experiment. (a) Initial map, still with no recognized objects.
(b) The tetra pack has been recognized, inserted and is being tracked. (c), (d) and (e):
the Volkswagen replica, chewing gum packet and the postcard has been inserted. (g)
The two remaining objects –postcard and teddy bear– are inserted. (h) The camera
moves back close to the starting position, revisiting all previous objects. (h) Final
frame of the sequence and 3D view of the objects registered in a common reference
frame. 21

xvii

List of Figures

2.5. Computational cost (in blue) and state vector size (in red) for the experiment. Notice
that the algorithm runs, in the worst case, at around 7 Hz for a state vector of size 600. 22

2.6. Representative images (at the top) and 3D estimation at their respective times (at the
bottom) for the hospital room experiment. The tracked features are displayed in the
images as circles. The inserted objects, represented as coloured prismatic solids, are
also reprojected at the images. The 3D views show the camera trajectory up to this
frame as a yellow line, the point feature uncertainties as ellipses and the inserted
objects. (a), frame #34, the cabinet has been already recognized and inserted. (b),
frame #241, the robot goes forward. Notice that, although the cabinet is not seen in
the image, its 3D position remains registered. (c), frame #912, the robot turns left
and faces the cabinet and the tetra pack, which is detected and registered. (d), the
robot turns, recognizing and registering the bed. (e) Robot location at the end of the
experiment. 23

2.7. SLAM results at the end of the hospital room experiment. (a), top-view of the camera
trajectory, estimated salient point features and recognized objects. (b), side-view of
the camera trajectory and recognized objects: the tetra pack over the cabinet, both at
the left; and the bed at the right. 24

3.1. Computer intensive bundle adjustment is performed as a cloud service running on a
high performance server. Camera location with respect to the map is computed in low
performance mobile devices. Several tracking threads can be run on the same map
data. The data flow from tracking to mapping are the new keyframes when gathered
images contain new information with respect to the available map; and from mapping
to tracking is the computed map. 28

3.2. Coarse grain place recognition in the Cloud server. The robot client R1 sends a frame
from the sequence to the server; that tries to relocalize the camera with respect to
every keyframe in every map in the database using the algorithm in section 3.4.3. If
there is a match a set of close keyframes is downloaded to the client for a fine grain
place recognition. 36

3.3. Fine grain place recognition on the robot client. The robot client tries to relocate with
respect to the set of candidates coming for the first stage, using the algorithm from
section 3.4.3 . 37

3.4. Map fusion in the Cloud. a) The robot client R1 uploads a new keyframe C 1
3 to the

map M1. b) The keyframe C 1
3 in M1 presents an overlap with the keyframe C 2

2 in M2.
c) M1 and M2 are fused into M1,2 and the fused map is downloaded by the robot client
R1. 38

3.5. Computational cost of the camera tracking client for a 4961 frames experiment and
map size. Notice the almost constant complexity and low cost of the tracking thread,
even when the map size grows. 40

3.6. Data flow produced by C2TAM in a sequence of 4961 frames (around 3 minutes). Red
stands for data from the mapping service to the tracking client, blue stands for data
from the tracking client to the mapping server. Each peak is registered at the time the
data arrives. The average data flow for this experiment has been 1MB/s, below the
usual wireless bandwidth which is 3.75MB/s. 40

3.7. Keyframes and map for the desktop scene. 41
3.8. Keyframes and map for the wall and bookshelf scene. 42
3.9. Keyframes and map for the hospital room scene. 43

xviii

List of Figures

3.10. Sample keyframes from the sequence traversing the whole laboratory. 43
3.11. Set of the measurements taken on the scenarios. 44
3.12. Several snapshots of the maps for the map fusion experiment. 45
3.13. Images of the keyframes of the previous (left one) and the actual map (right one). . . 46
3.14. Panoramic snapshot of the experimental environment room. 46
3.15. Initial images taken by first tracker (left) and second tracker (right). 47
3.16. 3D estimated maps by first tracker (left) and second tracker (right). 47
3.17. Images of both trackers on the same area. First tracker (left one) second tracker (right

one). 47
3.18. 3D maps before and after fusion process. 48
3.19. Cooperative update of the map. 49
3.20. 3D map reconstruction by the two cameras. 50

4.1. Overview of the proposed system. In the beginning, the RoboEarth knowledge base
(right) contains only the elements above the dotted line: An action recipe describing
the exploration task, a set of object models and the robot’s SRDL description. When
a robot requests an action recipe, it is matched against its capability model and, if all
required capabilities are available, a plan is generated. During execution of this plan
(left part), the robot first downloads a set of object models that are to be expected in
this environment and uses these models to build a semantic map. After execution,
it uploads the generated set of maps to RoboEarth (lower part of the right block) to
make them available to other robots. 54

4.2. Generation of the execution plan. The recipe (left) is an OWL document composed
of parametrized subactions, described in terms of OWL classes. To generate the plan,
the system looks in the database for code generating functions that are applicable on
the specific instance and robots (bottom), and inserts the resulting function into the
final execution plan (right). 57

4.3. ObjectSearch Action recipe task execution . 58
4.4. A sub-branch of the SRDL ontology stating some of the robot capabilities. All the

mandatory compatibilities for active perception are highlighted in blue. 61
4.5. Visualization of the frontier-based exploration algorithm. Black contours represent

known obstacles and the green grid cells encode the inflation for safe navigation. The
dark blue arrows represent unexplored frontiers. The next frontier to be explored is
coded as a light blue arrow. 62

4.6. Visibility costmap computed from the semantic environment map, the semantic robot
model and geometric object models downloaded from RoboEarth. The colors indicate
the amount of the object that is visible from a given camera of the robot considering
its pose. 63

4.7. Initial (left) and final (right) steps of the exploration algorithm. The dark blue arrows
represent the currently unexplored frontiers. 64

4.8. Object recognition events: bed (left) and cabinet (right). 65
4.9. Detailed storage format for a semantic map composed by two objects, a bed and a cab-

inet. Each object instance contains information about the type of object, dimensions,
recognition model used, time detection and its location into the map. 66

4.10. Map of visual features (left), and 3D occupancy grid OctoMap (right). 67
4.11. Visibility costmap (left). Occupancy map and, in blue, the selected search robot loca-

tions (right) . 68

xix

List of Figures

4.12. Computed robot locations for detecting the object, in blue, and planned trajectory, in
green (left). Final semantic map including the bottle detected on top of the cabinet
(right). 68

4.13. Travelled path (blue) in simulated object search. Top row displays Amigo, and bottom
row displays Pioneer. Left column for the room, right column for the suite. 69

4.14. Response time of the tracking process. Top graph C2TAM running mapping in the
cloud, botton graph all C2TAM processes running onboard the robot. 70

4.15. Number of detections and time performance of the object detector as function of the
subdatabse size. Top, naı̈ve recognition. Bottom Bag of Words preselection 70

4.16. Art Gallery exhaustive search. Blue squares code the search locations, and red sectors
represent the camera field of view. Room: 40 locations (left). Suite: 100 locations
(right) . 71

5.1. (Top row) Typical frames of a populated scene. The human tracker detections are
overlaid in colours identifiying the person. (Bottom row) the two layers map. The
geometrical unpopulated map is a dense occupancy map after removing people pop-
ulating the scene. The human activity semantic layer is the set of trajectories of the
detected persons with respect to the unpopulated map. 74

5.2. Typical VSLAM parallel architecture and people detector integration. 76
5.3. (a) Raw RGB. (b) Interest point detection and human activity masking. (c) Raw RGB-

D depth channel. (d) RGB-D point depth channel after removing people depth points. 77
5.4. Effect of human activity masking per each frame of the sequence ”Translation” pro-

cessed by ORBSLAM2. Top row displays a representative case. 80
5.5. Effect of human activity masking on relocation. ATE after relocation per each frame

of the ”Translation” sequence processed by ORBSLAM2. 82
5.6. 3D reconstruction and Octomap using unmasked 3D point cloud (a,c), and using the

human activity masked data (b,d). 82
5.7. Sparse map and camera trajectory (top), and geometrical and human activity layer

(bottom). 83

6.1. Partial map of the Santa Marta mine. Courtesy of Minera Santa Marta S.A. (left).
Somport tunnel and small vaults and lateral galleries (right). 86

6.2. Conceptual architecture of the system. The different modules are: COmmunication
Module (COM), Reactive Navigation Module (RNM), Navigation Control Module
(NCM), Monte Carlo Localization (MCL), Simultaneous Localization And Mapping
(SLAM), Feature Analyzer (FA), Feature Detector module (FD), State Machine mod-
ule (SM), and teleoperation module (JOY). 90

6.3. Diagram of the safety zones. 92
6.4. Data sensor segmentation and autonomous goal computation. 92
6.5. Example of scenario and its associated topological map. The symbols in the nodes

represent some of the different features that can be recognized. Their meaning is
defined in Table 6.6. 93

6.6. Semantic features learned for topological localization. 93
6.7. 95

xx

List of Figures

6.8. An example of the steps of the algorithm. At the beginning all the robots are placed
close to the base station (a). The leader robot starts moving forward looking for the
first topological feature specified in the plan of the mission (the second left gallery
in this example). At the same time, it is localized at the base station and the laser
readings and position provided through the network are used to build simultaneously
the map of the environment. When the link quality falls below a certain threshold, the
follower R2 is required to move and starts going after the leader in order to act as a
relay in order to provide network connectivity (b). When the leader robot approaches
the feature it is looking for, it is stopped and all the slaves are requested to reach
the leader (c). During this phase, if the link quality between the base station R0 and
the last follower R4 falls below the cited threshold, the latter is stopped in its current
position, becoming a fixed relay (d). Once the regrouping is complete, the leader
enters the feature while, at the same time R2 takes its place followed by all the still
mobile followers (e), allowing the line of sight between both —and thus between each
pair or robots — to be guaranteed at every moment. After that, a chain like that of the
first shot is set up in the lateral gallery. At this moment the last mobile follower R3
is fixed in the corner and becomes (another) fixed relay responsible for avoiding the
corner and guaranteeing the connection of the robot R2 with the base station (f). . . . 96

6.9. Global map of Santa Marta mine and partial map where simulation experiment has
been performed. Courtesy of Minera Santa Marta S.A. 98

6.10. Path followed by the robots in a zone of the mine represented in figure 6.1.a (simulation). 99
6.11. Feature detector probability. In blue +, in red a, the first to be reached, the only ones

appearing in the mission of figure 6.1. 100
6.12. Simulation environment divided into three areas according to level of exploitation. . 101
6.13. Snapshot of the robots navigating the Somport Tunnel 101
6.14. Screenshots from the real experiment. We can see the robot formation and the base

station at the starting point (a), how the leader robot approaches the lateral gallery
while the follower is fixed as relay (b), the leader robot exploring (teleoperation) the
zone of interest (c) and a snapshot received at base station (d). 102

6.15. Final configuration of the robots in the field experiment (left) and detail of the zone
identified by the red rectangle (right). 103

6.16. Feature detector probability. In blue, a features detected; in red, u feature at the end
of the corridor. Sporadic potholes detected on the floor appearing in the figure are
filtered by the feature detector. 103

6.17. Complete map of the environment obtained at the base station. 104
6.18. Maps obtained offline (a) and online (b). 105
6.19. Different features found in the environment: (a) overlapped feature, (b) ambiguous

feature, (c) heavily distorted feature. 106

A.1. Object recording setup (left) and merged point cloud (right) 118
A.2. Pose estimation using a Kinect camera and the method presented in section IV-B. The

arrows indicate the position of the camera. The marker pattern is visible on the left. . 119

B.1. System overview of the 3D reconstruction method presented. 122
B.2. Experimental environment (left image) and 3D model of this environment generated

(right image). 123

xxi

xxii

List of Tables

1.1. Classification of a service robot by application areas. 2

3.1. Comparison between C2TAM measurements and the ground truth. All the measure-
ments are in meters. 44

5.1. System performance over KTP dataset sequences using ORBSLAM2 and C2TAM. . 78
5.2. Camera relocation performance over KTP dataset sequences using ORBSLAM2. . . 81

6.1. Per class true positive rate obtained with linear and non-linear method on the two
areas (%): A (poorly distorted area), B (mine face area). 100

xxiii

xxiv

Chapter 1
Introduction

Robotics has experienced almost unbelievable progress in the last 50 years. Robots now form part
of our working lives in factories and industries. In the near future, robots will probably enter our
homes and form part of our daily lives, as predicted by many science fiction movies. They will be
used in different areas (see figure 1.1) including domestic tasks, personal transportation, security and
surveillance, field robotics, rescue operations, etc.

In order to perform a task, robots need to be able to locate themselves in the environment. If a
robot does not know where it is, it is impossible for it to be able to move around and achieve the goal
of its task. SLAM, standing for Simultaneous Localization and Mapping, is an extensively-studied
problem in the literature. The goal of SLAM algorithms is to solve the problems of placing a mobile
robot in an unknown environment and position and ensure that it is able to build a consistent map
of the environment incrementally while using that map to determine its own location. Although they
produce an accurate localization, the maps are mainly composed of features without meaning (points,
lines). Adding semantic information such as ”objects” or ”people” with referenced locations on the
map built by the robot allows a better understanding of the environment than the metric location
provided by featured SLAM methods. The richer and more complex the environment model is, the
more useful it becomes for a robot in order to perform autonomous tasks.

The ability to efficiently create semantic environment models and to use them intelligently to
locate objects will become increasingly important as more and more robots enter human living and
working environments. To successfully operate in such environments, robots will have to face the
open-world challenge, i.e. they will need to be able to handle large numbers of (novel) objects located
in various places, for example on top of or inside furniture, and they will need to quickly become
acquainted with novel environments. This poses several challenges for today’s robots, for example:
How can a robot efficiently explore an environment to create a map of the objects therein? What are
the most important objects to look out for? How can the robot exploit the semantic information to
guide a search? How can the visual perception system handle large numbers of object models without
slowing down recognition or detecting more false positives? How can it profit from information
collected by other robots? We believe that finding solutions to these problems will be crucial to scale
object search tasks from restricted and well-known laboratory environments to more open and diverse
scenes.

The aim of this thesis is to enable a service robot to understand the environment by incorporating
semantic information. This information will also provide an improvement in the localization and
navigation of robotic platforms. In addition to a better understanding of the environment, it will

1

Chapter 1. Introduction

Figure 1.1.: Service robots in different scenario applications.

provide the possibility of interacting with it.

1.1. Service Robotics: Concept and Architecture

Service robotics is the area addressing the development of robots that are capable of interacting with
the environment and with the humans within it. The function of a service robot is to assist a human
being in the performance of different tasks that can be dangerous, repetitive, dirty, or dull for a person.
These robots can be autonomous or teleoperated remotely by means of a central control station.

Service robots for personal/domestic use Service robots for professional use
Robots for domestic tasks Field robotics Rescue & security applications

Entertainment robots Professional cleaning Defense applications
Elderly and handicap assistance Inspection and maintenance systems Underwater systems

Personal transportation (AGV for persons) Construction and demolition Powered Human Exoskeletons
Home security & surveillance Logistic systems Unmanned aerial vehicles

Other Personal / domestic robots Medical robotics

Table 1.1.: Classification of a service robot by application areas.

The International Federation of Robotics (IFR) has proposed a definition for a service robot:
”A service robot is a robot which operates semi- or fully autonomously to perform services useful
to the well-being of humans and equipment, excluding manufacturing operations”. Service robots
are designed to interact with people and different areas. The classification of a service robot for

2

1.1. Service Robotics: Concept and Architecture

personal/domestic use or for professional use is done according to its intended application. Table 1.1
summarizes the application areas. Furthermore, in order to be able to perform its tasks in a given
environment, the robot must have several capabilities (figure 1.2):

• Mapping: the ability to generate a model of the environment and establish a frame of reference
for its later use.

• Localization: to establish its own position and orientation within the frame of reference.

• Perception: the capability of sensing the environment and acquiring and processing informa-
tion from it.

• Path planning: the ability to search and get control strategies to obtain from the robot suitable
and safe trajectories of the highest quality in its movement.

• Obstacle avoidance: to ensure obstacle-free navigation. The robot must be able to react in real
time to the obstacles that appear in its dynamic environment.

• Communications: enables data sharing among robots, coordination with other robots, and even
human use.

LOCALIZATION MAPPING

PATH PLANNING
OBSTACLE
AVOIDANCE COMMUNICATIONS

PERCEPTION

Figure 1.2.: Components that implements the main capabilities of a service robots.

3

Chapter 1. Introduction

1.2. Contributions and organization of the thesis

This thesis has been developed within the framework of different research projects. This has given
us the ability to understand what components are necessary for a robotic platform to move in an
environment and how they have to be integrated. We have also been able to see the strengths and
weaknesses of each of the basic components integrated into the software architecture of a service
robot. In this thesis we have focused our contributions on the introduction of semantic information
in SLAM maps, and the exploitation of such information for robot navigation. The core of the thesis
is the development of visual SLAM systems and the incorporation of semantic information into the
generated maps. On the map building side, we propose mapping methods able to build accurate
geometrical maps efficiently in mobile devices by the externalization of expensive computations to
a cloud server. Additionally, we propose methods to register relevant semantic information such as
people, objects or places with respect to the estimated geometrical maps. Maps not only have to be
built, they also have to be used by autonomous robots to control their interaction with the environment.
We propose a method that combines map building with robot navigation to better explore a room in
order to obtain a semantic map with the relevant objects for a given mission. The evaluation of this
proposal has been carried out in office and hospital room environments. Furthermore, thanks to the
research projects in which we have been working throughout the development of this thesis, we have
been able to apply the same semantic and distributed mapping principles to a team of robots for
intervention in confined environments. The main blocks and contributions of this thesis are detailed
below, as well as a brief introduction to them. The related publications are also detailed in each block,
adding references to section 1.2.1 where a summary of all the contributions can be found.

Map composed of sparse points and objects

The first step of this thesis presented in chapter 2 is to develop a semantic Visual SLAM algorithm
that merges in the estimated map traditional meaningless points with known objects (see figure 1.3).
We use a monocular EKF-SLAM system that has been mainly focused on producing geometric maps
composed simply of points or edges, but without any associated meaning or semantic content. The

Figure 1.3.: Left: Features map an camera trajectory computed by a classical visual SLAM algorithm.
Right: known objects detected in the scene and introduced in the map.

4

1.2. Contributions and organization of the thesis

known object models are automatically computed from a sparse set of images gathered by cameras
that may be different from the SLAM camera, creating a database of objects. The contribution in this
work is to design and implement a system that runs an EKF monocular SLAM parallel to an object
recognition thread. The semantic or annotated parts of the map –the objects– include the estimated
position for each object within the map using the information in the image sequence and the precom-
puted object models. This object detector algorithm informs about the presence of an object in the
sequence by searching for SURF correspondences and checking afterwards their geometric compati-
bility. When an object is recognized it is inserted in the SLAM map, its position being measured and
refined by the SLAM algorithm in subsequent frames. This was one of the first mapping systems able
to provide object locations in real time. However, the mapping system, based on EKF, scales poorly
with the map size, limiting its size to a few hundred features. Similarly, the search for the objects in
the database was based on an exhaustive search for matches between the current image and all the
images defining the objects in the database, which also scaled poorly with the database size. For this
reason, in chapters 3 and 4 we can see how these scaling limitations are overcome. The contribution
of this work was reported in [C1] and [W4]. In [V1] and [V2] we can see videos of the experimental
validation.

Figure 1.4.: Two camera clients building a cooperative map of the same environments using C2TAM
algorithm.

5

Chapter 1. Introduction

Figure 1.5.: Action recipe execution by a service robot. Right upper image presents the semantic
map and Octomap generated, and features and 3D reconstruction is showed in right lower
image.

Cooperative mapping in the cloud

Running a SLAM algorithm by an autonomous mobile robot is a computationally demanding pro-
cess for medium and large-scale scenarios, in spite of the progress made both in the algorithmic and
hardware areas. As a consequence, a robot with SLAM capabilities has to be equipped with the latest
computers whose weight and power consumption might limit its autonomy. In chapter 3 we present
the second contribution in the development of this thesis. We have designed and implemented a visual
SLAM system based on a distributed framework where the expensive map optimization and storage is
allocated as a service in the Cloud, while a light camera tracking client runs on a local computer. Ad-
ditionally, the system is able to build a map cooperatively using two or more robots. Figure 1.4 shows
a cooperative mapping execution where two camera clients T1 and T2 are building a common map
M of an office. Unlike the method used in the previous work presented in chapter 2, this algorithm
is based on keyframes and provides a significant improvement in terms of the accuracy and size of
the estimated map. The robot’s onboard computers are freed from most of the computation, the only
extra requirement being an internet connection. The experimental validation is focused on showing
real-time performance for a single-robot and cooperative SLAM using an RGBD camera. The system
provides the interface to a map database where: 1) a map can be built and stored, 2) stored maps can
be reused by other robots, 3) a robot can fuse its map online with a map already in the database, and
4) several robots can estimate individual maps and fuse them together if an overlap is detected. Re-
garding the map size, we can handle maps up to 7000 points while maintaining real time performance.
This contribution was reported in [J1], [W1] and [W3]. In [V3] and [V4] we can see videos of the
experimental validation. We also release the software related to this contribution in [S1].

6

1.2. Contributions and organization of the thesis

Figure 1.6.: Left: Features extracted on the image and people detections. Right: 3D map reconstruc-
tion using depth information and people instances and its trajectories.

Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Once we have seen the importance of semantic maps in chapter 3, we can exploit the semantic infor-
mation to improve the navigation of a robot. In chapter 4, we summarize the cloud mapping facilities
developed within the RoboEarth project ∗, which aims to design a knowledge-based system to provide
web and cloud services that can transform a robot into an intelligent one. Our contribution is focused
on 3D sensing, designing and implementing a semantic mapping system. The system improves the
proof of concept presented in chapter 2 in two fundamental aspects. On the one hand, the visual
SLAM algorithm presented in the previous section (detailed in chapter 3) is used in contrast to the
monocular EKF with the corresponding improvement in accuracy and map size. Secondly, the object
detection algorithm has been improved and in this system a Bag of Words object recogniser is used
with the corresponding boost in the database size from a few tens to a few hundreds or even thousands
of objects. The semantic map is composed of (1) an ontology to code the concepts and relations in
maps and objects, and (2) a SLAM map providing the scene geometry and the object locations with
respect to the robot. We propose to ground the terminological knowledge in the robot perceptions by
means of the SLAM map of objects. We demonstrate how a simple robot can reliably and efficiently
build the semantic maps needed to perform its quotidian tasks. In addition, we show the synergetic
relation of the SLAM map of objects that grounds the terminological knowledge coded in the ontol-
ogy. For validating the system, we investigate two action recipes that embody semantic map building
in a simple mobile robot (see figure 1.5). The first recipe enables semantic map building for a novel
environment (a hospital room) while exploiting available prior information about the most likely ob-
jects present in those environments, looking for relevant and easy to find objects in the room which,
once inserted in the map, can help in finding other objects more difficult to find due to occlusion. The
second recipe searches for a new object, with the efficiency boosted by reducing the time spent on
searching for the object by means of a directed search, thanks to the reasoning in a previous semantic
map of the room. This contribution was reported in [J2] and [W2]. In [V5] we can see a video of the
experimental validation.

∗http://roboearth.ethz.ch

7

http://roboearth.ethz.ch

Chapter 1. Introduction

Semantic Visual SLAM in Populated Environments

In contrast to the case presented in previous work (chapter 4), most service robots work in envi-
ronments where the people are presented. In chapter 5, we propose a visual SLAM system able to
perform robustly in populated environments. The image stream from a moving RGB-D camera is the
only input to our system. The main contributions of this work are: 1) improving the SLAM system
performance when it is working in populated scenarios; 2) providing semantic information about the
people’s activity, which can be used by the robot to plan or execute its tasks. A real-time human
tracker is embedded into the system. Figure 1.6 shows the RGB image with features extracted by
the SLAM algorithm, the bounding box of people detected and 3D map reconstruction with people
instances and their trajectories in the map frame. The computed map in real-time is composed of
two layers: 1) The unpopulated geometrical layer, which describes the geometry of the bare scene
as an occupancy grid where pieces of information corresponding to people have been removed; 2)
A semantic human activity layer, which describes the trajectory of every person with respect to the
map, labelling areas as ”traversable” or ”occupied”. The system has been evaluated using the visual
SLAM algorithm presented in chapter 3 and another state of the art visual SLAM algorithm based
on keyframes. The pipeline of the approach presented is as follows: first, to mask the image regions
occupied by people out of the rigid SLAM pipeline, which boosts the robustness, the relocation, the
accuracy and the reusability of the geometrical map in populated scenes. Secondly, to estimate the
full trajectory of each detected person with respect to the scene map, irrespective of the location of
the moving camera when the person was imaged. People are recognized in the scene and are inserted
into the generated SLAM map, in the same way as we inserted the objects in the works presented in
chapter 2 and chapter 4. This contribution was reported in [C2]. In [V6] we can see a video of the
experimental validation.

Service robotics in confined and structured environments

One of the applications of service robotics, as shown in table 1.1, focuses on intervention, rescue,
or security applications. As mentioned above, the participation in several research projects whose
experimentation was performed in these kinds of environments gave us the opportunity to apply the
same concepts of mapping and semantic perception presented in chapter 4 to safety, security and
rescue robotics. The works described in chapters 2-5 are oriented mainly to the semantic interpre-
tation of scenes. Chapter 6 is devoted to developing a complete robotic system in which semantic
scene interpretation is integrated to other robotic functionalities. Furthermore, in chapters 2-5 the
semantic information handled were people and objects, while in chapter 6 we focus on the search
for places. Deploying a multi-robot team in such confined environments poses multiple challenges
that involve task planning, motion planning, localization and mapping, safe navigation, coordination
and communications among all the robots. Our contribution is focused on three aspects: localiza-
tion based on semantic-topological features, deployment planning in terms of the semantic features
learned and recognized, and map building. In contrast to previous works, in this approach we use
localization algorithms based on lidar sensor data. However, the same principle based on the cloud
robotics paradigm presented in chapter 3 is used where the map building is carried out on the server
side, in this case at the central station. We also produce a high-level plan of instructions similar to the
action recipes introduced in chapter 4, where navigation based on semantic information is presented.
Figure 1.7 shows an example of a high-level plan based on relevant places (crosses, intersections, cor-
ridors) in the scenario, which are detected and recognized, and the map built by the robot team. This
contribution was reported in [J3] and all the related contributions presented in the field of autonomous

8

1.2. Contributions and organization of the thesis

navigation and localization in [J4, J5, B1, B2, B3, B4]. In [V6] and [V7] we can see videos of the
experimental validation. Lessons learned from many experiments carried out in these scenarios are
reported as a useful contribution in the robotics field.

Figure 1.7.: Robot deployment in a maze-like environment, corresponding to a real mine (Santa Marta,
Toledo) and high level plan performed.

9

Chapter 1. Introduction

1.2.1. Contributions

This work is composed of the following publications

Journal articles

• [J1] Riazuelo et al. (2014b). C2TAM: A Cloud Framework for Cooperative Tracking and
Mapping. L. Riazuelo, Javier Civera, J. M. M. Montiel. Robotics and Autonomous Systems
(RAS). April 2014, vol. 62(4), pp. 401-413.

• [J2] Riazuelo et al. (2015). RoboEarth Semantic Mapping: A Cloud Enabled Knowledge-
Based Approach. Luis Riazuelo, Moritz Tenorth, Daniel Di Marco, Marta Salas, Dorian
Gálvez-López, Lorenz Mösenlechner, Lars Kunze, Michael Beetz, Juan D. Tardós, Luis Mon-
tano, J. M. M. Montiel. IEEE Transactions on Automation Science and Engineering (T-ASE).
Special Issue on Cloud Robotics and Automation. April 2015, vol. 12(2), pp. 432-443.

• [J3] Tardioli et al. (2016). Robot teams for intervention in confined and structured envi-
ronments. Danilo Tardioli, Domenico Sicignano, Luis Riazuelo, Antonio Romeo, José Luis
Villarroel, Luis Montano. Journal of Field Robotics (JFR), 2016. Special Issue on Safety,
Security, and Rescue Robotics (SSRR). March 2016.

International Conferences

• [C1] Civera et al. (2011). Towards Semantic SLAM using a Monocular Camera. J. Civera,
D. Gálvez-López, L. Riazuelo, J. D. Tardos, J.M.M Montiel. 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS2011), San Francisco, California, 2011.

• [C2] Riazuelo et al. (2017). Semantic Visual SLAM in Populated Environments. Luis Ri-
azuelo, Luis Montano and J. M. M. Montiel. The European Conference on Mobile Robotics
(ECMR 2017), Paris (France), 2017.

International and National Workshops

• [W1] Riazuelo et al. (2014a). Real-Time 3D Reconstruction using the Cloud. L. Riazuelo,
Javier Civera and J. M. M. Montiel. III Jornada de Jóvenes Investigadores del I3A. Instituto
Universitario de Investigación en Ingenierı́a de Aragón, Universidad de Zaragoza - Spain, 29
May 2014.

• [W2] Riazuelo et al. (2013). RoboEarth Web-Enabled and Knowledge-Based Active Per-
ception. L. Riazuelo, M. Tenorth, D. Di Marco, M. Salas, L. Mösenlechner, L. Kunze, M.
Beetz, J. D. Tardos, L. Montano, J. M. M. Montiel. Workshop on AI-based Robotics. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’13), Tokyo - Japan, 3-8
November 2013.

• [W3] Riazuelo et al. (2013). C2TAM: A First Approach to a Cloud framework for Coop-
erative Tracking And Mapping. L. Riazuelo, Javier Civera and J. M. M. Montiel. Work-
shop on Cloud Robotics: Online Knowledge Bases, Web Services, and Cloud Computing for
Robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13),
Tokyo - Japan, 3-8 November 2013.

10

1.2. Contributions and organization of the thesis

• [W4] Marco et al. (2012). Creating and using RoboEarth object models. Daniel Di Marco,
Andreas Koch, Oliver Zweigle, Kai Häussermann, Björn Schießle, Paul Levi, Dorian Gálvez-
López, Luis Riazuelo, Javier Civera, J. M. M. Montiel, Moritz Tenorth, Alexander Perzylo,
Markus Waibel and René van de Molengraft. 2012 IEEE International Conference on Robotics
and Automation (ICRA2012, Video Proceedings), Saint Paul (Minnesota, USA), 2012.

1.2.2. Related contributions

Throughout the completion of this thesis, we have participated in various projects and collaborated on
research topics related to autonomous navigation and localization. The results obtained can be seen
in the following publications

• [J4] Tardioli et al. (2010). Enforcing network connectivity in robot team missions. Danilo
Tardioli, Alejandro R. Mosteo, Luis Riazuelo, José L. Villarroel and Luis Montano. Interna-
tional Journal of Robotics Research (IJRR). January 2010, vol. 29(4), pp.460-480.

• [J5] Rizzo et al. (2013). Signal Based Deployment Planning for Robot Teams in Tunnel-
like Fading Environments. Carlos Rizzo, Danilo Tardioli, Domenico Sicignano, Luis Ri-
azuelo, José L. Villarroel and Luis Montano. International Journal of Robotics Research (IJRR).
September 2013, vol. 32(12), pp. 1381-1397.

• [B1] Rizzo et al. (2015). Guaranteeing communication for robotic intervention in long tun-
nel scenarios. Carlos Rizzo, Domenico Sicignano, Luis Riazuelo, Danilo Tardioli, Francisco
Lera, José Luis Villarroel and Luis Montano. In Luı́s Paulo Reis, António Paulo Moreira, Pe-
dro U. Lima, Luis Montano, Victor Muñoz-Martinez (Editors). ROBOT 2015: Second Iberian
Robotics Conference. Advances in Intelligent Systems and Computing. Volume 1, 2015.

• [B2] Tardioli et al. (2017). A robotized dumper for debris removal in tunnels under con-
struction. Danilo Tardioli, Luis Riazuelo, Teresa Seco, Jesús Espelosı́n, Jorge Lalana, José
Luis Villarroel, Luis Montano. In Anibal Ollero, Alberto Sanfeliu, Luis Montano, Nuno Lau,
Carlos Cardeira (Editors). ROBOT 2017: Third Iberian Robotics Conference. Advances in
Intelligent Systems and Computing. Volume 1, 2017.

• [B3] Barrios et al. (2017). Low-Bandwidth Telerobotics in Fading Scenarios. Samuel Bar-
rios, Natalia Ayuso, Danilo Tardioli, Luis Riazuelo, Alejandro R. Mosteo, Francisco Lera and
José Luis Villarroel. In Anibal Ollero, Alberto Sanfeliu, Luis Montano, Nuno Lau, Carlos
Cardeira (Editors). ROBOT 2017: Third Iberian Robotics Conference. Advances in Intelligent
Systems and Computing. Volume 2, 2017.

• [B4] Abad et al. (2017). Integrating an Autonomous Robot on a Dance and New Tech-
nologies Festival. Paula Abad, Miguel Franco, Rosa Castillón, Iñigo Alonso, Ana Cambra,
Jorge Sierra, Luis Riazuelo, Luis Montano and Ana Cristina Murillo. In Anibal Ollero, Alberto
Sanfeliu, Luis Montano, Nuno Lau, Carlos Cardeira (Editors). ROBOT 2017: Third Iberian
Robotics Conference. Advances in Intelligent Systems and Computing. Volume 1, 2017.

1.2.3. Open-Source Software

We have released the following open-source software:

• [S1] C2TAM (https://github.com/lriazuelo/c2tam)
A Cloud framework for cooperative tracking and mapping

11

https://github.com/lriazuelo/c2tam

Chapter 1. Introduction

1.2.4. Videos

Demonstrating videos of map composed of sparse points and objects:

• [V1] Desktop sequence: https://youtu.be/kAiGgQwI684

• [V2] Hospital room sequence: https://youtu.be/emk1b9WTXAk

Demonstrating videos of C2TAM:

• [V3] Desktop sequence: https://youtu.be/kE5wmFoCV5E

• [V4] Office sequence: https://youtu.be/giMDnKhkg-0

Demonstrating videos of RoboEarth semantic mapping system:

• [V5] Semantic mapping action recipes: https://youtu.be/ehVt-eqk3dI

Demonstrating videos of semantic visual SLAM in populated environments:

• [V6] SLAM masking people: https://youtu.be/HKe1-kXtM_E

Demonstrating videos of service robotics in confined and structured environments:

• [V7] Santa Marta mine: https://youtu.be/ZjLNDHzji4Q

• [V8] Somport tunnel: https://youtu.be/BpxHXTZjKF4

12

https://youtu.be/kAiGgQwI684
https://youtu.be/emk1b9WTXAk
https://youtu.be/kE5wmFoCV5E
https://youtu.be/giMDnKhkg-0
https://youtu.be/ehVt-eqk3dI
https://youtu.be/HKe1-kXtM_E
https://youtu.be/ZjLNDHzji4Q
https://youtu.be/BpxHXTZjKF4

Chapter 2
Towards Semantic SLAM using a
Monocular Camera

The first step of this thesis presented in chapter 2 is to develop a semantic Visual SLAM algorithm that
merges in the estimated map traditional meaningless points with known objects (see figure 1.3). We
use monocular EKF-SLAM system that have been mainly focused on producing geometric maps just
composed of points or edges; but without any associated meaning or semantic content. The known
object models are automatically computed from a sparse set of images gathered by cameras that may
be different from the SLAM camera. The contribution in this work is to design and implement a
system that runs an EKF monocular SLAM parallel to an object recognition thread. The semantic or
annotated part of the map –the objects– are estimated using the information in the image sequence and
the precomputed object models. This object detector algorithm informs of the presence of an object in
the sequence by searching for SURF correspondences and checking afterwards their geometric com-
patibility. When an object is recognized it is inserted in the SLAM map, being its position measured
and hence refined by the SLAM algorithm in subsequent frames. As proof of concept we realized of
the potential of introducing semantic information into maps. However, the SLAM algorithm used as
well as the object recognition algorithm could be improved. For this reason, in chapters 3 and 4 we
can see how this improvement has been carried out. The contribution of this work was reported in
[C1] and [W4].

2.1. Introduction

The goal of the work presented in this chapter is to enrich usual monocular SLAM maps by partially
annotating the geometric estimation with object information. The map produced by most of the SLAM
algorithms in the literature was a joint estimation of geometric entities –in most cases points or lines–
without any semantic meaning or annotations attached to it.

The addition of semantic content to a geometric SLAM map is done by recognizing object in-
stances and registering them into the estimated map. We have chosen monocular vision as the only
input for constructing the object models, recognizing them and estimating the geometric map. We
believe there are tree reasons why such a minimalist configuration has a high potential for robotic
applications: 1) there is a large body of recognition models from the computer vision community; 2)
the Internet is widely populated with pictures that could serve for automatically generating the recog-
nition models in the future; 3) different cameras can be used at different steps. Cameras for model

13

Chapter 2. Towards Semantic SLAM using a Monocular Camera

building can be different for cameras used in SLAM –so they are in our experiments–, what provides
interoperability to exploit the same models by diverse robots. In A we present the way to build up and
use an extensive sensor-independent object model database.

The contribution presented in this work is a proof of concept of semantic Visual SLAM using a
monocular vision sensor. The integrated system proposed combines three different algorithms: First,
Monocular EKF- provides robust real-time camera location and a sparse map of salient point features
Civera et al. (2010). Second, Structure from Motion is used to precompute a database of object models
from sparse images Snavely et al. (2008). Third, Visual Recognition allows to detect the presence of
the object in an image stream Martinez et al. (2010); Hinterstoisser et al. (2010).

There are three main issues that lead us to the combination of local mapping plus object recog-
nition and registration as a feasible solution in a robotic mapping problem. Firstly, a robot has to
interact with its environment, hence the 3D registration of the object within the environment is needed
to perform any task. The sole presence of the object in an image is not enough in most of the robotic
applications (e.g., grasping an object). Secondly, the usual visual input of most robots is not a single
image but a sequence, and hence the recognition algorithms should exploit this rich sensorial input.
Finally, every robotic task poses severe real-time constraints. Using again the grasping example, we
are interested in the location of the robotic arm with respect to the object at the specific grasp moment.
The objects are registered within the SLAM map as soon as they are recognized, then their 3D loca-
tion is available at any moment afterwards. For example, once an object is recognized and inserted in
the map, the robot will be able to locate it for grasping even when it is out of its field of view.

Summing up, the main motivation for our work is the vision that the combination of object
recognition and local SLAM using images –what we call Semantic Monocular SLAM– forms a basic
sensing capability suitable for task execution by diverse robots. Object recognition algorithms on
their own are unable to register several objects in a common reference frame. Any standard geometric
SLAM algorithm can provide an accurate geometric registration, but in its own cannot be used for
high-level task definition (for example, ‘grasp a cup’). This problem will be addressed in depth in
chapter 4.

The rest of the chapter is organised as follows: Section 2.2 discusses related work and section
2.3 summarizes the whole algorithm. Next sections are devoted to further details about the different
components of the algorithm: section 2.4 to the object model, section 2.5 to the object recognition and
2.6 to the backbone point-based monocular SLAM where objects are registered into. Finally, section
2.7 shows experimental results and section 2.8 concludes and presents lines for future work.

2.2. Related work

Visual recognition has been used in robotic SLAM mostly for scene recognition, for example loop
closing in Cummins and Newman (2008) or Cadena et al. (2010) and relocalization in Williams et al.
(2007). But it has been very scarcely combined with SLAM for object recognition. Image-based
recognition was used in Ekvall et al. (2006); Meger et al. (2008); Zender et al. (2008) to register
known objects into a laser SLAM map. Differently from these latest three works, we do not only
use the appearance from a single image but the appearance and the estimated geometry from a set of
images of the object.

The closest approach to this work is the work by Castle et al. Castle et al. (2007, 2010), which
registers planar objects into an EKF-based monocular SLAM. They use SIFT features to construct the
appearance model of the objects and insert in the SLAM map three of the boundary corners of the
plane. As our main contribution over this work, we are able to overcome the planar restriction and

14

2.3. Notation and general overview

can deal with any object geometry. Our object model is composed by the appearance; but also by the
geometric position of salient point features over the object. When the object is recognized, we insert
in the SLAM map the recognized SURF points using general –non-planar– geometry constraints.

As the word semantic may have a broad meaning, it is worth remarking than in this approach it
is referred to the labeling of certain map features in a SLAM map. Although we find it a promising
line of research, we do not consider here yet the relations between objects in a scene (as done, for
example, in Ranganathan and Dellaert (2007)).

2.3. Notation and general overview

Given that geometric SLAM is typically faster than object recognition, our algorithm is divided into
two threads: one dedicated to monocular SLAM and other one to object recognition. Figure 2.1 gives
an general overview of the algorithm using figures from our experimental results. Our proposal is
briefly summarized here and further detailed in the remaining sections.

Let start at step k−m. The image Ik−m is used both in the monocular SLAM and the recogntion
threads. The monocular SLAM thread uses this image to update the geometric state x from the previ-
ous step k−m−1 to the current one k−m using a standard EKF formulation. At the same time, the
SLAM state vector is augmented with the current camera pose. Such augmentation will be necessary
every time the recognition thread starts for a coherent object insertion: the recognition results will
arrive at step k; but still the object insertion should be made with respect to image Ik−m. The details
about the state augmentation are described in section 2.6.3.

We have a model for every object we want to recognize O1, . . . ,Op, . . . ,Oq stored in a database.
Each one of these models contains appearance and geometric information extracted from a set of
images of the object. The appearance information is composed of SURF descriptors extracted from
the images; and the geometric information is the 3D position of the SURF points.

The object recognition thread inserts in the SLAM map the objects in the database as follows:
First, the algorithm searches for correspondences between the image Ik−m and the images of the ob-
jects O1, . . . ,Op, . . . ,Oq. SURF point features are extracted from image Ik−m and compared with the
precomputed SURF descriptors for each object. If the number of correspondences exceed a threshold,
the geometric compatibility of the matches is checked using RANSAC. If most of the candidates are
shown to be geometrically compatible, they are finally assumed to belong to the object and inserted
into the SLAM map. Once in the SLAM map, these points are tracked and hence its position refined
in the rest of the sequence.

We will assume in this work that there are not repeated objects nor false object detections (in fact,
false object detections did not appear in any experiment with the system). Nevertheless, our opinion
is that the proposed combination could easily handle both situations. As objects in our system are
geometrically registered, any repeated object detection in a different location than the previous one is
a different object of the same class. The geometric object registration also serves for the case of false
detections: as the SLAM algorithm keeps measuring the object features once inserted, any geometric
inconsistency produced by a false detection would be rejected as spurious by the 1-point RANSAC.

2.4. Object model

Our model for an object O is based on the information extracted from a set of images Il of it. In order to
construct the object model, SURF features Bay et al. (2008) are extracted in first place from the set of
images Il . The SURF descriptors dl

O form the appearance model for the object. The geometric position

15

Chapter 2. Towards Semantic SLAM using a Monocular Camera

Figure 2.1.: Overview of the algorithm using figures from our experiments.

for the SURF points yO is computed using pairwise Structure from Motion algorithms Hartley and
Zisserman (2004): correspondences are searched over the images Il using the SURF descriptors, the
geometry is estimated between pairs of images using robust algorithms, and a non-linear optimization
step finally produces the 3D estimation for SURF points yO and the relative motion between the
images Il . A modern software library called Bundler Snavely et al. (2008) has been used in our work
for constructing the model.

As standard cameras usually do not capture a whole object in an image –you never see the front
and the back of an object at the same time–, the object model is divided into faces. We name face F
to the tuple < tO

F , qF
O, yO

F , dF >. That means each face corresponds to an image augmented with the
appearance –the SURF descriptors dF– and the geometric information –the 3D position of the SURF
points yO

F – needed for the recognition. The face also includes the position tO
F and orientation qO

F of
the image with respect to an object reference frame O. The object reference frame has been chosen to
be the centroid of the 3D point cloud with two axis aligned with its principal components.

Apart from the model for each face F , a global dense point cloud 3D model is also constructed
starting from the faces and the estimated location of the object images. Multi-View Stereo algorithms
(specifically the software package PMVS Furukawa and Ponce (2010)) are used for this purpose. It

16

2.5. Object recognition

should be remarked that this dense model is not used for object 3D registration nor recognition –which
are done by the appearance and position of the SURF features. We think a dense model could be of
importance for robotic applications like grasping; but in this work this dense model is only used for
visualization purposes.

Figure 2.2 shows the object model for a teddy bear, used in our first experiment. Three represen-
tative images out of the twenty that were used to construct the model are displayed. Each one of these
images is the basis for a face. The SURF features that will be used for recognition are drawn in the
images as white circles. Finally, it is also displayed the dense 3D model that will be inserted in the
SLAM map.

Figure 2.2.: The top row and bottom left images show 3 out of the 20 images that were used for
the model of the teddy bear in our first experiment. Notice the SURF features used for
recognition superimposed over the images. The bottom right image shows the dense 3D
model that will be registered in the SLAM map.

2.5. Object recognition

The object recognition algorithm starts by extracting SURF features from the image Ik−m. For each
object O in the database, correspondences are calculated between Ik−m and its faces F by applying
the distance ratio (NNDR) to fast approximate nearest neighbors Muja and Lowe (2009). These
correspondences are then checked to be geometrically consistent. The RANSAC algorithm is run to
find a subset of at least 5 correspondences, between different SURF features, that describe a valid
transformation between the SLAM image Ik−m and the object image IF . The Perspective-n-Point

17

Chapter 2. Towards Semantic SLAM using a Monocular Camera

(PnP) problem Moreno-Noguer et al. (2007) is used to estimate the translation tCk−m
F and orientation

qCk−m
F that define this transformation from the image features and 3D points. However, for planar

objects, an homography is estimated instead, with the DLT algorithm Hartley and Zisserman (2004).
The correspondences which are not consistent with the transformation or the homography are

rejected. If we obtain a valid transformation between Ik−m and some F , we stop searching the rest of
the faces of the object O and consider this found.

When a face F ≡< tO
F , qF

O, yO
F , dF > of an object O is detected, the final pose of the object is

obtained by refining the estimated transformation with only those correspondences which were inliers.
The 3D points yO

F corresponding to the matches dF are then fed into the monocular SLAM system for
object insertion; and are inserted as detailed in section .

2.6. Monocular SLAM

In this section the additions to the standard mode EKF are described.

2.6.1. Standard Mode EKF

We follow the 1 point RANSAC EKF proposed in Civera et al. (2010). The estimated parameters are
modeled as a multidimensional Gaussian variable x, including camera motion parameters at step k xCk

and the n point features yi that form the map. The geometry of the detected objects will be added to
this standard system.

xk =
(

x>Ck
y>1 . . . y>i . . . y>n

)>
. (2.1)

Camera parameters xCk at step k include camera position tCk and orientation qCk and also linear
and angular velocities vCk and ωCk . Point features yi are initialized using inverse depth parametrization
and are converted to Euclidean coordinates y>i = (X Y Z) when projection equation shows a high
degree of linearity.

Robust data association relies on 1-point RANSAC EKF, proven to be an efficient implemen-
tation of a spurious rejection into an EKF framework; presenting low cost even for large number of
matches and large rates of spurious data.

2.6.2. State Augmentation with Past Camera Pose

When the recognition thread is started, the monocular SLAM state has to be augmented with camera
location at this step. Using the notation from figure 2.1, at step k−m the EKF step is augmented by
copying camera position tCk−m and orientation qCk−m into the state vector and propagating covariances
accordingly. At step k−1, just before the object insertion, the state vector will then be as follows:

xk =
(

x>Ck−1
y>1 . . . y>n tCk−m

> qCk−m
>
)>

. (2.2)

Such augmentation will last until the recognition thread finishes, which usually will take several
EKF steps. If an object from the database has been recognized the past camera location will be used
for the delayed initialization of the recognized object. In any case, after the recognition has finished
the augmentation will not be needed and the past camera position and orientation tCk−m and qCk−m will
be marginalized out from the state.

18

2.7. Experimental results

2.6.3. Object Insertion

The output of the recognition thread is a set of points yF corresponding to SURF points of the object
in the face F , which is the image where the recognition was started –it is worth remembering that do
not correspond to the current image Ik. This 3D position yF of the SURF features is available as a part
of the object model described in section 2.4. Also, the translation tCk−m

F and rotation qCk−m
F between the

face F and the SLAM image Ik−m has been computed by the PnP algorithm.
The object points yO

F are transformed to the SLAM reference W according to the following for-
mula:

yW
F = HW

Ck−m

(
tCk−m ,qCk−m

)
HCk−m

O yO
F . (2.3)

tCk−m and qCk−m are the position and orientation of the SLAM camera when the object recognition
was initiated and was stored in the state vector x as described in section . HCk−m

O represents the motion
between the object reference frame O and the SLAM camera Ck−m at step k−1. It can be computed
by composition:

HCk−m
O = HCk−m

F

(
tCk−m
F , tCk−m

F

)
HF

O
(
tF
O,q

F
O
)
. (2.4)

Point covariances are propagated accordingly, and points yW
F in the W reference are finally in-

serted into the SLAM map.

xk =
(

x>Ck
y>1 . . . y>n yW

F
>
)>

. (2.5)

After its insertion, the object points will be measured using the standard pinhole camera model
over Euclidean points. The reader is referred to Civera et al. (2008b) for further details on the mea-
surement equation.

2.6.4. Relocalization

In the practical use of any monocular SLAM system, tracked features may be lost due to varied
reasons: a dynamic object covering most of the image, lost images or sudden motions producing blur.
A relocation system able to recover the camera location with respect to a previous map is essential for
any practical system. In our approach, we are using the relocation system in Williams et al. (2007).

2.7. Experimental results

The two experiments presented here were recorded with the same camera, a low-cost black-and-white
Unibrain camera with a resolution of 320× 240. The model of the objects were built from images
taken with a standard consumer digital camera. The image sequences for both experiments were
gathered at 30 frames per second and used at this frequency as the input to our experiments. As the
computational cost of the proposed algorithm is higher than 33 milliseconds for the map sizes used,
some of the frames may be skipped by the Semantic SLAM.

2.7.1. Desktop Environment

The sequence for this experiment has 8951 frames and was recorded by moving hand held camera
over a desktop in one of our laboratories for about 5 minutes. The lighting conditions are particularly

19

Chapter 2. Towards Semantic SLAM using a Monocular Camera

Figure 2.3.: Object recognition thread results, showing columnwise the specific frames where the six
objects were detected. The top row shows the image in the monocular sequence input to
the Semantic SLAM, the middle row shows the face of the object model, and the coloured
lines are the matches. The object is inserted in the map based on those correspondences.
The bottom row shows the dense point cloud of the object over the image, proving the
correct alignment.

20

2.7. Experimental results

Figure 2.4.: Representative images (at the top) and 3D estimation at their respective times (at the
bottom) for the desktop experiment. (a) Initial map, still with no recognized objects. (b)
The tetra pack has been recognized, inserted and is being tracked. (c), (d) and (e): the
Volkswagen replica, chewing gum packet and the postcard has been inserted. (g) The
two remaining objects –postcard and teddy bear– are inserted. (h) The camera moves
back close to the starting position, revisiting all previous objects. (h) Final frame of the
sequence and 3D view of the objects registered in a common reference frame.

21

Chapter 2. Towards Semantic SLAM using a Monocular Camera

bad for this sequence, as it can be observed in figure 2.4. The desktop contains four 3D objects –a
tetra pack of fruit juice, a replica of a Volkswagen replica, a packet of chewing gum and a teddy bear–
and two planar objects –two postcards. The planar models of the two postcards where built from a
single image each of them, and the models of the other four objects were constructed from several
images taken around each of them, following the technique described in section 2.4.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
im

e
(s

ec
on

ds
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
100

150

200

250

300

350

400

450

500

550

600

#Frame

S
ta

te
 v

ec
to

r
si

ze

Process Frame Time

Vector State Size

Figure 2.5.: Computational cost (in blue) and state vector size (in red) for the experiment. Notice that
the algorithm runs, in the worst case, at around 7 Hz for a state vector of size 600.

All the six objects that compose our database are detected along the sequence, inserted in the
3D map and tracked the rest of the sequence. Figure 2.4 summarizes the results of this experiment
for several steps of the estimation. For each step it is shown the current frame and a 3D view of
the estimation. The 3D view show the uncertainty ellipses for each point in the 3D map, the dense
point clouds modeling the objects and the camera trajectory as a yellow line. The tracked points
are also displayed over the current frame –an ellipse shows the search area and a square frames the
actual match– in different colours: red stands for succesfully tracked points, blue for those rejected
by low patch cross-correlation, magenta for those rejected by our 1-point RANSAC, white for points
succesfully tracked in known objects and orange for points not matched in a known object.

Figure 2.3 shows the results for the recognition thread at the specific frames where the six objects
were recognized. The top row shows the frame in the sequence where they were recognized; the
middle row the object face that was recognized; and the coloured lines stand for the correspondences
between the two. In the bottom row it is displayed the reprojection of the dense point cloud model.

Figure 2.4.a shows the estimation results at step #610, when no object has been inserted yet.
Figure 2.4.b shows frame #1359, just after the tetra pack has been detected and inserted. Figures
2.4.c, 2.4.d and 2.4.e show respectively that the Volkswagen replica, the chewing gum packet and the
postcard have been inserted in the map and are being tracked. Their correspondent frames in the

22

2.7. Experimental results

Figure 2.6.: Representative images (at the top) and 3D estimation at their respective times (at the bot-
tom) for the hospital room experiment. The tracked features are displayed in the images
as circles. The inserted objects, represented as coloured prismatic solids, are also repro-
jected at the images. The 3D views show the camera trajectory up to this frame as a
yellow line, the point feature uncertainties as ellipses and the inserted objects. (a), frame
#34, the cabinet has been already recognized and inserted. (b), frame #241, the robot
goes forward. Notice that, although the cabinet is not seen in the image, its 3D position
remains registered. (c), frame #912, the robot turns left and faces the cabinet and the tetra
pack, which is detected and registered. (d), the robot turns, recognizing and registering
the bed. (e) Robot location at the end of the experiment.

sequence are #2764,#4062,#4725. Figure 2.4.f shows the results at step #7102, when the two latest
objects inserted –the teddy bear and the postcard– have been inserted. In figure 2.4.g the camera
has gone back to the starting point (frame #8538), imaging again the tetra pack and the Volkswagen
replica. Finally, figure 2.4 is the last frame of the sequence, showing only the objects in the SLAM
map. We strongly recommend to watch the video ∗ for a better understanding of this experiment.

Finally, figure 2.5 shows the computational time (blue line) along with the state vector size (red
line) for this experiment. The experiment was run in an Intel Core i7 at 2.66 GHz. In the worst case,
the proposed algorithm runs at 7 Hz for a state size of around 600.

2.7.2. Hospital Room Environment –RoboEarth Project

Before focusing on the visual SLAM part, it is worth explaining the general aim of this experiment.
The Unibrain camera is mounted on an holonomous robot that moves inside a hospital room envi-
ronment. This experiment is framed into the RoboEarth project Waibel et al. (2010); dedicated to
construct an Internet-like database for robots to share knowledge. In chapter 4 we will show more
details about this project. When the robot enters the room, it downloads from the RoboEarth database
the recognition object models and an action recipe that commands it to serve the tetra pack to the
patient in bed. The Semantic SLAM algorithm proposed was used in this experiment to map several
objects in the hospital room. Specifically, the Semantic SLAM algorithm provided with the tetra pack
location for grasping it.

The sequence for this experiment has 6003 frames. The object models considered in this experi-
ment were the cabinet, bed and the tetra pack of juice. The tetra pack is the same than the one in the

∗https://youtu.be/kAiGgQwI684

23

https://youtu.be/kAiGgQwI684

Chapter 2. Towards Semantic SLAM using a Monocular Camera

Figure 2.7.: SLAM results at the end of the hospital room experiment. (a), top-view of the camera
trajectory, estimated salient point features and recognized objects. (b), side-view of the
camera trajectory and recognized objects: the tetra pack over the cabinet, both at the left;
and the bed at the right.

previous experiment. The cabinet and bed are roughly modeled as delimited by planar faces. Figure
2.6 shows several frames extracted from the experiment. Figure 2.6.a (top) shows the estimation at
frame #34, where already the cabinet has been recognized and inserted. Notice the accuracy of the
insertion by the overlap between the model reprojection and the real cabinet. In the bottom it can be
seen a top view of the 3D map: the ellipses stand for the uncertainty regions of the salient point fea-
tures and the coloured prism is the cabinet model. As all the objects in this experiment were formed
by planar faces, they are represented by coloured prisms instead of the point clouds of the previous
experiment.

The following subfigures in figure 2.6 stand for other frames of the sequence temporally ordered.

24

2.8. Discussion

Notice that in figure 2.6.c the tetra pack was already recognized and inserted. In figure 2.6.d the bed
has also been recognized and registered. Finally, figure 2.6.e shows the final frame of the sequence
along with the final estimation results (see video †). For better visualization, figure 2.7 shows a detail
of the final map estimations and camera trajectory. Notice the accurate registration of the tetra pack
over the cabinet in figure 2.7.b.

2.8. Discussion

State-of-the-art monocular SLAM, Structure from Motion and object recognition are combined in
this work to allow the insertion of precomputed known objects into a SLAM map in addition to usual
salient features. The only input to the algorithm is visual information: a monocular sequence feeds the
EKF SLAM algorithm; known objects appearance and geometric models are precomputed computed
from a set of sparse images; and also object recognition is driven by visual features. Experimental
results show the feasibility of the algorithm and real-time capabilities for room-sized scenarios.

The approach described is the first one introducing general 3D objects in a geometric SLAM map
in real-time. But we still believe that the main value of our approach resides on the concept behind
it. On the one hand recent research on visual object recognition allows to recognize efficiently a wide
extent of objects from visual input; but 3D information is rarely considered in those approaches. On
the other hand, monocular SLAM and Structure from Motion currently offer real-time camera motion
and 3D scene estimation but without a semantic meaning. The combination presented, providing a
partially annotated local map and the current robot position into it, could be of high value for certain
robotic tasks. Regarding the SLAM camera, only the camera calibration is needed, the camera used
for building the models is different from the SLAM one. So, any robot with a calibrated camera can
exploit the precomputed models in quite different scene configurations, what makes the system inter-
operable. The robot ends up with the location of the object it is supposed to interact with under quite
general circunstantes. Finally just by recognizing an object face, the map can incorporate information
about object regions not directly detected, what might be quite useful, for example in robot navigation.

Several interesting lines for future work arise from the results on this work. First, if would be very
interesting to increase the quality and density of the semantic annotations. For example, the classical
object recognition algorithms used in this approach could be upgraded to the most recent category
recognition algorithms Ferrari et al. (2010). This would allow to recognize generic categories (e.g.,
the category chair) instead of objects, which are specific instantiations of a category (e.g., a specific
chair). Context-based object detection Murphy et al. (2003) or image segmentation Gould et al. (2010)
could also help to augment the density of the annotated objects. Second, monocular SLAM algorithms
providing with denser geometric maps Newcombe and Davison (2010); Strasdat et al. (2010b) could
be used in order to help robotic tasks like navigation or path planning.

†https://youtu.be/emk1b9WTXAk

25

https://youtu.be/emk1b9WTXAk

26

Chapter 3
A Cloud framework for Cooperative
Tracking And Mapping

3.1. Introduction

The work presented in the previous chapter shows the potential of introducing semantic information
into maps. However, some algorithm used could be improved. For this reason, in this chapter we
present a novelty visual SLAM algorithm based on the cloud computing paradigm.

In a practical robotic setting, the computation and memory requirements of the SLAM algorithms
are two aspects of prime interest: SLAM algorithms tend to be computationally demanding and the
onboard resources of a mobile robot are limited. Also, SLAM has strong real-time constraints as it
is integrated in the control loop of the robot. In the latest years the possibility of massive storage
and computation in Internet servers –known as Cloud Computing and Cloud Storage– has become a
reality. The availability of such technology and its possible use in robotics have opened the door to
a whole new line of research called Cloud Robotics Goldberg and Kehoe (2013). Regarding SLAM,
robots could benefit from the use of the Cloud by moving part of the SLAM estimation from their
limited computers to external servers; saving computational and power resources. This work tries
to answer the following question How should a SLAM system be partitioned in order to leverage
the storage and computational resources in the Cloud? Notice that the answer to this question is not
trivial: Due to the real-time constraints of SLAM algorithms and the network delays the naı̈ve solution
of moving all the computation to the Cloud would be unfeasible. In order to guarantee the real-time,
part of the computation must be performed on the robot’s computers.

Our contribution is the partition of a real-time SLAM algorithm that allows to move part of
the computation to the Cloud without loss of performance. Our experimental results show that the
bandwidth required in all the cases does not exceed a standard wireless connection. We demonstrate
the capabilities of the framework to provide the interface to a map database in a multi-map multi-
camera experiment where the users can: create and save several maps, relocate in them and improve
them as new areas are explored, and fuse several maps into one if an overlap is detected.

We take as starting point the monocular SLAM algorithm described in Klein and Murray (2007),
the so-called Parallel Tracking and Mapping or PTAM. The processing of PTAM is based on two
parallel threads. On the one hand, a geometric map is computed by non-linear optimization over a
set of selected keyframes usually known as Bundle Adjustment. This background process is able to
produce an accurate 3D map at low frame rate. On the other hand, a foreground tracking process is able

27

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

M1

M2

Ml

 R1

SERVER SIDE
(Mapping & Place Recognition)

CLIENT SIDE
(Tracking & Relocation)

 R2

 R3

 Rr

Figure 3.1.: Computer intensive bundle adjustment is performed as a cloud service running on a high
performance server. Camera location with respect to the map is computed in low perfor-
mance mobile devices. Several tracking threads can be run on the same map data. The
data flow from tracking to mapping are the new keyframes when gathered images contain
new information with respect to the available map; and from mapping to tracking is the
computed map.

to estimate the camera location at frame rate assuming a known map. This method is able to produce
maps composed of thousand of points using standard computers for room-sized environments. From
this SLAM system, we propose C2TAM standing for Cloud framework for Cooperative Tracking And
Mapping that moves the non-linear map optimization thread to a service operating in the Cloud.

On top of the computational advances of the keyframe based methods, the resulting communi-
cation between the tracking and mapping processes requires low bandwidth. The tracking process
sends a new raw keyframe only when the gathered image contains new information with respect to
the available map. The mapping sends a new map after every iteration of the Bundle Adjustment, at
a frequency substantially lower than framerate. Even in exploratory trajectories, the number of new
keyframes is small compared with the frame rate; and in the case of already visited areas no new
keyframes are sent. See fig. 3.1 for a scheme of the framework. The low communication bandwidth

28

3.1. Introduction

allows to use a standard wireless connection and run tracking and mapping on different computers.
Also, in both data flows the algorithm is robust to latencies. The camera tracking thread can run on
suboptimal maps until the next global optimization is finished and sent. Also, with an appropriate
policy on map management, the camera tracking is robust to delays in keyframe addition.

We believe that a SLAM system partially running on the Cloud has a wide array of benefits and
potential applications:

• Allocating the expensive map optimization process out of the robot platform allows to signif-
icantly reduce the onboard computational budget, hence reducing the payload and power con-
sumption; both critical factors for field robotics (e.g., unmanned aerial Achtelik et al. (2012)
or underwater vehicles). More importantly, it provides the foundations to accommodate SLAM
algorithms within the distributed computation framework, what makes possible exploiting the
newly available Cloud computation resources.

• The interoperability between different visual sensors comes as a prerequisite in our system, as
very different robots with different cameras could connect to the mapping service.

• The raw keyframe images are stored in the Cloud along with the point-based map. Optimizing
a sparse 3D scene of salient points is just one of the Cloud services that can be run over the
keyframes. Additionally other background processes, at different time scales, can handle map
management operations aiming at life-long mapping Churchill and Newman (2012), semantic
mapping Civera et al. (2011); Salas and Montiel (2011), layout estimation Hoiem et al. (2007)
or computing free space for navigation Hornung et al. (2013).

• The centralized map building also allows a straightforward massive data storage of robotic
sequences and geometric estimations, that could be used to provide a significant training sample
for learning. It can be noticed that the size of the computer vision datasets Russell et al. (2008)
tends to be much larger than the robotics ones Lai et al. (2011). The creation of datasets with
data exclusively from robots is essential to exploit the commonalities in the robotic data Torralba
and Efros (2011).

• The proposed framework naturally adapts to the cooperative SLAM problem Mourikis and
Roumeliotis (2006); Kim et al. (2010); where several robots have to build a joint map of the
environment. The server can operate on different maps and fuse them independently of the
trackers running on the robots. As the number of clients grows the server computation can
be parallelized. The bandwidth required for each tracker is low enough to be provided by a
standard wireless.

• The technologies involved in the proposed system are in an advanced state of maturity: the
Cloud Computing and storage has already been successfully incorporated to multiple domains
and the keyframe-based SLAM is one the most promising mapping methods available Strasdat
et al. (2010a). Additionally the proposed framework can provide the interface to an advanced
database of visual maps in the Cloud.

The rest of the chapter is organised as follows: Section 3.2 refers the related work; section 3.3
discusses the main SLAM components, section 3.4 provides the formulation of the SLAM problem
and section 3.5 gives the details of the proposed system, C2TAM. Finally, section 3.6 shows the exper-
imental results and section 3.7 concludes and presents the lines for the future work.

29

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

3.2. Related work

In recent years, the Cloud Computing paradigm has revolutionized almost every field related to com-
puter science Armbrust et al. (2010). The idea in a few words is that the software pieces are replaced
by services provided via the Internet. In the robotics community the potential applications, the ben-
efits and the main lines for research regarding Cloud Computing have already been foreseen Guizzo
(2011); Remy and Blake (2011) and some platforms are already starting to emerge Waibel et al.
(2010). Nevertheless, and with some recent exceptions referred in the next paragraph, there is still a
lack of specific algorithms and specific realizations of these ideas. This work aims to contribute with a
concrete realization of a SLAM algorithm operating in the Cloud and a thorough experimental testing.

In Bistry and Zhang (2010), Bistry et al. analyse how SIFT extraction and matching can be
moved from a robot to several servers in the Cloud. Rogers et al. (2011) queries the Cloud service
Google Goggles to read text in signs and uses this for loop closing detection. More related to us,
Arumugam et al. (2010) implements a laser-based FastSLAM algorithm running on the Cloud by
distributing the particles among several computing nodes.

Very recently, Wendel et al. (2012) presented a real-time dense 3D reconstruction that shares
some similarities with our approach. Specifically, this work also builds on PTAM and uses a dis-
tributed architecture very similar to the one presented here. Our contribution is to address the multi-
user multi-map case (Wendel et al. (2012) is a single-user single-map system). The contributions that
allow our system to support multiple users and multiple maps are 1) a two-step map relocation robust
to communications delays, and 2) a map fusion algorithm that operates in the Cloud server.

In Castle et al. (2008, 2011), Castle et al. introduce in PTAM the relocation capability in a set
of multiple maps. Our relocation algorithm is built on top of this work, being our main contribution
over them the two-step relocation that is able to cope with the standard network delays of Cloud
Computing.

3.3. A discussion on the SLAM components

The aim of this work is to provide a splitting of the SLAM problem such that its strong real-time
constraints are not affected by the network delays when Cloud Computing is used. First of all, we will
start by a high-level definition of the main components of a modern visual SLAM system.

1. Mapping. The mapping component estimates a model of the scene –a map– from sensor data.
We will denote the map model as M ; and will assume that our mapping system can have several
independent maps The initial approaches to SLAM used to update the camera pose and map
estimation jointly and sequentially for every sensor data arriving Durrant-Whyte and Bailey
(2006). Nevertheless, recent research Klein and Murray (2007); Strasdat et al. (2010a) have
proposed a clever partition of the problem into one frame-rate thread for camera pose estimation
and a second one at lower rate for map estimation; and have shown that it has computational
advantages without a loss of performance or accuracy. This is hence the approach we will take
in this work.

2. Tracking. The tracking component estimates the camera pose T t for every time step t given
an estimation of the map M . A multiple-user-multiple-map SLAM system has a tracking com-
ponent per user. As this pose estimation is based on the tracking of visual features in an image
sequence, it should be done at a high frequency and with strong real-time constraints. If real-
time is lost, the image tracking is likely to fail and hence the pose tracking.

30

3.4. The SLAM formulation as Tracking and Mapping

3. Relocation. Once the tracking component has failed the relocation component tries to relocate
the camera and re-start the tracking. The tracking failure can be caused by several reasons:
occlusions, high-acceleration motion, blur or lack of visual features. This component also has
strong real-time constraints: If the relocation takes too much time the camera might have moved
from the relocation position and the tracking component might not be able to start.

4. Place Recognition. We understand by place recognition the capability of a SLAM system to
relocate in a large number of maps. This problem is also known in the robotics community
as the kidnapped robot problem; where a robot perceives an unknown environment and has to
recognice the place it is in from a number of possibilities. Notice that the difference against
relocation is the a priori knowledge on the location: Relocation comes just after a tracking
failure, so we can assume a small camera motion and check close places to re-start the tracking.
Place recognition does not assume any location, so every possible location is equally likely and
every map in the database should be checked.

5. Map Fusion. Map fusion merges two independent maps into one when an overlapping area
is detected by place recognition. First, we search for correspondences between local features
in the two independent maps. After that, using the geometric constraints of the corresponding
points, the rigid transformation between the two maps is computed. One of the maps is then put
in the reference frame of the second one and duplicated points are deleted.

3.4. The SLAM formulation as Tracking and Mapping

3.4.1. Mapping

The mapping component contains l local maps {M1, . . . ,Mk, . . . ,Ml}. Each local map M is composed
of a set of n 3D points {P1, . . . ,Pi, . . . ,Pn} and m keyframes

{
C1, . . . ,C j, . . . ,Cm

}

M =
{

P1, . . . ,Pi, . . . ,Pn,C1, . . . ,C j, . . . ,Cm
}
. (3.1)

Each map entity is modeled with a set of geometric parameters and, for most of them, an ap-
pearance descriptor. The model for a 3D point P = {P,dp} contains its Euclidean 3D position
P =

(
XWYW ZW

)> and a normal n =
(
nW

x nW
y nW

z
)> in a world reference frame W ; and its descrip-

tor dp = {w1, . . . ,wr} is composed of r different patches extracted at different scales from a source
image. For efficiency reasons, at the implementation level we save the pyramid at r different scales
of the source image. Hence, each point P contains a pointer (u v r)> to a pixel and a scale of the
pyramid where the descriptor can be extracted.

A keyframe C = {C,dc} is modeled quite similarly: First the 3D camera pose
C =

(
XWYW ZW αW βW γW

)> using its Euclidean coordinates
(
XWYW ZW

)
and roll-pitch-yaw angles(

αW βW γW
)

all of them in a world reference frame W . As the keyframe descriptor dc we use –as Klein
and Murray (2008)– the frame Ic; subsampled to size 40×30, filtered with a Gaussian mask g(σ) and
normalized by substracting the mean.

dc = I40×30
c ∗g(σ)− I40×30

c ∗g(σ) . (3.2)

31

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

For each point Pi we have several image measurements in different keyframes C j that we will de-
note as z j

i . Each image measurement z j
i puts a geometric constraint between the geometric parameters

of the point Pi and the keyframe C j given by the projection model f

z j
i = f(Pi,C j,K j) ; (3.3)

where K j is the internal calibration of the jth keyframe.
The mapping component computes the Maximum Likelihood Estimation (MLE) of the geometric

map parameters
(
P̂i, Ĉ j

)>
by minimising a robust cost function of the error ∆z j

i ; following what it is
usually called as Bundle Adjustment Triggs et al. (2000).

(
P̂i, Ĉ j

)>
= arg min

Pi,C j

n

∑
i=1

m

∑
j=1

ρ(∆z j
i /σ) . (3.4)

The error ∆z j
i = z j

i − f(Pi,C j,K j) is the difference between the actual image measurements z j
i

and the projected ones f(Pi,C j,K j). σ is a median-based estimation of the standard deviation of
the measurement’s noise. As in Klein and Murray (2007), in order to avoid the influence of outlier
correspondences, we do not minimize the error directly but a robust function of the error. We use the
Tukey’s biweight function that is defined as

ρ(ξ) =

{
1− (1−ξ2)3, |ξ|<= 1
0, else

; (3.5)

The initialization of a map is one of the key aspects in any visual SLAM system Civera et al.
(2008a); Gauglitz et al. (2012). In the first frames of a sequence the SLAM estimation is degenerate or
quasi-degenerate and hence it might fail quite often. As the PTAM system Klein and Murray (2007)
is oriented to Augmented Reality applications, it initializes the map by asking the user to perform a
careful translation of the camera in a scene with a dominant plane. We believe that this initialization
procedure is not suited to a general robotic application; as we cannot guarantee that the initial motion
is a translation –it will be constrained by the scene– and that the scene has a dominant plane.

For the initialization of the proposed C2TAM map, we have used an initial multiple model filtering
scheme similar to Civera et al. (2008a). Filtering schemes are less sensitive to initialization problems
in image sequences than approaches based on pairwise correspondences. This initialization process
is as follows: An interacting multiple model scheme (see Civera et al. (2008a) for details) is run on
the robot client for the first frames of the sequence. Once enough parallax has been detected and
the estimation is not degenerate, the first frame of the sequence is set as the first keyframe C1 and
the current frame as the second one C2. Both keyframes are sent to the mapping component and the
optimization described above is started.

All the experiments in section 3.6 were run using this initialization. While the initialization
process will have an extra computation cost on the client side; it will not be high as the map is just
started and its size is small. See the details in section 3.6.1.

3.4.2. Tracking

The tracking component models each frame I t from the image sequence as a set of geometric and
appearance parameters T t = {T,dt}. The geometric parameters are those of the camera pose that

32

3.4. The SLAM formulation as Tracking and Mapping

acquired the frame T =
(
XWYW ZW αW βW γW

)>. The frame descriptor is composed by a global de-

scriptor dG
t and a set of b local descriptors dL

t : dt =
{

dG
t ,d

L1
t , . . . ,dLb

t

}
. The global descriptor dG

t

is a subsampled, filtered and normalized version of the frame. The local descriptors dL
t are the im-

age patches surrounding a set of salient FAST features Rosten and Drummond (2006) extracted at
4 scales. Again, for efficiency reasons, only the image pyramid and the FAST feature positions are
stored instead of the image patches.

The tracking component estimates the camera pose parameters Tt =
(
XWYW ZW αW βW γW

)> at
every time step k from the information of previous camera poses, the current frame I t and the current
map Mk. This estimation is done in 3 steps: First, the camera pose Tt|t−1 at time t is predicted from
the information up to the previous frame at t−1 applying a constant velocity model.

In the second step, the points in map Mk extracted at the coarsest scale –that we will name as
P ∗k – are projected into the current image I t . For each point P ∗k,i we search for its correspondence
among the closest salient points in I t . The camera pose is roughly estimated from this first set of
correspondences by a robust minimization.

T̂t∗ = arg min
Tt

∑
i

ρ(∆z∗i /σ
∗) ; (3.6)

where ρ(ξ) is again the Tukey’s biweight function (equation 3.5), σ∗ is a median-based estimation
of the standard deviation of ∆z∗i , and ∆z∗i is the reprojection error of each point P ∗k,i in the current frame
T t at time step t

∆z∗i = z∗i − f(P∗k,i,T
t ,Kt) . (3.7)

Using this first estimation T̂t∗ as a seed, a fine grain estimation for the pose T̂t is finally obtained
by projecting every map point –at every scale and not just the coarsest one– into the current frame T t

and minimising the reprojection error.

T̂t = arg min
Tt

∑
i

ρ(∆zi/σ) . (3.8)

Again ρ(ξ) is the Tukey’s biweight function, σ the median-based estimation of the standard
deviation of ∆zi, and ∆zi the reprojection error of each point Pk,i in the current frame T t .

A multiple-user PTAM-like system will have a pose tracking per user; hence the tracking com-
ponent will be {T1, . . . ,Te, . . . ,Tr}.

3.4.3. Relocation

Relocation, or the ability to quickly compute the pose of the camera when the tracking thread is lost, is
done as a two step process: First, for each new image I t , its global descriptor dt is extracted as shown
in equation 3.2. We extract the closest keyframe C j in the current map Mk by computing the Euclidean
distance between dt and the global descriptors for each keyframe dc1, . . . ,dc j, . . . ,dcm. Assuming that
the 3D space is densely populated with keyframes, the nearest-neighbour of dt will be a keyframe very
close in the 3D space.

Using a simple global descriptor, like the reduced version of the image that we use, might seem
to offer at first sight a poor representation of the image content. Nevertheless, several works have

33

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

proved the good performance of such descriptors. Torralba et al. (2008) shows the most relevant
work on the use of downsampled and filtered images as descriptors for scene recognition as a very
efficient alternative to more elaborated models with an unnoticeable degradation in performance. Such
descriptor is called here Tiny Image. The key here is the dense population of the image space by
growing the training set size to 80 million images. Recently, Milford (2013) has shown the same
conclusion for the problem of place recognition in mobile robots. The good performance of this
descriptor for place recognition in SLAM is also reported in Klein and Murray (2008). In this two
latest references the key aspect is again the dense sampling of the image space: In Milford (2013)
the experiments are done with an autonomous car that shows limited viewpoint differences. In Klein
and Murray (2008) the amount of keyframes in the optimization is kept high to guarantee that a close
match will always exist.

After that, the camera location of I t is set as that of the keyframe C j and the rotation is compen-
sated by minimising the error between the global descriptors

(
XW

T tYW
T t ZW

T t

)>
=

(
XW

C j
YW

C j
ZW

C j

)>
(3.9)(

α
W
T t β

W
T t γ

W
T t

)>
= arg min

(αW
T t βW

T t γW
T t)

(
dt −w(dc j,α

W
T t β

W
T t γ

W
T t)
)

; (3.10)

where w(d,α,β,γ) is the warping of the image descriptor d by a rotation given by the angles
(α,β,γ). After this initial pose has been assigned, the tracking thread of section 3.4.2 is re-started.
If the tracking is successful the camera is relocated, if not the relocation algorithm of this section is
repeated again with the next image It+1.

3.4.4. Place recognition and ego-location

By place recognition we understand the ability of recognizing a part of a map Mk from the visual
information in a frame I t . The subtle difference with the relocation described in section 3.4.3 is the
scale of the problem. The relocation component starts when the camera tracking is lost; hence we
can assume that the camera has not moved much and we are in the surroundings of the latest camera
pose. Only the closest keyframes in the current map Mk will be analysed for similarities. The place
recognition component, from the information in the frame I t , tries to recognize a map from all the
maps in the SLAM database {M1, . . . ,Mk, . . . ,Ml}.

For place recognition and ego-location we will use then the same algorithm as in previous section;
but the fact that the computation is larger will introduce differences in our C2TAM algorithm, as is
detailed in section 3.5.4.

3.4.5. Map fusion

Suppose that, from the l local maps in the Cloud server {M1, . . . ,Mk, . . . ,Mq, . . . ,Ml}, the place
recognition component from section 3.4.4 has detected that maps Mk and Mq overlap in some specific
region. The map fusion components merges the two maps in a common reference frame.

Our map fusion algorithm works as follows. When the map optimization over Mk receives a
new keyframe C k

j from the tracking node; the latest is compared with every keyframe in the rest of
the maps in the server. Similarly to the relocation component of section 3.4.3, we will use the global
descriptor dt as defined in equation 3.2 to quickly extract a set of potential keyframe candidates that
are imaging the same area.

34

3.4. The SLAM formulation as Tracking and Mapping

In a second step, once we have two potentially overlapping keyframes C k
j and C q

h from the maps
Mk and Mq we search for point correspondences between the two maps. We project the 3D points
from the two maps P k and P q in the common keyframe C k

j , resulting in two sets of image points

z j,k = (z j,k
1 , . . . , z j,k

ik , . . . ,z j,k
nk)
> and z j,q =

(
z j,q

1 , . . . ,z j,q
iq , . . . ,z j,q

nq

)>
.

z j,k
ik = f

(
Pk

ik ,C j,k,K j

)
(3.11)

z j,q
iq = f

(
Pq

iq ,C j,k,K j

)
. (3.12)

As the two keyframes are assumed to be very similar, correspondences between z j,k
ik and z j,q

iq are

computed based on their distance in the image plane ‖z j,k
ik − z j,q

iq ‖: If this distance is lower than a
threshold (2 pixels in our experiments) the image points are considered to match. Using the corres-
pondences between Pq and z j,k –3D points in map Mq and image projections from map Mk– we can
compute the relative transformation between the keyframe C k

j and the map Mq using the Perspective-
n-Point (PnP) Moreno-Noguer et al. (2007). The relative transformation between the maps Mk and
Mq are calculated from composition.

Finally, the duplicated points (correspondences between z j,k and z j,q) are deleted and the rest of
the points and cameras in map Mq are transformed according to the relative motion between the two
maps and merged into Mk.

It should be noticed that the formulation of the proposed mapping and tracking components
in sections 3.4.1 and 3.4.2 uses only the RGB information; and hence the maps in the database are
estimated up to a scale factor. This fact becomes relevant for map fusion, as two maps of different
scales cannot be fused directly. There are two possible solutions. The first one is to estimate the
transformation and the scale when two maps are fused; as for example in Clemente et al. (2007). The
second one is, if a RGB-D sensor is used, to extract an estimation of the real scale of the map from the
depth channel of the camera.

We chose the second option for this work: For all the points {P1, . . . ,Pi, . . . ,Pn} in a map M
we extracted their real depth measurement DRGB−D =

(
DRGB−D

1 , . . . ,DRGB−D
i , . . . ,DRGB−D

n
)

from the
RGB-D keyframe where they were initialised. We then extracted their depth values at the map scale
as the distances DM =

(
DM

1 , . . . ,DM
i , . . . ,DM

n

)
between each point position Pi and the position of

the keyframe C j where it was initialised. Finally we estimated the scale ratio as the median value of
DRGB−D−DM . With this value, each map can be transformed into a real-scale map and it can be fused
with any other map in the database using the algorithm described in this section.

Notice that the relocation in section 3.4.3 and the map fusion in this section allow several working
modes:

• Single-user-multiple-maps, where a single user is estimating a map that can be fused with other
map instances in the database –previously estimated by other users. As a result, the final map
comes from the fusion of two or more maps estimated at different times possibly by different
users.

• Multiple-user-multiple-maps, where several users are estimating independent maps at the same
time that might be fused if they belong to the same environment. As a result, we obtain a global
map from several individual maps that are being estimated at the same time. After the maps are
fused, the different users can keep tracking and improving the global map cooperatively.

35

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

3.5. C2TAM: A SLAM in the Cloud

3.5.1. Mapping as a Cloud Service

The estimation of the map database of our system {M1, . . . , Mk, . . . ,Ml} is the most demanding
computation in our framework and does not have strong real-time constraint: The map optimization
in equation 3.4 can take several frames of the sequence and the tracking can still operate in a non-
optimal map from a previous optimization. The mapping component might be a perfect candidate for
Cloud Computing as it can tolerate the network delays; but it is also necessary that the data flow with
the onboard robot computers is low enough. We will analyse that in the next sections.

SERVER SIDE CLIENT SIDE

M1

M2

Ml

C15

C15

R1

C21

C22

C23

C14

C13

C12

C11

C14
C13

== ?

C12

C11

Figure 3.2.: Coarse grain place recognition in the Cloud server. The robot client R1 sends a frame
from the sequence to the server; that tries to relocalize the camera with respect to every
keyframe in every map in the database using the algorithm in section 3.4.3. If there
is a match a set of close keyframes is downloaded to the client for a fine grain place
recognition.

3.5.2. Tracking as a client in the robot

The camera pose tracking is a process with strong real-time constraints; that has to operate at frame
rate and might fail if a few frames are skipped. This component is hence not resilient to network
delays and should be allocated in the robot.

The mapping service in the Cloud receives as input new keyframes from the tracking client. This
produces a low-bandwidth traffic, as typically the ratio keyframes over total frames in the sequence is
quite low (in our experiments, this ratio is around 10−2). The mapping serves to the client the current
map Mk every time the map is optimized. This produces a quite high traffic

36

3.5. C2TAM: A SLAM in the Cloud

Tracking OK== ?

Get lost

Relocated

CLIENT SIDE

Figure 3.3.: Fine grain place recognition on the robot client. The robot client tries to relocate with
respect to the set of candidates coming for the first stage, using the algorithm from section
3.4.3

3.5.3. Relocation as a client in the robot

Relocation refers to the ability of a SLAM system to relocate in a map previously estimated and stored
in the Cloud. A tracking node may need to relocate in two cases: (i) the tracking node, operating
successfully over a map, is lost because of a sudden motion or large occlusion. In this case, the
camera is likely to be in the previous map, and relocation should only check the current map. This
relocation is performed on the tracking node. (ii) The tracking thread has been lost for a long time,
or just started. In this case, the camera could possibly be in a large number of maps. In this case,
relocation should look for correspondences against a possibly very large number of stored maps. As
this case will be more demanding, it should run partially on the mapping node.

3.5.4. Place recognition and ego-location in two steps

Place recognition and ego-location in a high number of maps can be computationally demanding, and
hence it should be allocated in principle as a Cloud service. But on the other hand it is also a critical
process sensitive to the network delays: If the ego-location estimation takes too much time the robot
might have moved and be already in another place. This is why we propose a two-stage relocation
algorithm; being the first part run on the Cloud and the second one in the robot client.

In the first stage the mapping server in the Cloud coarsely relocates the camera in a possibly large
number of maps. This first coarse relocation can take a significant amount of time, and the camera
may have moved when the relocation data arrives at the client. The server sends to the client a small
number of filtered relocation candidates consisting of the closest keyframe from the first stage and
several close keyframes from the same map; assuming that the camera may have moved during the
relocation search in the server. Figure 3.2 illustrates this process.

In the second stage, the client runs a fine grain relocation among the filtered candidate keyframes
sent by the server. Delays are not influential in this second stage, as relocation has a very small
number of candidates and it is entirely done on the client without data transmission. A scheme of this
fine-grain relocation can be seen in figure 3.3.

37

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

M1

M2

SERVER SIDE CLIENT SIDE

R1

Ml

C13

C11

C12

C21

C22

M{1,2}

M3

Ml

C{1,2}5
C{1,2}5

C22 C13

OVERLAP DETECTED

C13

C22
C22 C13

b)

a)

c)

R1

C31

C32

C33

C{1,2}4

C{1,2}3

C{1,2}2

C{1,2}1

C{1,2}4

C{1,2}4

C{1,2}5

C{1,2}3

C{1,2}2

C{1,2}1

C13

C12

C11

Figure 3.4.: Map fusion in the Cloud. a) The robot client R1 uploads a new keyframe C 1
3 to the map

M1. b) The keyframe C 1
3 in M1 presents an overlap with the keyframe C 2

2 in M2. c) M1
and M2 are fused into M1,2 and the fused map is downloaded by the robot client R1.

38

3.6. Experimental results

3.5.5. Map fusion as a Cloud service

The map fusion is entirely done in the Cloud server in our C2TAM framework; as it is a process that
does not have real-time constraints. An illustrative example of the map fusion algorithm in the Cloud
and the associated data traffic is shown in figure 3.4. In figure 3.4.a a robot client R1 is tracking the
camera pose and uploading a new keyframe C 1

3 to the map M1. Every new keyframe that is uploaded
to the Cloud server is compared with every map in the database. In this case the server detects and
overlap of this new keyframe C 1

3 in M1 with the keyframe C 2
2 in M2. This is graphically shown in

figure 3.4.b.
The map fusion algorithm from section 3.4.5 is then applied; being map M1 and M2 fused into

a single map M1,2 as it is shown in figure 3.4.c. Notice in this figure that this fusion generates a high
traffic between the Cloud server and the robot client; as the keyframes and points that did not have a
local copy in the robot client have to be sent. But notice also that this process is not critical in time:
The robot can track its pose with a suboptimal map while new keyframes are arriving, as it is shown
in the experiment in section 3.6.3.

3.6. Experimental results

In this section we detail 4 experiments that show different modes of use of the proposed C2TAM
framework. All the experiments were recorded using RGBD cameras at 640× 480. Nevertheless, it
should be noticed that only the RGB channels are effectively used for the visual SLAM and the depth
from the D channel is only used for visualization. All the experiments were run in real-time and
using the standard wireless of our University; demonstrating that the proposed system is resilient to
its network delays.

The experimental results are organized as follows: in section 3.6.1 a single-user-single-map ex-
periment is performed to evaluate the cost and badwith required for the operation of the tracking,
mapping and relocation components. Section 3.6.2 shows a single-user-multiple-maps experiment to
prove the real-time place recognition capabilities. Once the real-time relocation in a stored map is
shown, section 3.6.3 shows how an online estimation of a map can be fused with a previously stored
map. Finally, section 3.6.4 presents a multiple-user-multiple-map experiment where two independent
maps of the same room are first estimated, fused when a significant overlap is detected, and the two
users keep enlarging the joint map cooperatively after the fusion.

3.6.1. Cost and Bandwidth Analysis

In this experiment, a single user is estimating a single map. Our aim is to illustrate the computational
advantages of the proposed architecture with a simple example before going into more elaborated
ones. The camera tracking client was run on a laptop (Intel Core i7 M 620 at 2.67GHz, 4GB RAM),
the mapping service was run on a desktop PC (Intel Core i7-2600 at 3.4GHz, 8GB RAM). Both pro-
cesses, tracking and mapping, have been implemented using ROS (Robot Operating System) Quigley
et al. (2009) and the open source libraries of PTAM Klein and Murray (2007). The tracking client and
the mapping server were connected through the standard wireless connection in our institution.

Figure 3.5 shows in a double-axis figure the computational cost per frame of the tracking client
and the size of the map for a 4961 frames experiment. It can be seen that the tracking cost keeps
being constant around 10ms –even when the map size is growing–, well under the threshold imposed
by the frame rate of the sequence that is 33ms. This suggests that the tracking could be done on a
lower-performance computer. Notice that, with a proper policy of reducing the number of measured

39

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

T
ra

ck
in

g
tim

e
(m

s)

Frame number
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1000

2000

3000

4000

5000

6000

7000

M
ap

 s
iz

e
(#

 p
oi

nt
s)

Figure 3.5.: Computational cost of the camera tracking client for a 4961 frames experiment and map
size. Notice the almost constant complexity and low cost of the tracking thread, even
when the map size grows.

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

Time (seconds)

S
iz

e
pa

ck
ag

e
(K

B
)

T −> M
M −> T

Figure 3.6.: Data flow produced by C2TAM in a sequence of 4961 frames (around 3 minutes). Red
stands for data from the mapping service to the tracking client, blue stands for data from
the tracking client to the mapping server. Each peak is registered at the time the data
arrives. The average data flow for this experiment has been 1MB/s, below the usual
wireless bandwidth which is 3.75MB/s.

40

3.6. Experimental results

points –as done in Klein and Murray (2009)–, this cost could be even lower and run on mobile phone
devices. Notice also the high computational cost (around 70ms per frame) in the first 20 frames of
our algorithm, this is caused by the automatic initialization described in section 3.4.1. This is clearly
a line for future work, as we are able to avoid the manual initialization of PTAM and the initialization
algorithm works even at a lower frame rate; but the cost is rather high and should be reduced.

Figure 3.6 shows the bandwidth required for the algorithm in the same experiment. The hori-
zontal axis is set in seconds to compare with the bandwidth of a standard wireless. The blue spikes
show the required bandwidth for the data from tracking to mapping, registered at the time the data
arrives. Notice that all the blue spikes are of the same height: This is because the only communication
from the tracking client to the mapping server comes from uploading keyframes, which have the same
size. The red spikes stand for the data flow from the mapping to the tracking. This data flow is the
download of the 3D points from the map.

C2TAM succesfully built the map from this sequence using a standard wireless connection. The
average bandwidth required was around 1MB/s; which is less than the maximum available (a usual
number is 3.75MB/s). Neither the mapping service nor the tracking client were influenced by the
network latency in the communications with the proposed C2TAM.

(a) Sample keyframes from the desktop sequence.

(b) Map estimated from the desktop sequence. (c) Estimated map for the desktop after the laboratory se-
quence

Figure 3.7.: Keyframes and map for the desktop scene.

3.6.2. Relocation in Multiple Maps

In this experiment, three different maps were created using the single-user-single-map mode from pre-
vious section 3.6.1. The RGBD sequences were recorded in different areas in our research laboratory:
The first one, called desktop sequence, was recorded in the surroundings of the desktop of one of the

41

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

(a) Sample keyframes from the wall and bookshelf sequence.

(b) Map estimated from the wall and bookshelf sequence. (c) Estimated map for the wall and bookshelf after the lab-
oratory sequence

Figure 3.8.: Keyframes and map for the wall and bookshelf scene.

authors. The second one, called wall and bookshelf sequence, was recorded pointing the camera at a
bookshelf. Finally, the third one is called hospital room sequence and was recorded in a replica of a
hospital room available in our laboratory.

After each map was created, it was saved and stored in the Cloud server. Figure 3.7(a), 3.8(a)
and 3.9(a) show some keyframes for each of the sequences; that is the desktop sequence, the wall
and bookshelf sequence and the hospital room sequence in that order. Figures 3.7(b), 3.8(b) and
3.9(b) show a 3D view of the estimated maps of the desktop, wall and bookshelf and hospital room
respectively.

After these three maps were created, another sequence traversing the whole laboratory and hence
the three above mentioned areas was recorded. Figure 3.10 shows some keyframes of this new se-
quence, named as laboratory sequence. Notice that, although this new sequence covers the same
three scenes, the new keyframes show some areas that were not seen before and hence will be able to
extend and improve the previous maps in figures 3.7(b), 3.8(b) and 3.9(b).

In this new sequence, C2TAM tried to relocate the current camera in one of the three previously
stored maps as described in section 3.4.3.

Once the camera was successfully relocated in one of the maps, the tracking thread in the client
added new keyframes to this map and then extended and improved this map. Figures 3.7(c), 3.8(c)
and 3.9(c) show the improved maps for each of the scenes –desktop, wall and bookshelf, hospital
room– respectively. The maps were noticeably extended, as it can be seen comparing against the
maps before the laboratory sequence was processed (figures 3.7(b), 3.8(b) and 3.9(b)). Specifically
the desktop map was extended from 2662 points and 28 keyframes to 3313 points and 47 keyframes,

42

3.6. Experimental results

(a) Sample keyframes from the hospital room sequence.

(b) Map estimated from the hospital room sequence. (c) Estimated map for the hospital room after the labora-
tory sequence

Figure 3.9.: Keyframes and map for the hospital room scene.

Figure 3.10.: Sample keyframes from the sequence traversing the whole laboratory.

the wall and bookshelf map from 2711 points and 32 keyframes to 3987 points and 58 keyframes, and
the hospital room from 642 points and 29 keyframes to 1624 points and 58 keyframes.

After relocation and improvement process, a set of measurements have been performed in order
to verify the accuracy of the maps generated by C2TAM. Figure 3.11 shows the measurements taken,
and the Table 3.1 contains the comparison of these measurements with the ground truth of the scenar-
ios. The ground truth measurements was made by a tape measure with millimeter precision due to the
tape resolution

43

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

Map Element C2TAM ground truth
Desktop Laptop 0.340 0.337
Desktop Table 1.107 1.102
Desktop Window 1.205 1.201
Room Bed 2.039 2.044
Room Cabinet 0.418 0.420
Room Walls 3.105 3.096
Wall Bookshelf 2.723 2.727
Wall Door 1.790 1.795
Wall Table 1.106 1.107
Wall Whiteboard 1.267 1.264

Table 3.1.: Comparison between C2TAM measurements and the ground truth. All the measurements
are in meters.

0.34
0m

1.205
m

1.107m

2.
03

9
m

 0.418m

3.105m

1.790m

 2.723m

1.267m

1.106m

Figure 3.11.: Set of the measurements taken on the scenarios.

3.6.3. Overlapping map fusion

This experiment aims to show the map fusion capabilities of the proposed C2TAM system. The map-
ping server contains the maps estimated for the previous experiments. We run the C2TAM on a se-
quence imaging a desktop. We will denote this scene as desktop A. The camera later moves to another
desktop that we will call desktop B. Figure 3.12(a) shows the estimated map of desktop A, just before
moving to desktop B.

44

3.6. Experimental results

Among the maps in the server there is an estimated map of desktop B, which is shown in figure
3.12(b). As the camera goes from desktop A to desktop B and adds keyframes to the map, the similar-
ity of the new keyframes and every keyframe in every other map in the server is computed. When the
camera reaches desktop B the map fusion process detects the similarity with a keyframe from a previ-
ous map (see the keyframes from both maps in figure 3.13) and merge them into one. Figure 3.12(c)
shows the map when the similarity is detected, and figure 3.12(d) shows the map after merging with
the map in the database. Notice the correct alignment after the map fusion in this latest figure.

Regarding the map fusion process, the communication flow between tracking and mapping is the
critical point and C2TAM deals with it giving an approach that manage efficiently the amount of data
exchange between processes. Once the overlap is detected the mapper server merges both maps and
has to send the new keyframes and points to the tracker.

(a) Map of desktop A, estimated online. (b) Map of desktop B, stored in the mapping server.

(c) Map of desktop A when a common area with the map
of desktop B is detected.

(d) Maps desktop A and desktop B after the fusion.

Figure 3.12.: Several snapshots of the maps for the map fusion experiment.

In the experiment proposed, the current map desktop A (112 keyframes and 7925 points) is fused
with a previous map desktop B stored on the server (42 keyframes 4098 points). This process implies
to send the new keframes and point from server to client. In this case the data flow generated is 16
MB, according to the standard wireless bandwidth, this communication spends arround 5 seconds.
This time could be reduced taking into account the principle of locality: if the server starts to send

45

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

only the informations related with the keyframes close to the pose of the current camera, the data flow
will be reduced.

Figure 3.13.: Images of the keyframes of the previous (left one) and the actual map (right one).

Figure 3.14.: Panoramic snapshot of the experimental environment room.

Despite the amount data flow exchanged, the client performance is not affected. The client is
working with a suboptimal map while the mapping is sending the new information about keyframe
and points. The client can work properly because the working area is covered by keyframes contained
in the suboptimal map. Once new information (keyframes and points) arrives, the client takes into
account this information on the tracking proccess and update the local copy of the map. For more
details on the experiment in this section, the reader is referred to the video ∗.

3.6.4. Cooperative SLAM

This section shows a cooperative SLAM experiment using the proposed framework. The aim is map-
ping an office using several cameras initially unaware of each other. The clients attached to the
cameras perform tracking in each map separately. As shown in section 3.6.3, the server optimizes
every map but also looks for overlap between them. When the overlap is detected, the server fuses
both maps. From there, both trackers operate on the new fused map.

Specifically, we used two RGBD cameras and cooperatively mapped an office in real-time. Two
laptops (Intel Core i7 M 620 at 2.67GHz, 4GB RAM) are attached to the cameras and act as clients. A
PC (Intel Core i7-2600 at 3.4GHz, 8GB RAM) in other building of our university acted as the server.
In several parts of the experiment the trackers were lost and were able to relocalize as explained in
section 3.4.3.
∗https://youtu.be/kE5wmFoCV5E

46

https://youtu.be/kE5wmFoCV5E

3.6. Experimental results

Figure 3.15.: Initial images taken by first tracker (left) and second tracker (right).

Figure 3.16.: 3D estimated maps by first tracker (left) and second tracker (right).

Figure 3.17.: Images of both trackers on the same area. First tracker (left one) second tracker (right
one).

Figure 3.14 shows the scene to be mapped. Figure 3.15 shows the initial images taken by the two
cameras. Notice that the areas do not overlap and hence two different maps are started: the first one

47

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

of a desktop and the second one of a bookshelf. Figure 3.16 shows the 3D estimated maps after some
keyframes have been added.

When the second tracker approaches the desktop area, eventually a significant overlap is found.
Figure 3.17 shows the actual image of the second tracker just before the fusion and an image of the
first tracker from the beginning of the experiment when this area was mapped. Notice that the image
approximately shows the area above the desktop where the first map started.

After the overlap detection and motion estimation, both maps are finally fused. Map 1 contained
25 keyframes and 1578 points, and map 2 38 keyframes and 4833 points. The fused map contains 63
keyframes and 6302 points. Notice that while the number of keyframes is the sum of the individual
maps, this does not happen with the number of points as the duplicated ones are deleted. Figure
3.18(a) shows the individual 3D maps of each tracker before the fusion and figure 3.18(b) shows the
final map after the fusion. After the fusion both trackers map the scene over the same map. The
following figure 3.19 shows the potential of the framework for cooperative SLAM: the second tracker
stops mapping (figure 3.19(b)), and the first tracker continues exploring and expanding the office map
(figure 3.19(a)). Figure 3.19(c) shows the map before and after the expansion. Finally, when the
tracker two starts moving again, it is able to relocalize in the area that tracker one has mapped as both
are working on the same map instance.

(a) 3D maps of each tracker before fusion. First tracker (left one) second tracker (right one).

(b) Final map after fusion both maps.

Figure 3.18.: 3D maps before and after fusion process.

48

3.7. Discussion

Figure 3.20 shows the final 3D reconstruction build cooperatively by the two cameras. This
final map contains 100 keyframes and 7483 points. We encourage the readers to see the video of the
experiment † for further understanding.

(a) First tracker image. (b) Second tracker image.

(c) 3D map before and after the first tracker update

Figure 3.19.: Cooperative update of the map.

3.7. Discussion

This work presents a novel framework for distributed keyframe-based SLAM where the map opti-
mization is moved to a server or an array of them outside the robot –the Cloud– and the robot only
has to run a light camera tracking and relocation clients and have access to an Internet connection. A
direct consequence is that the computational load on the client side –on the robot– is reduced. This
reduction might be critical in robotic applications with strict constraints on both power and weight,
like unmanned underwater or aerial vehicles.

Our algorithm exploits the fact that the state-of-the-art visual SLAM algorithms divide the Si-
multaneous Localization and Mapping problem into two parallel threads, one for camera pose tracking
and the other one for map optimization. Our experimental results demonstrate that the communication
between the two threads is small enough to be supported by a standard wireless, and that the latency

†https://youtu.be/giMDnKhkg-0

49

https://youtu.be/giMDnKhkg-0

Chapter 3. A Cloud framework for Cooperative Tracking And Mapping

Figure 3.20.: 3D map reconstruction by the two cameras.

introduced by the network does not influence the performance of the algorithm. In our experiments
we use an RGBD sensor, using the RGB images to align the cameras and the point clouds from the D
channel for visualization and map fusion.

The most critical point of the algorithm where the latency is important is the relocation with
previous maps. This approach contributes with a 2-stages relocation algorithm; an expensive coarse
relocation is run on the server over all the stored maps and returns the specific map where the camera
is, and a second fine relocation downloads this map to the client and runs a cheap relocation on the
keyframes of this map. We have also demonstrated the ability to build maps concurrently between
several sensors observing the same environment.

We have implemented a map fusion component that enables the possibility of building a cooper-
ative map of an environment. Each robot can explore a new area and estimate a map while the Cloud
server looks for similarities with the maps that the rest of the robots are estimating. Once the map of
one robot is detected to have a common area with another map, the Cloud server will fuse both into a
single one independently from the tracking processes.

We believe that the allocation of the bulky map estimation and management in a Cloud of servers
outside the robot sets the basis for the mapping systems to exploit the next step of computing power
in order to keep track of Moore’s Law. Additionally it opens the door to a new array of possibilities:
1) The online estimation can be massively parallelized and hence very large maps can be optimized
in a short time (like in Furukawa et al. (2010)). Also, parallelizing the relocation could boost the
number of maps that can be managed in a reasonable time. 2) The developed algorithms provide the
basis for the interface of a map database in the Cloud. 3) The map can be improved and enriched
offline with expensive computations that cannot be done online, both geometric (e.g., map smoothing
assuming planar environment Gallup et al. (2010) or free space estimation Hornung et al. (2013))

50

3.7. Discussion

and semantic (e.g., recognition of objects Civera et al. (2011); Salas and Montiel (2011)). The new
geometric or semantic features will be available if a later user relocates itself in a previous map and
downloads this map. 4) The massive storage of maps in the Cloud could serve as a training database for
learning algorithms to model the commonalities of robotic maps and their variations in the temporal
dimension.

51

52

Chapter 4
Semantic Mapping System: A Cloud
Enabled Knowledge-Based Approach

4.1. Introduction

In chapter 2 we demonstrate the importance of semantic maps through implementation of a proof of
concept of a Semantic SLAM, however some point needed to be improved. Previous chapter focused
on improve the SLAM algorithm, designing and implementing a new one based on a cloud computing
paradigm. In this chapter we will address the improvement of the object recogniser using an algorithm
based on Bag of Words and we also demonstrate how the navigation of a robot could be improved
using the semantic information generated.

The aim of this works is to investigate a Web-enabled and knowledge-based approach to seman-
tic mapping in order to build models of the environment and explore the role that cloud services can
play in this mapping approach. As we introduces in chapter 3 the use of these cloud services has
recently opened a new line of research in robotics called Cloud Robotics Kehoe et al. (2015). In Sten-
mark et al. (2015) different architectures based on a knowledge-based solution have been presented
in industrial robotized automation systems. Salmerón-Garcı́a et al. (2015) and Kehoe et al. (2015)
explore the use of a Cloud Computing for offloading intensive computing tasks like vision-based al-
gorithms and grasp planning respectively. In particular, we consider a simple robot that has access
to the cloud-based RoboEarth knowledge base Waibel et al. (2010), and evaluate how access to such
a cloud-based knowledge base can help robots with their tasks. RoboEarth enables robots to upload
and download “action recipes”, models of objects they have created and maps of environments. By
intelligently selecting only those pieces of information that are needed for the current task, robots can
keep their local knowledge bases and object model database small and efficient, while having much
larger information resources in the background.

All pieces of information in RoboEarth are semantically annotated, i.e. they are described in
a formal, logical language Tenorth et al. (2013) and are linked to an ontology. To achieve platform
independence, these annotations include a specification of which capabilities a robot needs to have
in order to execute a task. When searching for suitable “action recipes”, a robot can match this
specification against a formal model of its own components and capabilities described in the Semantic
Robot Description Language (SRDL), Kunze et al. (2011). If necessary components or capabilities
are missing on the robot, the recipe cannot be executed and is not considered for download. If all
required capabilities are available, the robot model is used to generate a plan that is tailored to the

53

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Figure 4.1.: Overview of the proposed system. In the beginning, the RoboEarth knowledge base
(right) contains only the elements above the dotted line: An action recipe describing the
exploration task, a set of object models and the robot’s SRDL description. When a robot
requests an action recipe, it is matched against its capability model and, if all required
capabilities are available, a plan is generated. During execution of this plan (left part), the
robot first downloads a set of object models that are to be expected in this environment
and uses these models to build a semantic map. After execution, it uploads the generated
set of maps to RoboEarth (lower part of the right block) to make them available to other
robots.

hardware of the respective robot. The semantic annotations further enable robots to perform logical
inference, for instance to decide which are the most likely objects in a room (and only download their
models to their local database), or where novel objects are likely to be found (and guide the search
accordingly).

In order to apply abstract knowledge to operation in the real world, it needs to be grounded Har-
nad (1990) in the robot’s perception system and its knowledge about the environment. In this work, we
propose to link the knowledge base with a visual SLAM system that provides accurate and continuous
asynchronous perception. The system is integrated with an object recognition module that identifies
objects based on a local database of object models. The main contributions of this work are (1) a
semantic mapping method resulting from the synergistic integration of a visual SLAM map of objects
with the RoboEarth ontology; (2) knowledge-based methods for using prior information, exemplified
in the selection of object models for exploration and in the guidance of a robot when searching for a
novel object; and (3) methods for embodying the semantic map building and exploitation in a simple
robot using RoboEarth cloud services.

54

4.2. Related Work

RoboEarth boosts mapping by providing: (1) a subdatabase of object models relevant for the task
at hand, obtained by semantic reasoning, which improves recognition by reducing computation and
the false positive rate; (2) the sharing of semantic maps between robots, and (3) software as a service
to externalize in the cloud the more intensive mapping computations, while meeting the mandatory
hard real time constraints of the robot.

The rest of the chapter is organised as follows: Section 4.2 discusses related work and section 4.3
presents an overview of our system. Next in section 4.4 we explain the two main tasks performed: The
creation of an initial semantic map building and knowledge-guided object search. Section 4.5 presents
the robot capabilities and section 4.6 summarizes the process of reasoning about object locations.
Finally, section 4.7 shows experimental results and section 4.8 concludes and presents lines for future
work.

4.2. Related Work

Several proposals have been made for building maps of objects. Objects from a database are recog-
nized and located in Günther et al. (2013) where polyhedral CAD object models are recognized in
single RGBD images. Similarly, using point clouds, in Mason and Marthi (2012) geometrical primi-
tives are segmented assuming they correspond to scene objects. Combining visual SLAM with object
recognition to produce maps of objects has recently gained more attention for pure visual RGB sensors
in Castle et al. (2010); Civera et al. (2011), and for RGBD in Salas-Moreno et al. (2013). Several ap-
proaches have been made to endow maps with reasoning capabilities. A Bayesian network classifier is
proposed in Vasudevan and Siegwart (2008) to encode the relations between objects in a scene and the
objects typically present in a type of room. An ontology-based approach is proposed in Galindo et al.
(2008); Pangercic et al. (2012) to represent knowledge about the elements in a map. The knowledge-
based maps by Zender et al. (2008) provide grounding by combining place recognition from 2D laser
maps and object recognition. An exploration method similar to ours has been proposed in Meger
et al. (2008). Our contribution is to combine a knowledge-base with a visual SLAM map of objects to
ground the robot perceptions to implement the RoboEarth Web and cloud mapping services. For the
estimation of this semantic map, we propose the use of action recipes that describe how to explore the
free space while searching for objects in a local database using an object recognition algorithm.

Structured object search and reasoning about likely object locations have been an active research
topic over the past years. Much of the work has explored vision-based methods to search for objects
in a top-down manner based on saliency and visual attention mechanisms Oliva et al. (2003); Ekvall
and Kragic (2005); Shubina and Tsotsos (2010). Having a (partial) semantic map allows a robot
to apply background knowledge for directing the search. One possibility is to learn co-occurrence
statistics of object types and object–room relations, for example from online image databases Kollar
and Roy (2009) or from search engine results Zhou et al. (2012). Joho et al. (2011) use co-occurrence
information and other heuristics for efficiently searching for objects in structured environments, in
particular supermarkets. Schuster et al. exploit similarity scores computed based on an ontology of
object types for directing the search towards locations where semantically similar objects are known
to be Schuster et al. (2012). Kunze et al. propose a utility-based approach for object search that
particularly focuses on the decision of which location to search first Kunze et al. (2012). This work
was extended in Kunze et al. (2014) to use geometric models of directional qualitative spatial relations
with respect to landmark objects and to use 2D cones for approximating the sensor field of view. Wong
et al. include manipulation actions into the object search, which allows the robot to reason about which
objects have to be removed before being able to see the target object Wong et al. (2013).

55

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

The approach by Aydemir et al. Aydemir et al. (2013) is similar to ours in that they also use
landmark objects to guide the search for smaller objects inside or on top of the landmarks. While
they focus on the probabilistic formulation of the search procedure as a Markov Decision Process, we
explore a knowledge-based strategy that exploits formal knowledge about object types, their (likely)
spatial relations, and their shape and appearance.

4.3. System overview

Figure 4.1 shows the typical workflow of a robot using the system. We assume that the RoboEarth
knowledge base (right block) contains the required task descriptions (called “action recipes”) and
object models. In this work, we focus on two action recipes for (a) semantic mapping of an unknown
environment and (b) active search for an object based on a partial semantic map. The locations of
objects already detected in the room thereby serve as landmark objects.

Each piece of information is annotated with a description of the capabilities required for making
use of it (depicted as colored puzzle pieces), that is matched against a formal model of the robot’s
capabilities described in the SRDL. Based on the background knowledge about which objects are
likely to be encountered in which kinds of rooms, RoboEarth infers a set of object models that can be
recognized during the exploration.

After download, a robot plan is generated from the action recipe (section 4.4) and the task is
executed accordingly. The robot explores the environment using a frontier-based algorithm (re explore
component), recognizes objects using the re vision module and inserts them into a map build by
the re vslam module. After the exploration has finished, the robot exports the map in the formal
RoboEarth language and uploads it to the RoboEarth knowledge base.

4.4. Action Recipes for Active Perception Tasks

Action recipes abstractly specify which actions need to be performed to accomplish a task in a
(largely) robot- and environment-independent manner. RoboEarth aims at the exchange of recipes
between heterogeneous robots in different environments, which therefore need to be reduced to a
description of the task itself, eliminating all hardware- and environment-specific parts. While the
resulting descriptions can easily be transferred to another robot, they are too abstract to be directly
executable. The robot thus needs to interpret the instructions, fill in missing information, and select
and parameterize suitable “skills” that provide the implementation for the respective action steps. The
capability matching procedure described in section 4.5 verifies that all skills needed for executing a
recipe are available on a robot.

Action recipes are formulated in the RoboEarth language Tenorth et al. (2013) that is based on
the W3C-standardized Web Ontology Language OWL W3C (2009). Actions in a recipe are described
as classes whose properties described action parameters such as the objectActedOn. They can in-
herit properties from more generic classes in the knowledge base, which we often use for inheriting
information about required capabilities. This way, the recipes can be kept short and concise, since
’common-sense’ knowledge does not have to be communicated. Examples of action recipes for ex-
ploring an environment and searching for objects can be found in figures 4.1 and 4.3, respectively.
These recipes can easily be created using a graphical editor without knowledge of the OWL language.

As mentioned earlier, action recipes are not executable by themselves, but aggregate “skills”
(that implement single action steps) into more complex task structures. Our system uses the Cogni-
tive Robot Abstract Machines (CRAM) executive Beetz et al. (2010) for controlling the robot, so the

56

4.4. Action Recipes for Active Perception Tasks

Figure 4.2.: Generation of the execution plan. The recipe (left) is an OWL document composed of
parametrized subactions, described in terms of OWL classes. To generate the plan, the
system looks in the database for code generating functions that are applicable on the
specific instance and robots (bottom), and inserts the resulting function into the final exe-
cution plan (right).

“skills” correspond to fragments of the robot plans. These fragments are not static, but are generated
by Lisp macros that are parameterized with the OWL description of an action step (figure 4.2). This
allows to consider the action context as well as the robot model to generate tailored plans. For ex-
ample, when generating the code for computing object visibility (sec. 4.6), the pose of the camera
relative to the robot base is read from the robot’s SRDL description.

The code generation macros are also stored in the RoboEarth database and can therefore be
shared among robots. For each action described in the recipe, the system searches for suitable macros
considering the robot’s capabilities. In case multiple results are found, the one with the minimal
semantic distance (estimated via the Rada distance Blanchard et al. (2005)) to the action at hand is
selected. If the result is still ambiguous, a human operator is asked. The code generation macros then
extract the required action parameters from the robot model and the semantic environment map.

As part of this work, we have created two action recipes to enable a simple robot to perform
semantic mapping in the cloud using RoboEarth. The first action recipe (fig. 4.1 left), sketched in
Algorithm 1, enables a robot to build a semantic map for a novel environment, exploiting prior infor-
mation about the room type. The second one (fig. 4.3) illustrates how information from the semantic
map can be exploited when searching for an specific object. Algorithm 2 sketches the steps of this
recipe. The described recipes build upon a set of perception and navigation capabilities that are de-
tailed in section 4.5.

4.4.1. SemanticMapping Action Recipe

The execution of the SemanticMapping action recipe results in an exploratory behavior of the robot.
Before starting the exploration, the knowledge base infers a set of landmark objects that are typically
found in the type of room to be explored. These models are loaded into a local subdatabase on the

57

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Figure 4.3.: ObjectSearch Action recipe task execution

robot that allows real-time object recognition for map building. It further increases the recognition
precision and recall because only objects that are likely to be in the room are searched for. After com-
pleting the room exploration, it produces a semantic map that is stored in the RoboEarth knowledge
base.

The recipe commands the robot to explore the room while avoiding obstacles. Simultaneous to
room exploration, the visual SLAM builds a map providing locations for selected geometrical features
and landmark objects recognized in the scene. Once the exploration is finished, the object instances
are linked with the RoboEarth ontology in order to upgrade the map of objects into a semantic one.
The semantic map along with the occupancy grid and features map are uploaded as a RoboEarth
environment.

4.4.2. ObjectSearch Action Recipe

The ObjectSearch recipe assumes that a (partial) semantic map valid for the room is already stored on
a RoboEarth environment. Based on the locations of landmark objects in this map, the knowledge base

58

4.5. Robot Capabilities for Active Perception

infers potential locations from where the object might be detected. From the occupancy map, the free
space for robot navigation is computed, and according to the robot’s SRDL model, the sensors’ ranges
and locations within the robot are inferred. The features map stored on the RoboEarth environment
allows the visual SLAM to provide a continuous robot localization when the map is reused. Using all
this information, a list of robot locations is computed from where the object is likely to be detected.

Upon execution of the generated CRAM plan, the robot sequentially navigates towards the com-
puted locations from where it searches for the object until it is found. The detected object is added to
the initial semantic map, which is then finally uploaded back to the RoboEarth database.

4.5. Robot Capabilities for Active Perception

Since RoboEarth aims at knowledge exchange among heterogeneous robots, we cannot assume that
every robot possesses all required capabilities for executing a recipe. Therefore, both those capabilities
that are available on a robot and those that are needed for a task are modeled and can automatically be
matched using the SRDL. This procedure is described in detail in Tenorth et al. (2013). Capabilities
are usually provided by software components (e.g. ROS nodes) on the robot, are interfaced from
CRAM plan fragments, and are described in SRDL to allow reasoning about which tasks are feasible.
Capabilities are often not binary, but may be available to a certain degree. It is however hard to
measure this, since the criteria will be different for many different abilities. We therefore do not store
a quantitative degree to which an ability is available, but distinguish different cases as specialized
subclasses as can be seen e.g. for the different kinds of navigational abilities. In general, SRDL
does support numerical attributes such as the range of a laser scanner or the resolution of a camera.
Dependencies of actions on capabilities are usually not described in the recipe itself, but inherited
from more generic action classes in the RoboEarth ontology (e.g. that all kinds of reaching motions
need an arm component). Capabilities are also described as OWL classes and are declared in another
branch in the RoboEarth ontology. The capabilities needed for the two recipes described in this work
that focus on active perception are highlighted in figure 4.4 and will be presented in the remainder of
this section.

CollisionFreeNavigationCapability represents the ability to safely navigate to a goal. The initial
global navigation plan to achieve the goal is locally modified by a reactive navigation module which
is responsible for computing the motions finally commanded to the robot. The planning technique
is based on a A*-type algorithm Latombe (1991). For reactive navigation, we have applied ORM

Algorithm 1 SemanticMapping(in: environType, environId)
subDataBase = load-typical-object-models(environType)
slamVisualMap = void
start-exploration-modules()
start-vision-modules(slamVisualMap, subDataBase)
repeat

explore-environment(freeFrontiers)
until check-finished(freeFrontiers)
return-to-initial-pose()
environment = upgrade-to-semantic(slamVisualMap)
upload-environment-map(environment, environId)

59

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Algorithm 2 ObjectSearch(in: environId, object)
environment = download-environment(environId)
semanticMap,slamVisualMap = extract(environment)
start-navigation()
start-vision-modules(slamVisualMap)
nextPoses = infer-likely-locations(semanticMap, object)
repeat

go-to-next-best-pose(nextPoses)
slamVisualMap = search(slamVisualMap,object)

until check-if-object-found(object) or last-location-reached
stop-vision-modules()
environment = upgrade-to-semantic(slamVisualMap)
upload-environment-map(environment,environId)

Minguez (2005) adapted for differential drive robots due to its performance in dense, complex and
cluttered environments. A Rao-Blackwellized particle filter Grisetti et al. (2007) is used to estimate
the robot location and the 2D navigation map from 2D laser rangefinder readings.

EnvironmentExplorationCapability declares the ability to actively build a 2D navigation map of an
unknown environment. Based on the 2D laser readings and the odometry, the component guides the
robot in building a 2D map of its environment. The main issue is to compute at run-time the next robot
locations from where to perceive unexplored regions. The next point of view is computed according
to the frontier-based approach Yamauchi (1997), where the robot moves while avoiding obstacles and
integrating the 2D laser readings into the map (NavigationComponent). The exploration ends when
the map contains no more accessible frontiers. Figure 4.5 visualizes the method.

ObjectRecognitionCapability declares the ability to recognize objects in single images and to pro-
vide an initial estimate of their 3D location with respect to the camera. The corresponding component
implements an object recognition algorithm Civera et al. (2011) in which each object is modeled as
a collection of faces. Each face comprises an image that represents a point of view of the object, a
set of SURF features Bay et al. (2008) and their associated 3D coordinates in the local object frame,
obtained by multi-view geometry Snavely et al. (2006). These models are initially stored in the Robo-
Earth database. When a subset of them is required to fulfill a task, they are downloaded, creating a
local subdatabase used by the recognition algorithm.

VisualSLAMCapability declares the capability to estimate a visual SLAM map composed of point
features and recognized objects, and a 3D occupancy grid map. This capability is implemented by a
distributed framework, C2TAM Riazuelo et al. (2014b) proposed in chapter 3. A lightweight process
handles the camera tracking on the onboard robot computer, while the expensive map optimization is
externalized as a service in the cloud (Amazon EC2 service Amazon Inc. (2012)) using the RoboEarth
Cloud Engine Hunziker et al. (2013). More details about the use of Amazon EC2 can be found in
apendix B. Thanks to this division, the hard real-time constraints mandatory in a robotic embedded
system are met by the visual SLAM, despite the typical network delays in the link with the cloud
server. The SLAM map not only includes visual point features but also objects that are recognized
in the images by the ObjectRecognitionComponent. The recognition models come from the local

60

4.5. Robot Capabilities for Active Perception

�✁✂✄☎ ✆✝✞✝✟✂✠✂✡☛

☞✌✍✝✠✂✎✝✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✏✟✑✒✍✡✓✝✄✂✞✔✠✝✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✆✌✕✞✔✡✝✡✂✌✄✝✠✆✝✞✝✟✂✠✂✡☛

✖✒✗✍✒✞✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✆✌✠✠✂✘✂✌✄✆✁✒✍✙✆✝✞✝✟✂✠✂✡☛

✏✟✑✒✍✡✚✒✍✌☎✄✂✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✛✂✘✔✝✠✜☞✢✓✆✝✞✝✟✂✠✂✡☛

✣✗✂✞✞✒✗✓✌✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✢✗✕✓✌✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✤✝✘✒✓✌✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✥✒✝✦✓✌✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✆✌✠✠✂✘✂✌✄✧✗✒✒★✝✩✂☎✝✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✪✄✩✂✗✌✄✕✒✄✡✪✫✞✠✌✗✝✡✂✌✄✆✝✞✝✟✂✠✂✡☛

★✝✩✂☎✝✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✤✌✦☛✓✌✡✂✌✄✆✝✞✝✟✂✠✂✡☛

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

✂✘✬✝

Figure 4.4.: A sub-branch of the SRDL ontology stating some of the robot capabilities. All the manda-
tory compatibilities for active perception are highlighted in blue.

subdatabase provided by RoboEarth. Once the map is computed, the result is incorporated into the
RoboEarth environment data structure, providing the data for the following classes:

• SemanticEnvironmentMaps are described in OWL and consist of objects detected in the envi-
ronment, described as instances of the respective object classes in the ontology. This allows
the application of logical inference methods to the spatial configuration of objects. The object
instances may further contain information about their extensions, 6D poses and possibly CAD
models describing their geometry and appearance.

• OctoMap: a 3D occupancy grid map, coded as proposed in Hornung et al. (2013). It is com-
puted from RGB-D sensor readings in the visual SLAM keyframes. This map can be reused to
generate 2D maps for navigation.

• ReVslamMap: the raw storage of visual maps for visual localization. They are built from the
sole input of an RGB-D camera. Provides a continuous localization of the robot while the map is
building. Furthermore, thanks to the capability of Roboearth system for sharing environments,
this map can be downloaded and reused by other robots in order to localize, while navigate, in
the same environment.

61

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Figure 4.5.: Visualization of the frontier-based exploration algorithm. Black contours represent
known obstacles and the green grid cells encode the inflation for safe navigation. The
dark blue arrows represent unexplored frontiers. The next frontier to be explored is coded
as a light blue arrow.

4.6. Reasoning about Object Locations

In order to successfully find an object in the environment, a robot must answer the questions “Where
is the object likely to be?” and “Where do I need to go in order to see it?”.

Inferring likely object positions

We employ knowledge that has been extracted from the OMICS common-sense database Gupta and
Kochenderfer (2004) and converted into the representation used in the robot’s knowledge base Kunze
et al. (2010) to compute likely object positions. The OMICS database holds tuples of objects and their
locations in the form (ob ject, location). The number of times a relation is contained in OMICS can
be used to approximate the likelihood that an object O can be found at a location LOC:

P(O|LOC) = count(O,LOC)/count(LOC) (4.1)

where count is the number of database entries. The value of P(LOC|O) is calculated from the above
model using Bayes’ rule. To retrieve the location with the highest probability we simply apply the
argmax operator

argmax
LOC∈Locations

P(LOC|O) (4.2)

The resulting models allow queries for the locations of objects given by corresponding landmark
objects. These object classes can be grounded in the robot’s semantic environment map to determine
their positions.

62

4.7. Experiments

Figure 4.6.: Visibility costmap computed from the semantic environment map, the semantic robot
model and geometric object models downloaded from RoboEarth. The colors indicate
the amount of the object that is visible from a given camera of the robot considering its
pose.

Computing robot poses using visibility reasoning

Based on the semantic map (that contains known object instances in the environment) and CAD
models of these objects previously downloaded from RoboEarth, the system computes a visibility
costmap describing from which robot poses the object is likely to be visible Mösenlechner and Beetz
(2011). Especially for objects that are inside a cabinet or shelf, occlusions by the surrounding objects
need to be taken into account when planning a pose for the robot. To compute the costmap, the system
renders the scene from the viewpoint of the inferred object location and computes the amount of the
object that is visible from each grid cell in the costmap (fig. 4.6).

4.7. Experiments

This section is devoted to showing how diverse robots benefit from the cloud-based RoboEarth se-
mantic mapping system. The experiments include those carried out with a real Pioneer P3-DX robot
and simulations. We demonstrate how a simple robot can reliably and efficiently build and exploit
the semantic maps needed to perform quotidian tasks using the Roboearth cloud services ∗. The
experiments are based on the two action recipes described in section 4.4.

Assuming that RoboEarth contains a huge database of object models, one key advantage is the
ability to serve a reduced subdatabase that only contains the relevant models for the current tasks. This
reduces the local computation overhead and improves recognition precision and recall. In the case of
the semantic map building for a novel environment, given the type of the environment, in this case

∗https://youtu.be/ehVt-eqk3dI

63

https://youtu.be/ehVt-eqk3dI

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Figure 4.7.: Initial (left) and final (right) steps of the exploration algorithm. The dark blue arrows
represent the currently unexplored frontiers.

a hospital room, RoboEarth is able to elaborate and serve to the robot a subdatabase containing only
object models expected to be relevant and salient in this environment. In this case, the selected object
categories are a bed and cabinet. For each object category all the relevant individual object models
are included in the subdatabase. In contrast in the active search recipe, the served subdabase would
contain only the recognition model of the object searched for.

Given the SRDL model of a robot, RoboEarth can produce and serve a customized CRAM plan
for this robot. In the simulation we consider two different robots operating in two different environ-
ments. It is shown how, from a single recipe, four different execution CRAM plans are generated, one
per robot-environment combination.

To illustrate the benefits that a simple robot can gain from using RoboEarth, we focus on the
increase in efficiency derived from the exploitation of the knowledge-based reasoning available in the
semantic maps in the case of a search for a novel object. In contrast to an exhaustive search, RoboEarth
exploits a map the environment acquired previously and performs a knowledge-based search strategy
of small objects by landmark objects.

4.7.1. Real-world experiments

The following scenario has been investigated: A robot in a hospital room has to find a bottle to
be served to a patient. Initially, the robot does not know the location of the bottle. The naı̈ve and
expensive solution would have been to exhaustively search the whole room. In contrast, to improve
efficiency, we use both the semantic mapping and object search recipes (Alg.1, Alg.2) to embody a
knowledge-based search strategy in the robot.

We used a Pioneer P3-DX in which the navigation is based on a Sick 2D laser scanner and
odometry sensors. It has been implemented by means of the ROS stacks GMapping, and move base
that has been extended to include the ORM obstacle avoidance. The robot also incorporates a Kinect
RGB-D camera that provides the raw data for visual mapping. The visual SLAM is implemented by
means of the C2TAM algorithm that externalizes heavy computations using a Platform as a Service,
in our case the RoboEarth Cloud Engine. It is worth noting that during the experiments, C2TAM has
been able to fulfill all the mandatory real-time constraints of our robot-embedded computer, despite
the delays and low bandwidth typical of any computer network. Regarding the inference methods, the
ROS RoboEarth stack ROS RoboEarth (2014) and the KnowRob knowledge base Tenorth and Beetz

64

4.7. Experiments

Figure 4.8.: Object recognition events: bed (left) and cabinet (right).

(2013) are used. The capability matching and the CRAM plan generation have been executed locally
on our robot computer, but these can also be externalized to the cloud.

Semantic Mapping

Before performing the task, the knowledge base infers that the bed and the cabinet are likely landmark
objects, and the corresponding object models are inserted in the model subdatabase that is served to the
robot. A customized CRAM plan is generated for the robot based on the recipe. The robot executes
the CRAM plan and starts to explore the unknown environment until it obtains a complete map of
the room. Figure 4.7 shows the beginning and end of the exploration. At the beginning the map is
incomplete, with several open frontiers that have yet to be explored. At the end the complete map is
estimated.

While the robot is exploring the environment, the perception component builds the visual SLAM
map and inserts the detected objects according to the models in the subdatabase. Figure 4.8 shows two
examples of object recognition events. Once the exploration is finished the robot uploads the created
semantic map to RoboEarth (as we can see in fig. 4.1). This comprises the detected objects (fig. 4.9),
the map of visual features,and a 3D occupancy grid map, coded as an OctoMap (fig. 4.10).

Object Search

The second recipe execution presents the guided object search. This is based on the semantic map
of the environment built and uploaded in the previous exploration (Sect. 4.7.1). The object location
inference determines the cabinet as the landmark object to guide the search for the bottle. Taking the
scene layout and occupancy map into account, several reachable robot locations from where the bottle
is likely be detected are computed (see figure 4.11). Considering the SRDL description of the Pioneer
P3-DX, the stored semantic map and the action recipe, RoboEarth provides: 1) a custom 2D map for
navigation estimated from the OctoMap, 2) a customized CRAM plan, and 3) the set of recognition
models for the bottle.

The provided CRAM plan iteratively drives the robot to a list of selected positions until the object
is eventually found. Once it is located, its position is added to the map and the map is uploaded to
RoboEarth. Figure 4.12 shows the robot trajectory and the semantic map including the objects known
a priori (bed and cabinet) and the new one (the bottle).

65

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Figure 4.9.: Detailed storage format for a semantic map composed by two objects, a bed and a cab-
inet. Each object instance contains information about the type of object, dimensions,
recognition model used, time detection and its location into the map.

4.7.2. Simulation Experiments

The goal of the simulation experiments is to demonstrate the interoperability of the system. For
these experiments, we have used the open source robotics simulator Gazebo Koenig and Howard
(2004). The same object search action recipe has been executed on two different robots in two dif-
ferent environments. The selected robots have been the holonomic service robot Amigo Lunenburg
et al. (2012), and the previously described non-holonomic Pioneer P3-DX. Per each selected robot,
the SRDL model describes its capabilities and kinematics, enabling RoboEarth to produce a specific
CRAM plan for a definite robot in a particular environment.

The searched object has been considered to be probably found on top of beds, cabinets or shelves.
The first environment emulates the hospital room, assuming a semantic map where a bed, and a cabinet
have been located. The second environment mimics a suite, composed of two rooms communicated
through an open door. It is assumed to have a semantic map where a bed, a cabinet and two shelves
have been detected. Figure 4.13 shows the paths resulting from the four different CRAM plans, one
per each robot in each room. The paths mirror the difference in locomotion, the Amigo robot is able to
maneuver more efficiently in the tight spaces than the non-holonomic Pioneer P3-DX. The two robots
also have their camera in different locations; consequently the reasoning for the path generation has

66

4.7. Experiments

Figure 4.10.: Map of visual features (left), and 3D occupancy grid OctoMap (right).

been influenced by the differences in visibility.

4.7.3. Performance Improvements

The purpose of this experiments is to highlight the benefits of using the proposed system. We focus
the quantitative results on three aspects: (1) the externalization in the cloud of the most intensive
computations; (2) the use of a subdatabase of objects which improves recognition; (3) the efficiency
of the knowledge-based search strategy based on landmark objects implemented by the object search
action recipe.

Computational Efficiency

The use of the cloud for externalizing the expensive computation processes provides an improvement
in the response time, as we can see on figure 4.14. This figure presents two graphs that show the
response time per frame of the tracking process of the visual SLAM system with respect to the size
of the map during the execution of exploration action recipe. On the top graph, we can see the
performance of the system when the expensive computation process of the visual SLAM system used
is running on the cloud. The tracking response time remains constant (around 10 ms) independently
of the map size. The bottom graph shows the tracking time when the complete C2TAM system is
running onboard the robot. We can see how the tracking response time increase when the size of
the map grows and even it overtakes the video frame rate threshold (33 ms). We can conclude that
the externalization of the expensive map optimization process of C2TAM as a service in the cloud
provides an improvement in the response time of the real-time critical processes because they can
benefit of all the onboard resources once the mapping process is outsourced to the cloud.

Recognition using a Subdatabse

Two search strategies has been tested for a range of subdatabase sizes. The first strategy is a naı̈ve
detection that checks all the models in the subdatabase. The second is an advanced one that only

67

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

Figure 4.11.: Visibility costmap (left). Occupancy map and, in blue, the selected search robot loca-
tions (right)

Figure 4.12.: Computed robot locations for detecting the object, in blue, and planned trajectory, in
green (left). Final semantic map including the bottle detected on top of the cabinet
(right).

checks the 10 most promising object models according to an appearance score obtained when their
local features are converted into bags of words (BoW) Gálvez-López and Tardós (2012). In this
experiment we focus on the semantic mapping of a hospital room. The subdatabase contains the
RoboEarth provided relevant models in all the experiments. Additional object models, up to 500, are
added to the subdatabase to analyze the effect of a big database containing objects not appearing in the
actual scene. Figure 4.15 shows a quantitative performance analysis. The top graph shows the naı̈ve
detector, bottom graph shows the advance BoW recognition. As expected mean time of detection
after the BoWs preselection scales better with the subdatabase size. Both of the methods produces
more detections with reduced subdatabase, i.e. low false negative rate after processing the whole
experiment sequence. Additionally in our experiments we did not detect any false positive, what is
a good indicator of a remarkable recognition precision. In any case, in both algorithms, we can see
how the increase number of objects in the subdatabase degrades the performance. We can conclude

68

4.7. Experiments

Figure 4.13.: Travelled path (blue) in simulated object search. Top row displays Amigo, and bottom
row displays Pioneer. Left column for the room, right column for the suite.

that a subdatabase which only contains the most relevant models for a specific task provides a better
performance on the object detection in terms of number of detections and speed. RoboEarth is able to
provide this subdabase of only relevant objects.

Knowledge-based Search Strategy

Finally, in terms of the proposed knowledge-based search strategy, we show how the priors provided
by the semantic map are able to reduce the number of potential search locations, and hence sig-
nificantly reduce the search time. We compare the guided exploration trajectories with those of an
exhaustive search. The comparison is made in terms of the number of locations from where the object
search is performed in the worst case. The selected scenarios are the room and the suite described in
the previous section. For the search locations in the exhaustive case, we have selected the Art Gallery
algorithm Shermer (1992) because, for a given sensor visibility range, it provides the minimum num-
ber of positions which can cover a particular environment. Figure 4.16 shows the locations which
achieve full coverage of the considered environments. The number of locations depends on the size
of the environment – the bigger the environment, the higher the number. In our case, 40 locations
were computed for the room and 100 for the suite. The benefit is evident if we compare this with the
knowledge-based search (fig. 4.13 bottom row), where the room needs only 9 locations and 15 were
needed by the suite, leading to a corresponding reduction in the search time.

69

Chapter 4. Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach

✵ ✺✵ ✶✵✵ ✶✺✵
✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

❚
�✁
✂
✄
☎✆
✝
✞☎
✟
✠
✡✟
☛
☞

✵ ✺✵ ✶✵✵ ✶✺✵
✵

✶✵✵✵

✷✵✵✵

✸✵✵✵

✹✵✵✵

✺✵✵✵

▼
✁
✌
☛
☎✍
✠
✡✎
✌
✏
☎✆
✞☛
☞

✵ ✺✵ ✶✵✵ ✶✺✵
✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

❚
�✁
✂
✄
☎✆
✝
✞☎
✟
✠
✡✟
☛
☞

✵ ✺✵ ✶✵✵ ✶✺✵
✵

✶✵✵✵

✷✵✵✵

✸✵✵✵

✹✵✵✵

✺✵✵✵

▼
✁
✌
☛
☎✍
✠
✡✎
✌
✏
☎✆
✞☛
☞

❙✑✒✓✑✔✕✑ ✖✗✘✑✙✚✛✘✜ ✢✘✙✣

Figure 4.14.: Response time of the tracking process. Top graph C2TAM running mapping in the cloud,
botton graph all C2TAM processes running onboard the robot.

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300
◆❛⑧➩✈❡ ❊①❤❛✉st✐✈❡ ❙❡❛r❝❤

N
u

m
b

e
r

o
f

D
e

te
c
ti
o

n
s

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

T
im

e
 (

m
s
)

Number of objects in the subdatabase

Instances of Objects detected

Mean time of Detection

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300
❇❛❣ ♦❢ ❲♦r❞s ❇❛s❡❞ ❙❡❛r❝❤

N
u

m
b

e
r

o
f

D
e

te
c
ti
o

n
s

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

T
im

e
 (

m
s
)

Number of objects in the subdatabase

Instances of Objects detected

Mean time of Detection

Figure 4.15.: Number of detections and time performance of the object detector as function of the
subdatabse size. Top, naı̈ve recognition. Bottom Bag of Words preselection

70

4.8. Discussion

Figure 4.16.: Art Gallery exhaustive search. Blue squares code the search locations, and red sectors
represent the camera field of view. Room: 40 locations (left). Suite: 100 locations (right)

4.8. Discussion

A robot operating in an environment for the first time can benefit from information previously stored
by other robots operating in the same environment, thanks to the RoboEarth semantic mapping system.
The proposed semantic mapping system combines a visual SLAM map of objects with an ontology
representing the knowledge. Thanks to this combination, knowledge-based reasoning about map en-
tities becomes possible.

We have demonstrated that the building and exploitation of this mapping system can be imple-
mented as web and cloud services. The robot has to provide its SRDL description, and hence Robo-
Earth provides all the information needed to execute the task. The result of the execution is also stored
in the database for reuse by the same or other robots. We have provided a pioneering experimental
validation of a web-enabled cloud semantic mapping system exemplified in the case of map building
and guided search for a novel object. We conclude that our system can (a) enable robots to perform
novel tasks, (b) generate semantically meaningful environment maps, and (c) reason about these maps
in conjunction with formally described background knowledge. Indeed, the strategy cannot address
all cases in an open world at once (i.e. recognize all objects at all times), but this is in general not
feasible at the moment. With limited on-board resources, the options are either to manually select
a number of objects that can be recognized (as it is commonly done today), or to give the robot the
ability to autonomously select a range of object models that are to be expected in the environment.
This is obviously limited by the quality of the predictions, but still more flexible than a rigid selection
of objects.

Evidence has also been provided about the possibility of externalizing in the cloud those pro-
cesses which are demanding in terms of memory or CPU while at the same time meeting the hard
real time robot constraints. We can hence conclude that the operation of simple robots with typical
computing and networking facilities can be boosted by RoboEarth.

71

72

Chapter 5
Semantic Visual SLAM in Populated
Environments

5.1. Introduction

In contrast to the environments used to validate semantic navigation in the previous chapter, the ser-
vice robots usually works in populated environments. The contribution of the work presented in this
chapter is to design and implement a visual SLAM system able to perform robustly in populated en-
vironments. The system has been evaluated using two visual SLAM algorithms based on keyframes:
C2TAM presented in chapter 3 and ORBSLAM2 Mur-Artal and Tardos (2016).

State of the art visual SLAM algorithms rely heavily on the rigidity prior, which assumes that
each image is filled with a that is mostly rigid and persistent. To exploit the rigidity prior, the al-
gorithms include a RANSAC-like voting stage to blindly detect and remove any dynamic element
from the mapping process. This delivers a nice robust performance in mostly rigid scenes. Unfor-
tunately, the observation of populated environments implies non-persistent scene changes and scene
regions with severely non-rigid motions. The resulting images might be filled with non-rigid and
non-persistent elements where the voting algorithms will fail.

Our proposal is to detect and track people in each frame of a video stream (See fig. 5.1), Our
first contribution is to mask out of the SLAM processing those image regions corresponding to human
activity. Hence, we restore the validity of the rigidity prior for the non-masked image regions that can
now be processed successfully with the standard VSLAM algorithms. The masked frames are fused in
a map that only represents the geometry of the non-human rigid elements in the scene. We refer to this
as the unpopulated map. In our proposal, the unpopulated map is a dense occupancy grid computed
as an Octomap Hornung et al. (2013) resulting from the fusion of a selected set of RGB-D keyframes
which are accurately located in a common reference after the Bundle Adjustment of a sparse point
feature matches Riazuelo et al. (2014b); Mur-Artal et al. (2015).

Our second contribution is to exploit the human detection and tracking in each frame of the
video stream to build a semantic human activity layer that registers the trajectory of each person
entering within the limits of the unpopulated map. This is the result of combining the accurate camera
location that the unpopulated map provides with the human detection in real-time at frame rate. The
scene is observed with a mobile RGB-D camera, but the people trajectories are estimated on the map,
irrespective of where the camera was when the person was imaged (see fig. 5.1.) The semantic layer
can be exploited for autonomous robot navigation and planning in populated environments.

73

Chapter 5. Semantic Visual SLAM in Populated Environments

Figure 5.1.: (Top row) Typical frames of a populated scene. The human tracker detections are overlaid
in colours identifiying the person. (Bottom row) the two layers map. The geometrical
unpopulated map is a dense occupancy map after removing people populating the scene.
The human activity semantic layer is the set of trajectories of the detected persons with
respect to the unpopulated map.

The rest of the chapter is organised as follows: Section 5.2 discusses related work. Section 5.3
describes our system. In section 5.4 we present the experimental results and section 5.5 concludes and
presents lines for future work.

74

5.2. Related work

5.2. Related work

Most semantic mapping approaches are focused on static objects instead of moving objects. In
Nüchter and Hertzberg (2008) and Goerke and Braun (2009) a 3D laser scan is used for enhanc-
ing the map with semantic information. Using 3D points from a stereo camera, Günther et al. (2013)
builds a map and enriches it by inserting CAD models corresponding to the detected objects. Com-
bining object recognition and visual SLAM in order to produce semantic maps has been extensively
studied in recent years. Castle et al. (2010) and Civera et al. (2011) merged a monocular SLAM sys-
tem and object recognition for enriching the map. In Gálvez-López et al. (2016) a combined approach
is also presented, the authors not only compute the position of the objects in the map, but also add the
objects to the optimization process. A recent work Salas-Moreno et al. (2013) incorporates the use of
depth information for mapping and object recognition of object instances. Hermans et al. (2014) also
uses RGB-D sequences, but goes further because the goal of the recognition is not object classes but
categories. They create consistent 3D semantic reconstruction of indoor scenes and categorize each
voxel in real-time, assigning a semantic label to the voxel according to a specified category. However,
removing dynamic objects and annotating them is not a problem which has been studied in depth.
OctoMap Hornung et al. (2013) blindly removes moving objects due to its probabilistic nature; it
eventually filters out moving objects, but it does not contain semantic information about the removed
objects. In contrast, our approach first identifies objects by categories and then removes them. It is
even able to deal with stationary people. Newcombe et al. (2011) also deals with moving objects
using a volumetric representation, but they do not add semantic information about these objects to the
map. A preliminary work to identify and remove moving objects finding corresponding in two views
is presented in Litomisky and Bhanu (2012).

Navigating in the presence of humans requires knowledge of people’s movements. In Kruse et al.
(2013) a collection of approaches to human-aware navigation are presented. Dondrup et al. (2015)
presents real-time people perception framework, using detectors based on laser and RGB-D data and
a tracking approach able to fuse multiple detectors.

The study of human motion patterns has become increasingly significant in recent decades. Wang
et al. (2016) presents a method for classifying regions for human movements and Xiao et al. (2015)
proposes a method to recognize and predict people’s path using a pre-trained SVM as a classifier. In
Wang et al. (2015) an approach for modeling the dynamics of human movements with a grid-based
representation is presented. However on these methods the sensor remains always static in the scene
in contrast to our approach.

Human detection and pose estimation in populated environments is a problem studied in consid-
erable depth in the literature Viola et al. (2005), Leibe et al. (2005), Mikolajczyk et al. (2006). On
the subject of articulation, Bergtholdt et al. (2010) proposes a fully connected graphical model for
representing articulated models. Yang and Ramanan (2011) describes a general method for human
pose estimation in static images based on a representation of part models. A generic approach based
on the pictorial structures framework for articulated pose estimation is presented in Andriluka et al.
(2009).

Wang et al. (2007) proposes a mathematical framework to integrate SLAM and moving objects
whith the use of depth sensors. Ess et al. (2009) presents an approach close to ours as they mask
detected people from the geometrical processing. However instead of building a full SLAM map
they only compute visual odometry. Furthermore, additionally their focus is on people tracking while
neglecting the scene unpopulated map.

Our proposal is a system that builds strongly on state of the art visual SLAM systems processing
RGB-D images, C2TAM Riazuelo et al. (2014b), and ORBSLAM2 Mur-Artal and Tardos (2016).

75

Chapter 5. Semantic Visual SLAM in Populated Environments

Tracking

People
Detector

image frames
keyframe

Mapping RGBD
sensor

FRONTEND SIDE BACKEND SIDE

detectionscamera pose
updated
 map

people path

Figure 5.2.: Typical VSLAM parallel architecture and people detector integration.

Regarding people detection we integrate Jafari et al. (2014) because of its real-time RGB-D detection
and tracking for mobile robots and head-worn cameras.

5.3. System Description

Klein and Murray proposed the ground-breaking PTAM architecture for purely RGB monocular se-
quences in Klein and Murray (2007). This is still the basis of state-of-the-art VSLAM systems also
monocular Mur-Artal et al. (2015) or RGB-D C2TAM Riazuelo et al. (2014b) or ORBSLAM2 Mur-
Artal and Tardos (2016). Our proposal also builds on top the RGB-D ones. Although our approach
is agnostic to the VSLAM approach, for the aim of simplicity we focus the system description on
ORBSLAM2. The architecture is based on two intertwined processes running in parallel. The two
processes are generically named as frontend and backend, see fig. 5.2. The frontend is focused on a
minimal set of operations to provide the camera location in real-time, it assumes that the backend has
provided a map of the scene. The backend concentrates the expensive mapping operations to estimate
the scene map by means of non-linear optimization, it iterates at low frequency providing fast –but
not real-time– updates of the estimated map.

The real-time camera pose is a tracking algorithm which assumes that the camera trajectory is
smooth. If it gets lost, for example due to camera occlusion or motion blur, then the camera location
has to be located from scratch before resuming tracking. This recovery stage is called relocation in
the VSLAM literature, and it is also a standard component of contemporary SLAM systems.

Our proposal integrates a real-time people detection and tracking stage Jafari et al. (2014) in
the system to enable its operation in populated environments. The people detection interacts with all
the components and stages of the visual SLAM. We describe below the modified frontend, backend,
relocation and human activity detection layer of the map.

5.3.1. Frontend process

The frontend processes each RGB-D camera frame in real-time to provide the camera location. Its
main component is the camera tracking, which assumes that both an accurate sparse 3D point map of

76

5.3. System Description

(a) (b)

(c) (d)

Figure 5.3.: (a) Raw RGB. (b) Interest point detection and human activity masking. (c) Raw RGB-D
depth channel. (d) RGB-D point depth channel after removing people depth points.

the scene and an estimated camera position, from which putative point matches between the current
frame and the map are estimated. Then, the camera pose is estimated by non-linear minimization of
the map reprojection error. The optimization is cheap because only the six d.o.f of the camera pose
are optimized. The map points are not optimized because their estimate locations, provided by the
backend, are assumed to be perfect.

The reprojection error includes a robust influence function Huber (1981) that marks as an outlier
any match with a big reprojection error. If the outlier rate exceeds 50% of the computed matches, the
camera location estimate is very likely to break down. Outliers correspond to mismatched points or
to matches not following the rigidity prior. Hence, human activity makes the camera estimation more
likely to fail because it generates outlier matches that increase the outlier fraction.

We propose to identify the frame regions which image human activity in order to mask them
out of the camera tracking processing. The first step of the tracking is to detect interest points in the
current frame, typically FAST Rosten and Drummond (2006). We additionally process the frame with
a real-time people tracker Jafari et al. (2014) that yields a bounding box per each detected person. All
the points of interest within the bounding boxes are masked out for the subsequent matching stage

77

Chapter 5. Semantic Visual SLAM in Populated Environments

(fig. 5.3 (b)). By masking out the FAST points on humans, we remove points that are probably out-
liers, reducing the proportion of outliers and hence increasing the probability of a successful camera
location estimate.

The people tracker provides a 3D position of each detected person with respect to the RGB-D
camera frame simply by reading the depth channel. Additionally, we have ready available each person
trajectory referred to the static scene map frame, by just composing the person position with respect
to the camera with the camera pose provided by the camera tracking. This mechanism to compute the
people tracks referred to the map is the main ingredient of the semantic people activity layer of the
map.

Translation Sequence Arc Sequence
ORBSLAM2 C2TAM ORBSLAM2 C2TAM

ATE (mm) % Frames Tracked ATE (mm) % Frames Tracked ATE(mm) % Frames Tracked ATE(mm) % Frames Tracked
No Masking 53.3 92.3 42.6 95.9 39.2 97.0 41.7 93.5

Ground-Truth Masking 15.9 90.7 16.7 92.3 19.6 98.6 28.6 94.5
People Detector Masking 22.6 92.5 20.2 94.3 21.2 99.2 29.1 87.5

Table 5.1.: System performance over KTP dataset sequences using ORBSLAM2 and C2TAM.

5.3.2. Backend process

The backend concentrates all the compute-intensive or non-time critical operations derived from the
mapping estimation. Its main component is a non-linear iterative optimization, after each optimiza-
tion step, the map provided to the frontend is updated. It is only possible to achieve an update rate
significantly lower than the frame rate, but fortunately it is acceptable.

The backend exploits the fact, well-known since the early times of photogrammetry, that given
the points correspondences along a monocular image sequence both the camera poses and the 3D
point positions can be estimated up to scale factor, for a rigid scene. The gold-standard algorithm is
non-linear minimization of the reprojection error, known in the literature as Bundle Adjustment (BA)
more specifically, the iterative optimization algorithm used is the Levenberg-Marquardt. We use an
extension in the case of stereo cameras Mur-Artal and Tardos (2016).

PTAM-like algorithms exploit the fact that not all the frames in the sequence have to be included
in the BA, but only a small fraction of them, known as keyframes. Different heuristics have been
proposed for keyframe selection, for example in Klein and Murray (2007); Mur-Artal et al. (2015);
Riazuelo et al. (2014b). The heuristics application results in a reduced set of keyframes that cover the
imaged scene while having enough overlapping to ensure that all the points in the map are imaged
from several images with a significantly different point of view in order to render parallax, ensuring a
good geometrical conditioning for BA. There is overwhelming experimental evidence of the efficacy
of these heuristics in the keyframe selection. The keyframe selection is made in the frontend.

The main challenges that BA has to face are the outliers, the local minima, and the high number
of iterations to converge to the minimum. All these drawbacks can be overcome if an initial guess
close to the solution is available. The intertwining between the frontend and the backend is respon-
sible for mutually providing the necessary initial guesses for the non-linear optimization. When the
camera explores new scene areas not yet included in the map, the frontend sends a new keyframe
to the backend, with an initial guess for its location. A low spurious rate set of matches between
the new keyframe and all the other keyframes already in the map is also available. From this initial
information, matches for new points to expand the map can be robustly found exploiting the scene
rigidity. Again, masking out the keyframe regions corresponding to human activity helps to reduce
the outlier rate in the new matches, and hence increases the robustness. Given the new camera pose

78

5.3. System Description

estimate, initial guesses for the points newly added to the map can be also estimated. Thanks to the
initial guesses the convergence for the newly added camera and map points is fast.

The sparse map M is the result of the BA. It is composed of a set of l keyframes {K1,K2, . . . ,Kl}
and n 3D sparse feature points {P1,P2, . . . ,Pn}. Per each keyframe, it estimates the camera position
coded as the rigid transformation TWK j referred with respect to world frame W . The keyframe also
contains a the camera depth channel of the image, which in contrast to the sparse points of the maps
can provide dense depth information of the scene. Once we have accurate keyframe poses, TWK j

from the BA, we use the Octomap algorithm Hornung et al. (2013) to fuse all the depth maps into
a single occupancy map. Prior to the fusion, the depth regions corresponding to human activity are
also masked out from the keyframes, so that the generated Octomap does not contain the people
populating the scene. This people-removal process does not have to be in hard real-time, so it is
performed in the backend and only on the keyframes. The unpopulated map could be easily reused in
future reobservations of the same scene, irrespective of the present and future the human activity.

5.3.3. Camera Relocation

As mentioned above, relocation is mandatory after the loss of camera tracking, and it is necessary to
be able to reuse a previously available map. The ORBSLAM2 relocation algorithm is currently the
state of the art. Its first step is an indexed search for matches known as DBoW Gálvez-López and
Tardós (2012). The search for matches between the current image and the available map mimics a
query in a database, where the current image is the query, and the dabatase is holds the map points.
In the second stage the camera pose is recovered using a RANSAC-like approach. In our proposal,
during the relocation step, we mask out the detected people from the current image before querying
the DBoW database. It has to be considered that in building the database, the regions corresponding
to human activity were also masked out from the map, hence also from the database. We can conclude
that human activity detection and removal extends the lifespan of map reuse, because the number of
spurious matches is reduced both from the database and from the queries.

5.3.4. People detection and human activity layer

To deal with human activity we propose to integrate a people detection and tracking stage, in our case
we use Jafari et al. (2014). We process all the images coming from the RGB-D camera. Each detected
person in an image is coded as an image bounding box and a label is created that uniquely identifies
the person. The 3D position of the person with respect to the camera is computed as the position of
the center of the bounding box, and the depth channel. All these pieces of information are computed
and stored in the frontend.

When the frontend decides to create a new keyframe, it sends the keyframe to the backend.
Additionally all the information registered for all the frames since the last keyframe is also sent to
the backend. The pieces of information included are the frame poses and all the instances of people
detections.

The backend generates the human activity semantic layer, composed paths of each person with
respect to the unpopulated static map, irrespective of where the camera was when the people were
detected. These trajectories are computed by the composition of the 3D position of each person with
respect to the camera with the 3D camera pose computed by the frontend. After each iteration of the
backend, the position of each keyframe is updated. We keep the connection of the intermediate frames
with the keyframes to propagate the position updates of the keyframes to the intermediate frames, and
from there to each person’s trajectory, which is updated at same rate as the unpopulated map. This

79

Chapter 5. Semantic Visual SLAM in Populated Environments

(a) Frame 663 (b) Frame 1109 (c) Frame 1392 (d) Frame 1745

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

o
r

in
 d

is
ta

n
c
e
 [
m

]

Image sequence [frame]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

A
re

a
 c

o
v
e
re

d
 b

y
 p

e
o
p
le

 d
e
te

c
ti
o
n
 [
%

]

Frame 663 Frame 1109 Frame 1391 Frame 1745

No Masking

Detector Masking

Frame covered by people

Figure 5.4.: Effect of human activity masking per each frame of the sequence ”Translation” processed
by ORBSLAM2. Top row displays a representative case.

information adds a semantic label to activity layer of the map as a ”occupied area” by people. This
semantic information will be use by a mobile robot for navigating in the same environment.

5.4. Experiments

In this section, we present the experiments performed for validating our approach. The system is
implemented in C++ using Robot Operating System (ROS) Quigley et al. (2009). An Intel Core i7
@2.67GHz processor was used for running the VSLAM system and the people detector at a 24 fps
rate. For validating the approach we have used the Kinect Tracking Precision Dataset (KTP) presented
in Munaro et al. (2016). This contains 5 different sequences acquired with a Microsoft Kinect on
board a mobile platform. We have selected this dataset because it provides RGB-D images in a
context where a robot makes a trajectory and also includes a ground-truth of both the position of the
robot and the detections of the people. Regarding the VSLAM system, we have tested our approach
using two different PTAM-like algorithms adapted for RGB-D, C2TAM Riazuelo et al. (2014b) and
ORBSLAM2 Mur-Artal and Tardos (2016). Both of them use Jafari et al. (2014) for human activity
detection.

Table 5.1 presents the results of both VSLAM algorithms running over two of the KTP sequences:

80

5.4. Experiments

Translation Sequence Arc Sequence
ATE
(mm)

% Frames
Relocated

ATE
(mm)

% Frames
Relocated

NoMasking 51.2 87.5 32.7 78.8
Ground-Truth Masking 16.2 76.8 21.6 56.7

People Detector Masking 17.8 75.2 22.5 37.2

Table 5.2.: Camera relocation performance over KTP dataset sequences using ORBSLAM2.

”Translation” and ”Arc”. The metric selected for measuring the performance of the system is the
Absolute Trajectory Error (ATE) after aligning the computed trajectories with the ground truth by
means of a rotation and translation. We also include the rate of frames successfully located, named
”% Frames Tracked”. We run the sequences with three different configurations for human activity
detection: No masking, in which human activity detection and masking is deactivated; Ground-Truth
Masking, where we use the ground truth bounding boxes detections provided by KTP, in order to find
an upper performance limit; and People Detector Masking by which the system is fed with the real
people detection provided by Jafari et al. (2014).

First of all we can see how the frame tracked percentage is very similar for all the configurations.
However the ATE error is reduced by more than half if human activity masking is applied to the
images, which proves the benefit of masking. Also we can see a small increase in error depending
on whether we use the ground-truth detections or the people detector. This increase in the error is
minimal, proving that we are close to the upper performance limit.

Figure 5.4 presents in detail the evolution of the error during the whole sequence for the ”Trans-
lation” and ORBSLAM2 case. The plot displays the error with people detector masking (green line)
and with no masking (red line). The area of the image covered by people is also plotted, as an index
of the human activity. The camera location error is highly correlated with the level of human activ-
ity. Four representative frames are selected in order to visualize this correlation. In the frames 5.4(a)
(#663) and 5.4(d) (#1745) we can see how the error increases due to the increment in human activity.
The higher the occlusion level of the image caused by the people in the scene, the lower the system
accuracy. There are even situations in which the occlusion level is so high (Frame 5.4(d) (#1745)) that
the system cannot be located and the camera is lost. In addition we can see in frame 5.4(b) (#1109)
how the human activity level decreases and hence the error also decreases. When there are no people
in the image (Frame 5.4(c) (#1391)) we can see in the figure how the error is maintained or even
decreases.

For validating the camera relocation performance we have run KTP dataset ”Translation” and
”Arc” sequences over ORBSLAM2 because its relocation algorithm based on bag of words is on
top of the state of the art. We have run the VSLAM system on the first part of the scene (about
300 frames) during the scene exploration stage. Afterwards we close the map and force a camera
relocation for each frame in the rest of the sequence. Table 5.2 presents the results of the camera
relocation performance for different options of masking, applied both to the map creation and the
subsequent relocation. We can see the improvement in the ATE metric when human activity is masked.
Regarding the use of the ground-truth for masking the people, the ATE metric is quite similar to that
achieved by the implemented detector. We can also see how the percentage of relocated frames drop
with people masking, this is due to with no masking some frames are not relocated correctly and the
number of relocated frames increases.

Figure 5.5 presents the evolution of the relocation error with (green line) and without (red line)

81

Chapter 5. Semantic Visual SLAM in Populated Environments

400 600 800 1000 1200 1400 1600 1800 2000
0

0.03

0.06

0.09

0.12

0.15

E
rr

o
r

in
 d

is
ta

n
c
e

 [
m

]

Image sequence [frame]

400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

A
re

a
 c

o
v
e

re
d

 b
y
 p

e
o

p
le

 d
e

te
c
ti
o

n
 [

%
]

No Masking

Detector Masking

Frame covered by people

Figure 5.5.: Effect of human activity masking on relocation. ATE after relocation per each frame of
the ”Translation” sequence processed by ORBSLAM2.

(a) (b) (c) (d)

Figure 5.6.: 3D reconstruction and Octomap using unmasked 3D point cloud (a,c), and using the hu-
man activity masked data (b,d).

masking people. In this case we can also see the correlation between the error and the area of the
image covered by people. In the frames in which the image is covered by people, the error is greater
than in which are without people. In addition, depending on the level of occlusion, the relocation
algorithm is unable to provide a position. We can conclude that using a masking technique improve
the camera relocation performance.

Regarding the geometrical layer, figure 5.6 displays the improvement provided by our C2TAM
approach after the initial exploration of the scene (≈ 350 first frames). Due to the information provided
by the people detector about the estimated position of the people in the images, a process of annotation
and removing the people from the 3D point cloud is performed. Figure 5.6(b) shows the result of this
process. The number of points in the scene is reduced in a 30%, and there is not any evidence of
people in the scene, in contrast to raw the reconstruction shown in figure 5.6(a) where artifacts due to
people are noticeable.

Comparing the initial texture alignment with the octomap approach, we can see in the figure

82

5.4. Experiments

Figure 5.7.: Sparse map and camera trajectory (top), and geometrical and human activity layer
(bottom).

83

Chapter 5. Semantic Visual SLAM in Populated Environments

the maps obtained. In figure 5.6(c), an octomap is built using the raw data from the 3D point cloud
associated to each keyframe witout masking. In contrast, using our approach (figure 5.6(c)), the
octomap built masking the people information does not even include static persons.

Figure 5.7 summarizes the results obtained by the VSLAM system proposed. Top images show
the sparse map (front and top view) generated by C2TAM after masking. The map is used for locating
the RGBD camera in the scene. We can see the feature points extracted from the rigid scene and the
camera trajectory followed by the robot during the experiment. In the bottom image, we can also see
the unpopulated map that describes the 3D geometry where information corresponding to the people
has been removed. In addition, the people trajectories that define the semantic layer are also displayed.
A full video of the validation can be found in ∗.

5.5. Discussion

Thanks to the embedding of human detection in a rigid visual SLAM system, it is possible to build
precise VSLAM maps in populated environments.

Our system integration approach can effectively remove human activity from an unpopulated
map simply by removing the people from the input sequence. People detection and removal not
only benefits the scene description, it also benefits the camera tracking and relocation, significantly
improving their performance in populated environments, and reducing the ATE error by more than
half. Additionally it is possible to generate a semantic layer that exhaustively registers human activity
in the mapped area, irrespective of the camera motion during acquisition. We can conclude that both
the mapping and the people tracking benefits from the combination. In addition, the system is able to
deal with the false positives provided by the person detector, since the detection is performed in all
frames of the sequence.

We have tested the embedding in two popular rigid VSLAM systems, with a similar gain in
performance. We can therefore conclude that our proposal is agnostic to the VSLAM method, and
hence can potentially improve any SLAM system. In the same way, we can say that the combination of
this method map building with the recognition of people is agnostic to the algorithms used, since any
detector that give us information of the person in the scene can be included in the proposed system.

People detection can be considered as an instance of class category recognition and tracking.
A similar benefit in terms of an increase in the robustness, map reuse and tracking of the instances
irrespective of the camera motions could be achieved in other environments, for example vehicle
detection for automated driving, or a tool detector for endoscope-guided minimally invasive surgery.

Mapping populated environments where human movements are prevalent is a key capability for
service robots. As future work we plan to develop robot motion planners in such environments, prof-
iting from the human activity mapped. In our opinion, planning and navigation using this information
can be improved by the knowledge of the patterns of human movement.

∗https://youtu.be/HKe1-kXtM_E

84

https://youtu.be/HKe1-kXtM_E

Chapter 6
Service robotics in confined and structured
environments

6.1. Introduction

In previous chapters it has been presented some approaches to allow a service robot to understand
the environment by incorporating semantic information (”objects” and ”people”). These works have
integrated visual SLAM systems and object and people detectors. The importance of semantics for
map building has been demonstrated. This chapter will deal with semantic concepts similar to those
previously applied in the field of safety, security and rescue robotics (SSRR). We present a part of
the work published in Tardioli et al. (2016). Our contribution have been focused on: 1) distributed
map building; 2) semantic navigation based on place recognition; 3) integration of the different mod-
ules into a complete system; 4) multiple experiments in real-world scenarios; 5) evaluation of the
experimental results and extraction of conclusions and lessons learned.

The work performed aims to deal with intervention tasks in confined and structured environ-
ments, as a previous but necessary step to dealing with more complex scenarios. These environments
poses multiple challenges that involve task planning, motion planning, localization and mapping, safe
navigation, coordination and communications. We propose a complete framework which faces the
aspects and issues that can appear in this kind of scenarios with the aim of successfully completing
an intervention mission. The goal is to carry out a supervised deployment of a robot team in a way in
which they autonomously reach a goal and give to the human operator the possibility of teleoperating
one of them to explore the environment.

The contributions presented in this chapter and hence integrated into the framework are: i) multi-
robot autonomous motion planning and navigation combined with teleoperation capabilities, manda-
tory in most robotic missions; ii) semantic and topological localization combined with geometric
localization and mapping; iii) remote map building using lidar sensor data. From the point of view of
the human team supervising the mission, it is important that the deployment plan is described in an
easy and flexible way. To do this, the mission plan is transmitted to the system in terms of achieving
several high level topological-semantic features that the perception system of a leader robot exploring
the environment is able to recognise and locate. Similar to action recipes presented in chapter 4 in
which semantic wa related to objects to be recognized and located in the scenario; in this chapter the
semantic is related to relevant places to recognize to locate and navigate.

We develop a complete robotic framework —composed of a set of mobile robots and a base

85

Chapter 6. Service robotics in confined and structured environments

Figure 6.1.: Partial map of the Santa Marta mine. Courtesy of Minera Santa Marta S.A. (left). Somport
tunnel and small vaults and lateral galleries (right).

control station— as a proof of concept for intervention in structured and large environments. In figure
6.1 a snapshot of each of the scenarios chosen to develop the experiments are shown. The mission
to be achieved is reaching a location without relying necessarily on a previously known metric map.
Both scenarios will be used for the evaluation of the system proposed in this work. We assume that
the only information available to the system is semantic and topological, and expressed in terms of
features or natural landmarks for navigation (e.g. left or right gallery, cross intersection, corridor,
etc.). In these scenarios it is not usual to have a communication infrastructure available, or else it
has been destroyed. The goal is to provide a complete system for allowing a team of robots to reach
the destination under these constraints and limitations and enable the operator to teleoperate one of
the robots —that we call the leader— at a desired area. These scenarios allow an assessment of the
performance of each of the functionalities of the system and of the system as a whole for achieving
the mission.

The first scenario is a large mine built as a maze of galleries, in which a real mission can be to
transport materials or tools to several locations. This environment is challenging because autonomous
navigation and self-localization of the robots demands capabilities to recognize the places and local-
ize themselves, whilst the mission plan is described by the supervisor in terms of semantic features
representing the places. This scenario serves mainly to evaluate: i) the robot deployment planning
algorithm, based on semantic-topological features perceived by the sensors onboard; ii) the robust
recognition algorithm for those features from their semantic meaning, and their topological localiza-
tion in the whole scenario. Although the scenario is real, obtained by manually navigating a robot, the
system is evaluated by simulations in order to use more robots and a complex environment.

The second scenario is a large railway tunnel, in which there is a long corridor and multiple
lateral galleries. It is simpler than the first scenario, from the point of view of navigation, so it is used
mainly to evaluate the communications and network issues in real experiments. In this scenario, two
experiments were carried out: the first one to evaluate the whole system and all the functionalities
together including teleoperation in a location far away from the base station and the associated real-
time aspects. The second one was carried out in a part of the tunnel, with the objective of assessing
the robustness of the system to be able to replan the robot deployment when unexpected situations
occur such as a blocked pass or loss of communication.

The rest of the chapter is organised as follows: Section 6.2 refers the related work. Section 6.3
presents an overview of the whole system and section 6.4 introduces the deployment algorith. Finally,
section 6.5 shows the experimental results and section 6.7 concludes and presents the lines for the
future work.

86

6.2. Related Work

6.2. Related Work

Several applications and projects involving safety and rescue in tunnels using robots have been devel-
oped in recent years. These include robots for fire-fighting, exploration, inspection, sensor deploy-
ment or surveillance. In Murphy et al. (2009) and Habib et al. (2011), the authors offer a survey on
challenges in robots deployments in subterranean and harsh scenarios. Autonomous navigation, local-
ization, mapping and communication are presented as basic capabilities needed in order to accomplish
a mission in such environments. However, in most of the works relating to applications in confined
environments appearing in the literature, these kinds of challenges are only addressed in isolation.

In Walker (2009) the author describes a project involving a robot for surveillance in underground
galleries against smugglers in national borders. In White et al. (2010), an underwater robot for ar-
chaeological teleoperated exploration in cisterns is presented. The work focuses mainly on SLAM
(Simultaneous Localization and Mapping) problems for mapping the cisterns. In Zhuang et al. (2008),
a robot for inspecting tunnels, capturing images and registering the concentration of some poisonous
gases is developed. In Zlot and Bosse (2014) a laser based 3D SLAM solution is presented for map-
ping large scale underground environments such as mines. All these works, however are focused only
on a partial view of the whole problem: mechanical aspects, SLAM, or solving particular aspects
of the application. None of them propose a complete framework for robot operations in confined
environments.

During the last few years some works have attempted to build topological maps for robot map-
ping and navigation. Concerning appearance methods, some of them have been applied for place
recognition Mozos et al. (2007), for SLAM at a topological level Newman et al. (2006) Cummins and
Newman (2008) and for navigation purposes Booij et al. (2007). Granström et al. (2011) describes a
technique for closing loops extracting geometrical and statistical properties from point clouds of range
data. They apply appearance similarity for matching places but no semantic sense is provided to the
features. In Thrun and Montemerlo (2006) and Grisetti et al. (2010) Graph SLAM algorithms are
proposed. In Ranganathan and Dellaert (2011) the authors develop a probabilistic topological map-
ping, and in Tully et al. (2009) a pure topological graph is described for closing loops. It is improved
in Tully et al. (2012) by developing a probabilistic framework that builds hybrid metric-topological
maps. Marinakis and Dudek (2010) propose a method for exploration strategies building a hypothesis
tree and focusing on reducing the number of hypotheses using mainly topological rules. However, in
these papers no semantic interpretation is associated to the measurements. In Kuipers et al. (2004);
Zender et al. (2008) the authors propose appearance methods for building hybrid metric-topological
maps augmented with semantic information, but they do not use a stochastic framework at a topolog-
ical level.

Multi-robot SLAM algorithms, Burgard et al. (2000), Howard (2006), Lazaro et al. (2012), have
been proposed to integrate the partial views of the robots and to build a more complete view of the
environment in a common map, in which to localize and plan motions for the team. These techniques
improve the localization, mapping and planning processes, although they increase the computational
requirements, mainly for large environments.

In Peasgood et al. (2006) a work on multi-robot path planning in tunnel-like scenarios is pre-
sented. However, only simulation results are shown, and the multi-robot communication problems
are not addressed. In Bakambu and Polotski (2007) an underground scenario similar to those used in
this work is presented. Laser rangefinder information is used to recognize some characteristic places
such as corridor intersections and to autonomously navigate in this scenario. An ad-hoc technique
is developed for this semantic recognition, and a path planner computes actions to navigate among
the recognised natural landmarks. In the mission carried out in a real underground scenario, com-

87

Chapter 6. Service robotics in confined and structured environments

munication and connectivity problems are not addressed. However, communication capability plays
an important role especially in applications that involve multiple agents, when teleoperation capa-
bilities are required or when the transmission of significant amount of heterogeneous data (such as
video, maps, goal points, victim data, and so on) between the robots and the mission control base is
necessary Birk et al. (2009).

In the new century, wireless communication among mobile robots has attracted a growing in-
terest. The main concept is to navigate acting on the robot motion to maintain the communication
between robots and with the base station. Nguyen et al. (2004) proposes, in this seminal work, the use
of a set of slave robots acting only as communication relays, to guarantee the link between a teleop-
erated robot and a base station. In Dixon and Frew (2009), Tardioli et al. (2010), and Sabattini et al.
(2013) a set of fully functional robots perform the missions constrained by a reaction mechanism,
based on sensing the communication link quality, which ensures the network connectivity.

6.2.1. Challenges

An application of this magnitude, involves a very extensive set of tasks and activities which include
the following: i) robot motion planning and navigation, ii) topological and semantic interpretation of
the environment, iii) localization and mapping, and iv) real-time and multi-hop communication. Each
task, per se objectively difficult, is made even more complicated in the hostile environments where the
system is planned to be used. In the following sections we explain the obstacles each of these tasks
must overcome.

Robot motion planning and navigation

Robust motion planning and obstacle avoidance are basic requirements for autonomous behaviour,
even when the robots are teleoperated. In fact, the system must be robust against a possible temporary
failure of the localization algorithm or the communication. This means that navigation must integrate
both global and local planning based on local information. This poses a challenge as to how to
autonomously navigate in large environments for which there is not a precise geometric map or which
is built while the robots navigate, without crashing against obstacles or lateral walls. A solution is
to use topological-semantic information, which avoids to manage a lot of geometric information for
accurate localization, which in many cases is not needed to achieve a mission.

walls or centred in the corridor and in the galleries, whilst avoiding obstacles. A lower level
obstacle avoidance algorithm, the ORM-HS introduced in Rizzo et al. (2013), guarantees that the
robot will not crash in the case of dynamic or static obstacles. The choice of this algorithm was due to
the fact that it is based on the well known ND algorithm Minguez and Montano (2004) that is capable
of navigating effectively in dense and difficult scenarios (such as sites of accident or collapse), but
improved for cluttered and uncluttered environments, such as those selected here.

Semantic and topological interpretation of the environment

In large environments with partial, incomplete, or imprecise previous information or maps, it is not
possible to achieve a mission describing the goals and subgoals in geometric terms, especially if any
kind of exploration is needed. When the place where the exploration must be carried out is remote,
far away or simply difficult to reach, it can be complicated and dangerous to teleoperate the leader
robot up to such as position. There is, in fact, the possibility of human error, due to the necessity
of maintaining a high level of concentration during long periods. This can delay the intervention

88

6.2. Related Work

and even jeopardize the success of the operation. To avoid this, the proposed scheme allows the
user to specify the mission steps in terms of topological features or natural landmarks. The feature
detection, together with the autonomous navigation and topological localization, alleviates the work of
the human operator who only needs to supervise the team deployment until the destination location is
reached. To do this, we here propose a technique to recognize topological features having a semantic
meaning based on preliminary work, Romeo and Montano (2006). The systems learns several features
from artificial data sets, but it generalizes the recognition to others which are similar although not
equal to those that have been learned.

Localization and map building

While the leader robot moves towards the goal following the mission plan described in terms of
topological features, a map can be built from the information coming from its perception system.
This map can be used for the localization of the rest of the robots (the followers), and to obtain a
more precise description of the scenario. Geometric maps either based on features such as segments,
corners, etc., or else grid maps, can be built.

Sharing and integrating different views of the robots in a team to build more complete maps is
another possible appproach. Multi-robot SLAM algorithms as Burgard et al. (2000), Howard (2006),
which integrate information from several robots could be used. However, in the type of scenarios and
applications considered in this work, this kind of approach does not provide additional relevant infor-
mation about the environment —all the robots navigate in the same environment and even following
the same path— but it would increase the real-time computational burden.

A SLAM module has been included in the system, responsible for simultaneously localizing
the leader robot and building the map of the environment using its laser readings. Due to the nature
of these environments, it is best to use laser measurement sensors because lighting may be poor
and visual sensors do not provide useful information. As the objective of the present work is not
specifically oriented to developing new SLAM techniques, we have chosen a well-tested state-of-the-
art SLAM algorithm Grisetti et al. (2010) that provides very accurate results in dense and featured
environments. The follower robots are localized using a state-of-the-art particle filter technique Fox
(2003) over the map generated by the leader robot provided online to the localization algorithm, when
needed. The localization of the follower robots on the map is used by the robot deployment planning
algorithm to locate these robots in the positions in which the communication with the base station
throughout network is always maintained. Other approaches to mapping based on features instead
of on grid maps Lazaro et al. (2012) could be applied in order to reduce the need for storing and
managing large amounts of information, but these lie outside the scope of this work.

Real-time and multi-hop communication

One of major issues in this kind of applications and environments is the communication among
robots. There are clear requirements for firm real-time and multi-hop communication given that the
perception-actuation loop includes the exchange of information between the leader node and the base
station. Thus, we decided to adopt the RT-WMP protocol Tardioli et al. (2014) that provides the
communication support required by the system: multi-hop communication, fixed priorities of mes-
sages, bounded delays, link quality information and mobility management. The link between robots
is assured by a set of relay robots strategically deployed that must overcome a set of communication
problems such as distance path-loss, fadings and abrupt signal vanishing at corners. This aspect has
previously been discussed in greater depth in the works presented in Tardioli et al. (2010) and Rizzo

89

Chapter 6. Service robotics in confined and structured environments

RNM

COM

NCM

Laser

Commands Camera
(only leader)

Odometry

MCL
(𝑛 − 1)

SLAM

COM SM

FD

Map

Laser
Leader

Commands

Loc. Leader

Laser
Slaves

Features

Wireless Channel

Leader plus 𝑛 − 1 followers Base Station

Odometry

Localiz.
Followers

Goals

Velocity
Commands

JOY

FA

Feature Position

Figure 6.2.: Conceptual architecture of the system. The different modules are: COmmunication Mod-
ule (COM), Reactive Navigation Module (RNM), Navigation Control Module (NCM),
Monte Carlo Localization (MCL), Simultaneous Localization And Mapping (SLAM),
Feature Analyzer (FA), Feature Detector module (FD), State Machine module (SM), and
teleoperation module (JOY).

et al. (2013).

6.3. System Description

This section provides a brief overview of the whole system and a detailed description of the system
components.

6.3.1. Overview

The system has been organized into several interconnected modules. Figure 6.2 shows its conceptual
structure. It is composed of a set of n mobile robots, one of which will assume the role of leader and
n−1 followers. The leader and the follower robots have very basic characteristics: the idea is that all
of them can be low cost devices that can be replaced easily or even be disposable. They are built on a
basic platform that provides LIDAR and odometry readings, and that is capable of receiving velocity
commands. From the conceptual point of view, they are equipped with three modules: the Reactive
Navigation Module (RNM) which manages the collision avoidance, the Navigation Control Module
(NCM) which computes the trajectories, and the COmmunication Module (COM) which connects all
the nodes of the network. The robots mostly executes the commands that they receive from the base
station through the COM. These commands are translated by the NCM into one of the two predefined
navigation strategies: the first consists of the capability of reaching a goal provided by the base station,
and the second of navigating forwards following a lateral wall or centred in corridors. In both cases
the RNM translates the goals into velocity commands compatible with the avoidance of potential
obstacles. The leader also has a camera that, when active, sends images to the base station through
the COM.

The base station is responsible for carrying out most of the tasks. It is composed of several

90

6.3. System Description

modules that interpret the scenario through the recognition of semantic features, localizes the robots,
build the map, plans the goals, and manages the communication. The SLAM module receives laser
and localization data from the leader through the COM and, simultaneously, localizes it and builds
the map of the environment in real-time. This map is provided with a certain non-constant rate to the
n−1 MCL (Monte Carlo Localization) modules that, together with laser and odometry data from the
followers, localize these latter. This enables all the robots to be localized over the same map, built
on the fly. The Feature Detector module (FD) receives the laser data from the leader and detects the
different semantic characteristics of the environment (left or right gallery, end of corridor, etc.), and
interprets them in order to topologically localize it. Also, the Feature Analyzer (FA) module analyzes
the data coming from the leader laser and identifies the goal position inside the feature, when needed.
All this information is provided, together with the localization of all the robots coming from the
SLAM and MCL modules, to the State Machine module (SM) that is responsible for making all the
decisions for the correct execution of the plan. Finally, the JOY module generates the commands that
allow the teleoperation of the robot when a manual control is requested. In the following section the
different modules will are explained in more detail.

6.3.2. Localization and Map Building

The localization of the leader and of the followers relies on a state-of-the-art SLAM algorithm and on a
Monte Carlo localization approach respectively. As the system does not have a known geometric map,
the leader explores the environment by navigating in an unknown scenario, searching for the semantic
features described in the high level plan, as explained in detail in section 6.3.4. Simultaneously it
uses a Rao-Blackwellized particle filter approach Grisetti et al. (2005, 2007) to compute an accurate
position taking into account the robot movement and the most recent observation. The followers are
localized on the map built by the leader by means of a probabilistic localization using the Augmented
Monte Carlo Localization (AMCL). As described by Fox (2003), it implements the adaptive KLD-
sampling Monte Carlo localization approach which uses a particle filter to track the pose of a robot
against a known map. The idea behind KLD-sampling is to determine the number of particles based
on a statistical bound on the sample-based approximation quality. Both algorithms are those ones
developed in the ROS platform.

Both units are fed with the laser data and the odometry estimation coming from the leader and the
follower robots through the COM module. The map generated by the SLAM is provided to the AMCL
units. However, since the reinitialization of the particle filter with a new map is a quite costly task,
this takes place only when it is strictly necessary. This means that the map is provided individually
to the follower robots only when they need it for localizing themselves to reach a goal. Specifically,
the state machine managing the system forces the updating of the map in the AMCL units just before
requesting the corresponding follower to move.

6.3.3. Navigation and obstacle avoidance

As mentioned above, the robots have to explore the scenario by navigating in an unknown environ-
ment. For this purpose, it is necessary to provide obstacle avoidance navigation in order to safely
move in such large environments. The RNM module provides this. This module uses the ORM-HS
which extends the Obstacle-Restriction Method (ORM) Minguez (2005) based on the Nearness Dia-
gram family methods Minguez and Montano (2004); Minguez et al. (2001). Due to the nature of the
experimental environment, the use of the ORM-HS method provides a high performance in cluttered
environments and also provides the capability to increase the velocities of the robot in a non-dense

91

Chapter 6. Service robotics in confined and structured environments

Figure 6.3.: Diagram of the safety
zones. Figure 6.4.: Data sensor segmentation and autonomous

goal computation.

scenario. It is essential that the robot is able to navigate at the highest speed possible in environments
where there are no obstacles because the distances involved in the experiments that must be traversed
by the robots are large. Figure 6.3 presents a drawing that summarizes the safety zones of the obstacle
avoidance method. If there are no obstacles inside the ORM-HS safety zone (Obstacle 1) the robot
navigates at maximum speed. When an obstacle enters into the zone (Obstacle 2) the velocity is de-
creased proportionally to the distance to the obstacle. Finally if there is an obstacle inside the ORM
safety zone (Obstacle 3) the robot starts to navigate in a cluttered environment reducing its speed.

The Navigation Control Module (NCM) is responsible for dynamically translating global goals
to the local frame of the robot. Also, it includes several navigation strategies depending on the task to
be executed. The following paragraphs summarize the different navigation methods included in the
NCM module.

Autonomous navigation

The autonomous navigation modes has been conditioned by the nature of the environment. As the
robots have to navigate in a huge environment (sometimes of several kilometres in length) and far from
the human supervisor of the mission, it is necessary to provide the robot with autonomous navigation
methods that do not require interaction with the base station and limits the operator’s responsibility for
this task. This way the robots can navigate during long periods until reaching the objective, without
external control.

There are different autonomous navigation methods depending on the role of the robot. The first
has been designed for the exploration of an unknown environment and it is performed by the leader.
The leader is responsible for providing LIDAR sensor data to the base station in order to build a map
that will be used by the rest of the robots, as mentioned previously. Using a laser data segmentation
method based on the Hough transform, this module is capable of obtaining the lines corresponding
to the straight walls of the tunnel, as shown in figure 6.4 (more details can be found in Tardioli and
Villarroel (2014)). These segments are used for computing a goal parallel to and at a fixed distance
from the wall, and from the robot. This goal is sent to the RNM module that responsible for carrying
out the reactive navigation towards the goal which, incidentally, is re-computed continuously at the
same sensor frequency. The second method has been designed for the follower robots that, in contrast
to the leader, can rely on the map that the latter build on the fly. Thus, these are continuously fed with
global goals referred to the map frame that are then converted to local goals by the NCM.

92

6.3. System Description

Figure 6.5.: Example of scenario and its associated topo-
logical map. The symbols in the nodes rep-
resent some of the different features that can
be recognized. Their meaning is defined in
Table 6.6.

Perceptual feature Symbol
Diaphanous corridor ‖

End of corridor u
Cross +

Left hand a
T-intersection >

Right hand `
Left turn q
Right turn p
Unknown ?

Figure 6.6.: Semantic features learned
for topological localization.

6.3.4. Recognition of Semantic Features

The proposed appearance-based recognition system is based on the work presented in Romeo and
Montano (2006). It is capable of learning different semantic features typically present in indoor
maze-like environments. Figure 6.5 shows an example of applying the technique to a part of the mine
scenario. The method retains the fundamental information about the feature ”shape”, being capable
of learning features not strictly polygonal (curves, non planar walls, intersections with relative angles
different from 90 degrees, etc.) or partially disturbed by people moving around. The semantic features
to be recognized are the typical features found in maze-like environments. Table 6.6 represents all the
selected features to be learned and their symbols. These are features that can be obtained from a 2D
laser rangefinder sensor, but could also be applied to information computed from 3D range or RGBD
sensors. The system was trained from artificial sets of environments, but is applied to others and to real
ones, not previously learned. In this work use an extended version of the algorithm proposed in Romeo
and Montano (2006), improving the learning algorithm so that it is more robust and discriminatory
for different environments.

Learning procedure

The semantic features to be recognized are the typical features found in maze-like environments 6.6.
These are features that can be obtained from a 2D laser rangefinder sensor, but could also be applied
to information computed from 3D range or RGBD sensors. The method first performs an input space
(laser scans) transformation based on Principal Component Analysis (PCA), and then a Linear Dis-
criminant Analysis (LDA). This process captures the main characteristics of the features and reduces
the information in order to obtain a clear and robust discrimination. Once the input space has been
transformed, a bayesian classification scheme is applied in order to recognize the features. The pos-
terior probability will be used not only for obtaining the most likely feature, but as a metric for the
reliability of the selected feature with respect to the other possible features to be recognized. A prob-
ability above a threshold will allow the feature to be accepted or rejected. Using the same classifier
jointly for all the features yields a not very robust discrimination. This conclusion was obtained from

93

Chapter 6. Service robotics in confined and structured environments

several experiments. In this work we include an improved version of Romeo and Montano (2006)
algorithm focused on the discrimination capability in two directions:

• By performing a non linear classification scheme based on Kernel Fisher Discriminant Analysis.

• By increasing the specialization of the classification procedure by using a two step method.

Non-linear discriminant analysis

Kernel Fisher Discriminant Analysis (KFD) Baudat and Anouar (2000) provides classification capa-
bility for nonlinear problems. The basic idea of KFD is to solve the problem of LDA in the feature
space F , thereby yielding a set of nonlinear discriminant vectors in the input space. It can be re-
formulated in an easier (and more understandable) form, as a two-phase process: Kernel Principal
Component Analysis (KPCA) plus LDA Yang et al. (2004).

Classifier specialization

In order to improve the discrimination capacity of the feature recognizer, the algorithm used increase
the specialization of the classification procedure by using a two step method. During the first step, it
will discriminate between open and closed features based on the first component value. Later, in a
second phase, the method will apply either specific equations using specialized matrices, according
to the result of the first step. Specialized matrices have been obtained applying the analysis to the
corresponding subset of features:

• ‖ , + , a , and ` for open features.

• u , > , q and p for closed features.

It is worth mentioning that this is a general method which learns from generic artificially created
features but is capable of recognizing those kinds of features present in not-previously-visited real and
noisy environments. Its performance is evaluated in the experimental results section 6.5.1.

6.3.5. Communication module

The communication module is based on the RT-WMP protocol Tardioli et al. (2014). This is a protocol
for MANETs that works on top of the 802.11 protocol and supports firm real-time traffic. Moreover,
the protocol provides global static message priorities and supports multi-hop communications. The
target application for this protocol is that of interconnecting a relatively small fixed-size group of
mobile nodes, generally mobile robots (up to 32 units). It is based on a token passing scheme and it
is designed to manage rapid topology changes. The routing algorithm of the RT-WMP is based on
the link quality among nodes: to describe the topology of the network, RT-WMP defines a network
connectivity graph having non-negative values on the edges. These values are computed as a func-
tion of the Radio Signal Strength (RSSI) between pairs of nodes and are indicators of link quality
between them. They are stored in the so called Link Quality Matrix (LQM). Figure 6.7 shows the
RSSI measurements in the Somport tunnel as a function of the position.

94

6.4. Deployment Planning and Navigation

0 500 1000 1500 2000 2500 3000750
−90

−80

−70

−60

−50

−40

−30

−20

Distance from transmitter (m)

R
ec

ei
ve

d
P

ow
er

 (
dB

m
)

Near Sector Far Sector

Figure 6.7.: Measured received power (dBm).

6.4. Deployment Planning and Navigation

The algorithm is ruled by a simple state machine which, interpreting all the data coming from
the leader and follower robots and taking into account the radio link quality among the nodes, makes
the decisions for the development of the mission. Figure 6.8 shows an intuitive graphic deployment
of the algorithm. A simplified deployment algorithm for an n-robot team is shown in Algorithm 6.4.

At the beginning the state is fixed to BEGIN, the plan is read, and the variable last mobile —that
contains the identification of the last mobile node— is set to n− 1 which represents the last mobile
node of the chain (lines 1-3). Also, the variable id, an index that points to the current feature to be
found according to the plan, is set to 0.

Then, the robots are virtually roped in a chain R0↔ Rn−1↔ Ri↔ R2↔ R1 (lines 4, 6) in order to
create a mechanism that guarantees the connection of the network at all times. The rope is represented
by the radio signal sensed by each of the nodes and that the state machine accesses through the shared
LQM that circulates in the network. More details can be found in Tardioli and Villarroel (2007).
There exist two thresholds: upper and lower. When the radio signal between two robots falls below
the first threshold —e.g. when R1 moving away from R2— the rope will provoke R2 to start moving
to recover a safe signal level. If, despite the movement, the signal continues to fall or falls abruptly
—for example if for some reason the back robot (R2 in the previous example) can not move or an
obstacle appears between the two of them delaying the movement— and reaches the lower threshold,
the forward robot (R1 in the example) is stopped. It will be kept still until the signal quality with the
back robot reaches the upper threshold again.

An exception to this behaviour is the end of the chain since robot Rn−1 cannot force the movement
of R0 given that, being the base station, the latter is fixed and immovable. This guarantees that, if the
robots reach the maximum elongation of the virtual ropes, all of them —one after the other— will be
stopped to preserve the network integrity. When, during the development of the mission, the hindmost
mobile robot is stopped, the variable last mobile is decreased by one. The mission has failed when

95

Chapter 6. Service robotics in confined and structured environments

Base (R0) R4 R3 R2 R1 Base (R0) R4 R3 R2 R1

Base (R0) R4 R3 R2 R1 Base (R0) R4 R3 R2 R1

Base (R0) R4 R3 R2

R
1

Base (R0) R4 R3

R
2

R

1

(Fixed) (Fixed) (Fixed)

(Fixed)

a) b)

c) d)

e) f)

Figure 6.8.: An example of the steps of the algorithm. At the beginning all the robots are placed
close to the base station (a). The leader robot starts moving forward looking for the first
topological feature specified in the plan of the mission (the second left gallery in this
example). At the same time, it is localized at the base station and the laser readings
and position provided through the network are used to build simultaneously the map of
the environment. When the link quality falls below a certain threshold, the follower R2
is required to move and starts going after the leader in order to act as a relay in order
to provide network connectivity (b). When the leader robot approaches the feature it is
looking for, it is stopped and all the slaves are requested to reach the leader (c). During
this phase, if the link quality between the base station R0 and the last follower R4 falls
below the cited threshold, the latter is stopped in its current position, becoming a fixed
relay (d). Once the regrouping is complete, the leader enters the feature while, at the same
time R2 takes its place followed by all the still mobile followers (e), allowing the line of
sight between both —and thus between each pair or robots — to be guaranteed at every
moment. After that, a chain like that of the first shot is set up in the lateral gallery. At this
moment the last mobile follower R3 is fixed in the corner and becomes (another) fixed
relay responsible for avoiding the corner and guaranteeing the connection of the robot R2
with the base station (f).

last mobile contains the value zero.
The state machine starts with the state BEGIN in which the leader robot will move looking for

the n− th occurrence of a feature (lines 17, 18). When it finds what it is looking for, it checks if this

96

6.5. Experiments

Algorithm 3 Deployment Planning

1: state← BEGIN
2: plan[]← read plan()
3: last mobile← n−1; id← 0
4: set rope(Rn−1,R0)
5: for i in 1..n−2 do
6: set rope(Ri +1,Ri)
7: end for
8: while true do
9: if state == BEGIN then

10: if f ound f eature(plan[id]) then
11: if last f eature(plan[id]) then
12: break
13: end if
14: state← GROUP ROBOT S
15: else
16: move(R1)
17: f ind f eature(plan[id])
18: end if
19: else if state = GROUP ROBOT S then
20: if robots grouped() then
21: compute f eat pos(& f eat x,& f eat y)

22: send xy goal(R1, f eat x, f eat y)
23: state← ENT ER FEATURE
24: else
25: for i in 1..last mobile−1 do
26: send rel goal(Ri,Ri+1)
27: end for
28: end if
29: else if state = ENT ER FEATURE then
30: if robots grouped() then
31: id← id +1
32: f ix(last mobile)
33: state← BEGIN
34: else
35: for i in 1..last mobile−1 do
36: send rel goal(Ri,Ri+1)
37: end for
38: end if
39: end if
40: sleep until ms(500)
41: end while

is the last part of the plan, in which case it exits (line 10, 11). Otherwise, all the robots are grouped
behind the leader maintaining the chain formation (lines 23, 24). It is worth remarking that the roping
is active at any moment. This means that one or more robots can be stopped during this phase. When
the grouping is complete, the position within the feature is computed and the leader robot is sent inside
(line 20-22). Then the formation is restored again (lines 35, 36). When all the followers are at their
final position, the last mobile node is fixed, and the algorithm restarts after moving the pointer id to
the next feature (lines 30-32).

The state machine will repeat the same behaviour for each of the tasks included in the plan.

6.5. Experiments

The evaluation of the system has been carried out both by means of simulations and field experiments
into two. The first is a maze-like underground mine representing a complex scenario for autonomous
deployment. The second simpler scenario is a railway tunnel comprising a long corridor and lateral
galleries to experiment with a real robot team deployment, where it is possible to evaluate the whole
system working in practice and especially the communication issues.

In the mine scenario, simulations have been carried out to test the robots deployment algorithm,
and also to test the recognition of semantic-topological features technique. To do this, metrics to
evaluate the rate of correctly recognized features have been established and reported. As the high
level plan for the leader and its execution is based on these features being natural landmarks in the
environment, it is essential that the recognition algorithm works correctly.

In the tunnel scenario a simulation and two real experiments have been carried out. The simula-

97

Chapter 6. Service robotics in confined and structured environments

Figure 6.9.: Global map of Santa Marta mine and partial map where simulation experiment has been
performed. Courtesy of Minera Santa Marta S.A.

tion is oriented to evaluate the capacity of the system to react against unexpected events, consequently
replanning the mission. In the field experiments the system as a whole and all its various parts have
been evaluated. This includes the fulfillment of the mission, the topological and metric localization on
the map, the correct construction of the geometric map, and the effectiveness of the navigation. Also,
the radio signal among the nodes, inter-arrival delay and delay of the messages, the bandwidth allo-
cation and the teleoperation performance have been evaluated. The communications issues assume
special importance in these experiments because they cannot be evaluated by means of simulations for
obvious reasons. The whole system was implemented over the ROS platform Quigley et al. (2009).

6.5.1. Simulations

As anticipated, two scenarios were selected for the simulation. In the first —a mine—, we focused
on the successful completion of quite a complex mission that involves 5 robots which leader had to
reach a specific location under limited connectivity conditions after recognizing several features and
discarding many others. The second scenario, represented by a tunnel, was used to demonstrate the
robustness of the system against unexpected situations such as a sudden drop in signal quality and the
need for on-the-fly mission replanning.

The Santa Marta mine

The scenario in which the first simulation was performed, is the Santa Marta mine (see fig. 6.9). A
global map and a zoom of the portion used in the experiment is represented in figure 6.9. The global
map is schematic and is maintained by Minera Santa Marta S.A. for exploitation purposes while the
part used here was previously generated by manually guiding a robot in a data collection exercise
carried out previously in the real mine using a Pioneer P3AT robot.

A five robot team was set up using the Stage simulator in the ROS environment. The radio signal
was simulated and computed as a function of the Manhattan distance between each pair of robots.

The scenario includes several features among those described in section 6.3.4 in table 6.6. In
the simulation experiment, the high level plan can be summarized as: ”Move to the left at the first a,

98

6.5. Experiments

Figure 6.10.: Path followed by the robots in a zone of the mine represented in figure 6.1.a (simulation).

then to the right at the second +, then to the left at the first +, then stop at the first +” and activate
teleoperation.

Figure 6.10 shows the path followed by the nodes and the final configuration. Robot R5 is stopped
after the second cross to maintain the communication between R4 and R0 (BS) while robots R4, R3
and R2 are fixed in the corners to act as relays. Finally, the leader robot is placed in the mission
goal position where the teleoperation begins. The complete path is a zig-zag between several left
and right galleries, as can be seen in the figure. The final position of the robots permits a line of
sight between each pair and guarantees that the distance between them is short enough to enable
comfortable communication.

Figure 6.11 represents the posterior probability of the feature detector obtained during the exper-
iment using the non-linear detector. It can be seen that both kinds of features encountered during the
exploration (Cross and Left hand) are identified. We have compared the results of applying both the
linear and non-linear detectors explained above and concluded that the non-linear yields better results.
After an appropriate filtering, the topological localization based on these semantic features is provided
to the state machine that applies the plan according to this information. A video of the experiment can
be seen in ∗

Performance analysis of semantic-topological features recognition technique

In order to evaluate the performance of the semantic-topological features recognition technique we
have simulated a set of long enough tours through the mapped area of the mine. The distance traveled
was 4.5 km approximately and the number of features involved was 346. Due to the nature of the

∗https://youtu.be/ZjLNDHzji4Q

99

https://youtu.be/ZjLNDHzji4Q

Chapter 6. Service robotics in confined and structured environments

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Manhattan distance (m)

Cross
Left Hand

Figure 6.11.: Feature detector probability. In blue +, in red a, the first to be reached, the only ones
appearing in the mission of figure 6.1.

environment we can identify different areas in which the features exhibit different levels of deforma-
tion depending upon the current state of the mine exploitation: it is possible to clearly distinguish
between the areas that have been already exploited and mine faces that are being currently exploited.
Figure 6.12 shows three areas with different levels of exploitation: area A corresponds to galleries in
which the topological features exhibit little distortions, while areas B and C correspond to mine faces
in which much of the features are heavily distorted. In order to reflect these differences, we have
evaluated the feature recognizer performance within areas A and B separately.

Area A Area B
Feature Linear Non-linear Linear Non-linear
Diaphanous 100 100 50 11.1
Cross 82.1 100 33.4 56.8
Left/Right Hand 100 100 100 0
Left/Right Turn 77.8 66.7 100 100
End of corridor 100 100 100 100
T-intersection 100 100 55.6 88.9

Table 6.1.: Per class true positive rate obtained with linear and non-linear method on the two areas
(%): A (poorly distorted area), B (mine face area).

Table 6.1 shows the success rates obtained in the experiment. They vary from the high success
rates that correspond to the poorly distorted features in area A to the worse rates obtained within the
B mine face area. Furthermore, in order to reflect the improvements related to the use of the non-
linear classifier, the table shows separate columns for linear and non-linear classification schemes. In
general, the non-linear classifier gives better results than the linear one. In section 6.6 we present
some lessons learned on this topic. Finally, it is worth remarking that our technique do not require
hard computations: each step of our feature recognition algorithm requires less than 10ms for both
linear and non-linear versions on a Intel Core i5 3470 processor (3.2 GHz).

100

6.5. Experiments

 AREA B

 AREA A

 AREA C

Figure 6.12.: Simulation environment divided into three areas according to level of exploitation.

Figure 6.13.: Snapshot of the robots navigating the Somport Tunnel

6.5.2. Field experiments

After completing the simulations, we carried out a set of field experiments in the Somport Tunnel
(see fig. 6.13). This is an old railway tunnel, 7.7 Km long, that is representative of long straight

101

Chapter 6. Service robotics in confined and structured environments

(a) (b)

(c) (d)

Figure 6.14.: Screenshots from the real experiment. We can see the robot formation and the base
station at the starting point (a), how the leader robot approaches the lateral gallery while
the follower is fixed as relay (b), the leader robot exploring (teleoperation) the zone of
interest (c) and a snapshot received at base station (d).

tunnels typical in transport or mining environments. It connects Spain with France through the Central
Pyrenees. It has a horseshoe shape cross section, 6 meters high and 5.5 m wide and 17 lateral galleries,
each more than 100 meters in length and, of the same height as the tunnel. The objective was to
evaluate the results in a real-world scenario using mobile robots and actual wireless communication.

We used three Pioneer P3AT and one Pioneer P3DX mobile robots controlled by Dell D630 lap-
tops. Moreover at the base station we used a Getac B3000 Rugged laptop with a core i7 processor. All
the nodes were equipped with Alfa AWUS051NH wireless cards in which the operational frequency
was fixed at 2.412Mhz and the data rate at 12Mbps.

The objective of the experiments was the completion of a mission in a scenario that has to be
explored by the leader whilst it builds a map in which it is self-localized. In the first experiment,
the leader robot has to reach a specific gallery topologically specified in the mission plan, while
maintaining communication with the base station at all times. The other robots have to follow the
leader, serving as relay communication nodes when needed. Once the destination is reached, the plan
specifies that the human operator has to explore the area teleoperating the robot by means of a joystick
while receiving video images through the network.

Network profiling

In the first real-world experiment the mission consisted of arriving at a lateral gallery in the tunnel,
reaching the end of the gallery, and then teleoperating the robot to inspect a group of cars supposedly
involved in a road accident in order to visually analyse the scene from the base station. The base

102

6.5. Experiments

Base
(R0)

Cars

R3

R2

R1

5
0

0
m

3
4

4
m

6
0

m

Figure 6.15.: Final configuration of the robots in the field experiment (left) and detail of the zone
identified by the red rectangle (right).

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Manhattan distance (m)

Left Hand
End of Corridor

Figure 6.16.: Feature detector probability. In blue, a features detected; in red, u feature at the end of
the corridor. Sporadic potholes detected on the floor appearing in the figure are filtered
by the feature detector.

station was established at about 500 meters from the goal gallery. For this mission the topological-
level plan was: ”Enter the left gallery at the second a, then reach u and start the teleoperation.”

In the gallery the robots first navigated autonomously. When the leader reached the final goal of
the mission, the system changed to teleoperation mode in which the robot was managed by the human
supervisor at the base station. Once the zone close to the wrecked cars was reached, the accident zone
was explored taking advantage of the front camera of R1 (see figure 6.14) and the laser feedback. The
other robots remained still at their locations in such a way that the leader was continuously connected
to the base station. The operator reported that the refresh rate of the laser and video feedbacks was
adequate making the teleoperation comfortable and secure. No robot crashes were reported thanks to
the RNM module.

103

Chapter 6. Service robotics in confined and structured environments

Figure 6.17.: Complete map of the environment obtained at the base station.

Figure 6.15 shows the final configuration of the robots and a detail of the final part of the experi-
ment when the leader robot R1 entered the gallery by means of a turn manoeuvre, once it had identified
this intermediate objective of the plan. Robot R2 acted as a relay node maintaining the connectivity
with the base station through node R3 that had previously been stopped in the tunnel at approximately
344 meters from the base station.

Figure 6.16 shows the posterior probability computed by the feature detector during the experi-
ment, starting at the base station and moving towards the second gallery. The detector clearly identifies
the two left hand galleries encountered during the exploration at positions x = 60m and x = 500m and
the end of corridor at position x = 605m. The sporadic detection of end of corridor features along the
path is due to the rotation of the robot on the pitch axis due to the presence of potholes in the floor,
instantaneously identified as such because they exhibit a similar laser structure. However, these data
are filtered before reaching the state machine. Notice that the feature detector recognizes clearly (high
probability) different kinds of galleries (not polygonal, intersection angles 6= 90o, with chamfers, etc.),
learned from a set of general artificial scenarios but successfully applied to real environments.

Figure 6.17 shows the complete map of the field experiment scenario (approximate measures
500m× 120m) obtained at the base station in real-time. Figure 6.18 shows the map obtained by
running the SLAM algorithm offline using the data logged into the leader on-board computer, and
the map built in real-time at the base station using the data received through the network. Both maps
are very similar and only small differences can be observed between them. This demonstrates that
the delay introduced by the network or the sporadic loss of data that may have occurred have not
influenced the results of this task. It is worth remarking that the maps shown (those in figures 6.10
and 6.15, specifically) have also been built at the base station side. A video of the experiment can be
seen in †

6.6. Lessons learned

Setting up such a complex system entails several challenges, as described above. While most potential
problems can be foreseen and solutions found with greater or lesser success, other aspects are much
more difficult to anticipate and must be evaluated and solved after they occur. In this section we
analyse some of the issues we encountered during the development of the system and the solutions we
have implemented to overcome them.

†https://youtu.be/BpxHXTZjKF4

104

https://youtu.be/BpxHXTZjKF4

6.6. Lessons learned

Figure 6.18.: Maps obtained offline (a) and online (b).

6.6.1. Localization

One of the most important problems is the localization of a robot team in this kind of environment due
to its huge size and the fact that often the ground is covered with stones or potholes, which disturb the
navigation and so the localization. Our initial view was that an exact localization was not necessary
since the robots would be guided in terms of semantic features. However, the localization of the
robots relative to each other is important given that this is used for relative movement and positioning.
Thus, instead of localizing all the robots globally, we decided to use the leader robot to build a map
and localize the others over the same map. This means that, even if the global localization may be
imprecise, the relative localization is sufficiently precise.

After a set of experiments using different kinds of SLAM algorithms among those already imple-
mented and available in the ROS platform, we selected the GMapping algorithm as the most robust.
On the other hand, we selected a particle filter to localize the followers. However, at first the algo-
rithm did not work well and the robots often got completely lost, especially when a pothole or a pebble
caused the robot to abruptly changes its orientation. To solve this problem, on the one hand and we
considerably relaxed the confidence of the particle filter as if the odometry was much worse than it
actually is. Given that the robots can move for long periods without having reliable features to which
to refer (e.g. a long stretch with smooth walls), the MCL filter tends to underestimate the movement.
When a reliable feature appears (e.g. a cross), it is no longer able to fit the laser reading and the map
due the fact that the group of particles, even if scattered, is too far from the real position. On the other
hand, we changed the settings to make the filter believe that the robots are holonomic. In this way,
the particle filter also takes into account the lateral displacements that sometimes occur in this kind of
terrain, and is able to recover a correct localization even when unusual movements occur.

6.6.2. Navigation

The navigation in this kind of environment is not straightforward, either. In some scenarios, the leader
robot has to cover long distances relying only on basic data using a laser and odometry at the highest
possible speed and without crashing against the walls. In other words, it must go straight centred
in the environment to avoid crashing. Our initial idea was to use the method cited in section 6.3.3
which consists of analysing the laser through the Hough transform to identify the walls and provide
a local goal for the robot at a fixed distance from one of the walls. Even though this method works

105

Chapter 6. Service robotics in confined and structured environments

satisfactorily in most environments, we came to realise that in environments in which the lateral walls
are not sufficiently smooth or straight, this method would fail given that the Hough transform is not
able to return a reliable identification. We decided to implement the additional solution described,
where the laser readings are analyzed to identify maxima that are then used as robot goals. The joint
use of these two methods guarantees a safe and effective navigation of the leader robot with a small
computation cost.

Another issue regarding navigation in those scenarios is the existence of potholes and a irreg-
ular terrain. Also errors in localization are increased. Navigation techniques based in occupancy or
traversability maps can be useful in many cases to have a more robust performance.

6.6.3. Semantic feature recognition

Several issues appeared during the experiments, all of them related to the nature of the environment,
that strongly influence the recognition performance shown in table 6.1, requiring detailed analysis for
the following situations (see figure 6.19): overlapped features, ambiguous features, heavily distorted
features.

(a) (b) (c)

Figure 6.19.: Different features found in the environment: (a) overlapped feature, (b) ambiguous
feature, (c) heavily distorted feature.

There are situations in which two identical features (e.g. two + features) are close to each other
enough to appear in the same laser scan (see fig. 6.19(a)). In such cases, the recognition system is
unable to indentify the short corridor between the two of them, returning the + feature without any
transition. This behaviour, enhanced by the filtering procedure (see section 6.3.4), causes that the
two features are considered as an unique one. In order to avoid this issue, we suggest for further
improvements the use of the robot odometry (or another local method for localization) to reset the
recognition system once the robot leaves the first feature. On the other hand, our environment includes
features that could be classified indistinguishably into different classes. These features usually include
one or more truncated (or partially occluded) branches (see fig. 6.19(b)). Regardless of whether
feature has been detected, the feature detector always reflects correctly the opened branches, allowing
us to navigate properly through the feature. Finally, there are some areas of the environment (e.g.
the area C in figure 6.12) in which the features are too heavily distorted with respect to the training
ones (see fig. 6.19(c)), jeopardizing their recognizability. Moreover, it could make sense to consider
the referred area as a big column hall, rather than a maze-like scenario. All these detected problems

106

6.7. Discussion

suggest that there is room for improvements in the learning and recognition techniques in challenging
scenarios as the found in some areas of the environments used in the experiments.

6.6.4. Communication

We realized that the bandwidth required by this scheme can be the bottleneck for its scalability. To
reduce the demand, we set up a technique to avoid the transmission of unnecessary and redundant data
reducing, for example, the frequency of the laser flows when the robots are still.

A final consideration is that for reaching longer deploying distances, deployment planning and
navigation techniques as those presented in Rizzo et al. (2013) should be used.

6.7. Discussion

We have presented a complete framework for safety, security, intervention or rescue tasks in structured
environments such as tunnels and mines where there are usually no communication infrastructures.
The framework is based on a multi-robot team and has been designed for use in situations where
the access of human intervention teams can be dangerous or harmful (in case of fire, chemical or
radioactivity contamination, etc.). The goal is to deploy the team in an autonomous manner, providing
the system with a mission plan specified in terms of topological-semantic features (e.g. third left
gallery, then fourth cross, etc.). The deployment is supervised from a base station where a human
operator receives laser and video feedback from a leader robot and has the possibility of teleoperating
it through a radio frequency link established over a multi-hop path. A map of the environment is
also built at the base station for possible subsequent human intervention. The platform has been
implemented and tested in simulations and in field experiments. The results show that the solution
is feasible and offers satisfactory results in terms of autonomy, teleoperation possibilities, quality of
map building and quality —in terms of timing— of the data received at the base station.

In this work we propose improvements in: i) localization based on semantic-topological features;
ii) navigation planning based on the natural landmarks learned; iii) coordinated robot deployment
and iv) real-time and multi-hop communication network. A complete system integrating all those
techniques jointly to others well tested algorithms has been developed.

This research work has also shown that in robotics applications in real and large environments
all the aspects considered have to be fully integrated. We have shown that topological localization
provides greater robustness in navigation and localization while exploring an unknown scenario, given
that the use of semantic features to topologically localize robots allows missions to be described
without the need for detailed metric maps. Safe and robust navigation is also mandatory, especially
when the possibility of remote human actuation is limited.

107

108

Chapter 7
Conclusions

This chapter presents a summary of the most relevant conclusions obtained during this thesis. As a
general conclusion, it is clear that the insertion of semantic information into the point maps created
by SLAM algorithms makes it possible for a robot to be able to understand the environment in which
it moves, to significantly improve the way it makes decisions and navigates and even to interact with
it.

Firstly, a proof of concept of semantic SLAM has been carried out. The chapter 2 presents
a system consisting of a monocular EKF SLAM and a basic object detector. This synergy, which
provides a partially annotated local map and the current position of the robot on this map, is of great
value for the tasks performed by service robots. One of the main advantages of this method is that the
models used for recognition can be generated with a different camera from that used to perform visual
SLAM, which provides a greater degree of flexibility to the system because the task can be defined
in terms of the objects the robot has to interact with, in contrast with plans based in terms of spatial
coordinates. The main weakness of this proposal was the poor scaling both in the geometrical map
size and in the object database size. The limitations in the geometrical map comes from using EKF
SLAM, that was superseded by the keyframe and bundle adjustment based methods. These issues
were therefore addressed separately in the following chapters.

In chapter 3 we focused our efforts on designing and implementing a visual SLAM that exploits
the benefit provided by the methods based on keyframe selection and non-linear bundle adjustment
optimization. The main contribution was to outsource to the cloud those processes that require more
memory or CPU. In our case, we have moved the mapping and optimization process to the cloud
servers, achieving satisfactory results without loss of performance and maintaining strict real-time
requirements. In addition, having the maps stored on a common server makes it possible for other
robots to reuse these maps. The experimental validation confirms that using commodity wi-fi channel,
the performance of bundle adjustment VSLAM methods can be delivered with limited computing
resources in the on-board computer.

The next step was to use this semantic information inserted in the maps to improve the classic
navigation of the robots in metric maps. Experimental validation of a pioneer semantic mapping
system using cloud computing has been provided. For robot planning we use the agnostic to the
robot action recipes. In the experiments, it is shown, how semantic content of the maps are crucial
for grounding the generic action recipe to generate a specific plan for the actual robot in the current
scene that efficiently searches for an object in the workspace. The object detection scalability has
been also improved compared to the one presented in chapter 2 by adding a Bag of Words based

109

Chapter 7. Conclusions

implementation, which boosts the object database size from a few tens to a few hundred or even
thousands of objects. In addition, an ontology has been added to represent the knowledge stored in
these maps. Thanks to this combination, knowledge-based reasoning on the map is possible. The
proposed system demonstrates how a robot is able to generate semantically significant environment
maps and reasoning about them in conjunction with a formally pre-established knowledge. Regarding
the impact on improving navigation and searching for objects, the system presented is able to reduce
by 70% the number of potential positions that the robots have to visit to cover an environment.

In chapter 5 the issue of localization and navigation in environments where there are a large
number of people moving around is addresed. Existing SLAM techniques offer robust performance
in rigid scenes. The observation of populated environments implies non persistent changes of scene
and regions of scene with non rigid movements. For this reason, a system able to operate robustly
in populated environments was developed by inserting a person detector into the SLAM algorithm to
identify and eliminate them from the global map to improve the static map and the robot localization.
This process not only benefits the scene description, but also the performance of the SLAM algorithm
when the robot is in populated environments. The method presented has been validated with two visual
SLAM systems, obtaining a similar performance improvement in both. The Absolute Trajectory Error
(ATE) selected for measuring the performance of the mapping system is reduced by more than half if
human activity masking is applied to the images. Regarding the 3D reconstruction of the environment,
in the validation experiments performed, the number of points in the scene is reduced in a 30% thanks
to the removal of people from the scene. Therefore, we can conclude that it is agnostic to the SLAM
method, and therefore can improve any SLAM system. In addition, the implementation carried out
offers the possibility of changing the detector used, therefore it is also agnostic to the recognition
method used. This gives great flexibility to the system presented.

Finally, in chapter 6 we show how the main contribution of the tesis, distributed maps contain-
ing semantic information, are mandatory for autonomous operation, with a example in a multirobot
system operating in tunnels and mines. The architecture developed integrates all the necessary func-
tionalities to address the challenges of these environments, such as: localization based on topological
features of the environment, navigation and planning based on natural landmarks of the environment,
coordinated deployment of robots based on a high-level plan, and map building. This system has been
validated with satisfactory results in real confined environments, which present many challenges.
Having semantic information about the environment has been crucial to detail the missions of robots
with a high-level language.

7.1. Future work

We can conclude that the semantic information significantly improves robots autonomy. The future
work should be oriented boost the semantic content of the maps.

On the one hand, it would be interesting to recognize generic categories rather than objects in
terms of the detection and insertion of semantic information. In addition, context-based recognition or
image segmentation would increase the amount of information we could insert into the maps. Another
aspect to take into account would be to determine which information captured from the environment
is relevant for insertion in the map.

Secondly, the role that cloud computing and cloud robotics can bring. In our case, this future
work would go along the lines of exploiting the cloud computing capability in order to be able to
execute more complex algorithms that cannot be performed in a robot. For example, recognition in
images would be improved if we applied machine learning techniques. The computation required for

110

7.1. Future work

these techniques could be outsourced to the cloud and a robot with less computing power capabilities
could use these techniques.

Finally, the possibility of detecting people and inserting them in the map, presented in chapter 5,
opens up a line of research inspired by the following questions: What benefits does it bring to know
the location of people on a map? Can a robot improve its navigation in an environment knowing
the location of people on it? Is it possible to plan a better trajectory taking into account the flow of
movement of people? Answering these questions poses new challenges for future work related to
movement of robot taking into consideration not only the semantic of the objects and places in the
scene, but also the semantics of the people around the robot.

111

112

Chapter 8
Conclusiones

En este capı́tulo se presenta un resumen de las conclusiones mas relevantes obtenidas a lo largo de esta
tesis. Como conclusión general, queda patente que la inserción de información semántica dentro de
los mapa de puntos creados por los algoritmos de SLAM posibilita que un robot sea capaz de entender
el entorno por el que se mueve, pueda mejorar de una forma significativa la manera que tiene de tomar
decisiones y navegar e incluso le dé la capacidad de interactuar con él.

En primer lugar, se ha realizado una prueba de concepto de SLAM semántico. El capı́tulo 2
presenta un sistema compuesto por un EKF SLAM monocular y un detector básico de objetos. Esta
sinergia que proporciona un mapa local parcialmente anotado y la posición actual del robot en él, es
de gran valor para las tareas realizadas por robots de servicio. Una de las principales ventajas de este
método reside en que los modelos utilizados para el reconocimiento pueden ser generados con una
cámara diferente a la utilizada para realizar el SLAM visual, lo que porporciona un mayor grado de
flexibilidad al sistema, ya que la tarea puede definirse en términos de objetos con los que el robot debe
interactuar, en contraste con los planes basados en coordenadas espaciales. La principal debilidad de
esta propuesta fue la escasa escala tanto en el tamaño del mapa geométrico como en el tamaño de la
base de datos de objetos. Las limitaciones en el mapa geométrico provienen del uso de EKF SLAM,
que fue reemplazado por los métodos basados en ”keyframes” y ”bundle ajustment”. Por ello en los
siguientes capı́tulos se abordaron por separado estos aspectos.

En el capı́tulo 3 hemos centrado nuestros esfuerzos en diseñar e implementar un algoritmo de
SLAM que aprovecha el beneficio proporcionado por los métodos basados en ”keyframes” y la opti-
mización usando ”bundle ajustment”.

La principal contribución ha sido externalizar en la nube aquellos procesos que demandan mas
memoria o CPU. En nuestro caso, hemos movido a los servidores en la nube el proceso de con-
strucción de mapas y la optimización, obteniedo unos resultados satisfactorios sin pérdida de rendi-
miento y manteniendo los estrictos requisitos de tiempo real. Además, tener almacenados los mapas
en un servidor común posibilita la reutilización de estos mapas por parte de otros robots. La vali-
dación experimental confirma que utilizando un canal wi-fi estandar, el rendimiento de estos métodos
de VSLAM permite que el sistema pueda funcionar con los recursos informáticos limitados que tiene
el robot.

El siguiente paso realizado ha consistido en utilizar esa información semántica insertada en los
mapas para mejorar la navegación clásica de los robots en mapas métricos. Para la planificación
de robots utilizamos recetas de acción agnósticas al robot. En los experimentos, se muestra cómo
el contenido semántico de los mapas es crucial para proporcionar información a la receta de acción

113

Chapter 8. Conclusiones

genérica y proporcionar una plan especı́fico para el robot en la escena actual. De este modo realiza
una búsqueda eficiente de un objeto en un entorno. La escalabilidad del método de detección de ob-
jetos ha mejorado también con respecto al presentado en el capı́tulo 2 añadiendo una implementación
basada en bolsa de palabras. Además, se ha añadido una ontologı́a para representar el conocimiento
almacenado en esos mapas. Gracias a esta combinación, el razonamiento basado en el conocimiento
sobre el mapa es posible. El sistema propuesto demuestra como un robot es capaz de generar mapas
de entorno semánticamente significativos y razonar sobre ellos en conjunción con un conocimiento
formalmente preestablecido. En cuanto al impacto en la mejora de la navegación y la búsqueda de
objetos, el sistema presentado es capaz de reducir en un 70% la cantidad de posiciones potenciales
que los robots tienen que visitar para cubrir un entorno.

En el capı́tulo 3 se planteó la problemática que tiene un robot a la hora de localizarse y nave-
gar en entornos donde hay un gran número de personas moviendose por la escena. Las técnicas de
SLAM existentes ofrecen un rendimiento robusto en escenas casi siempre rı́gidas. Por el contrario
la observación de entornos poblados implica cambios de escena no persistentes y regiones de escena
con movimientos no rı́gidos. Por ello se desarrolló un sistema capaz de funcionar con robustez en
entornos poblados mediante la insercción dentro del algoritmo de SLAM de un detector de personas
que ayuda a identificarlas y eliminarlas del mapa global de la escena, mejorando los mapas estati-
cos y la localización del robot. Este proceso no sólo beneficia a la descripción de la escena, sino
también al rendimiento del algoritmo de SLAM cuando el robot se encuentra en entornos poblados.
El método presentado ha sido validado con dos sistemas de SLAM visual, obteniendo una ganancia
de rendimiento similar en ambos. El Error de Trayectoria Absoluta (ATE) seleccionado para medir
el rendimiento del sistema de construcción de mapas se reduce en más de la mitad si se aplica el en-
mascaramiento de la actividad humana a las imágenes. En cuanto a la reconstrucción 3D del entorno,
en la experimentación relizada, el número de puntos en la escena se reduce en un 30% gracias a la
eliminación de las personas presentes en la escena.

Por lo tanto, podemos concluir que es agnóstico al método SLAM, y por lo tanto puede mejorar
cualquier sistema SLAM. Además la implementación realizada ofrece la posibilidad de cambiar el
detector utilizado, por lo tanto también es agnóstico al método de reconocimiento. Este hecho dota de
una gran flexibilidad al sistema presentado.

Por último en el capı́tulo 6 mostramos cómo la contribución principal de la tesis (mapas distribui-
dos que contienen información semántica), es crucial para el funcionamiento autónomo de un robot,
como por ejemplo en un sistema multirobot operando en túneles y minas.

Se ha desarrollado una arquitectura que integra todas las funcionalidades necesarias para abor-
dar los retos encontrados en esos entornos, como por ejemplo: localización basada en caracterı́sticas
topológicas del entorno, navegación y planificación basada en puntos de referencia naturales del pro-
pio entorno, despliegue coordinado de robots atendiento a un plan de alto nivel, construcción de
mapas. Este sistema ha sido validado exhaustivamente con resultados satisfactorios en entornos reales
confinados, los cuales presentan muchos desafios. Disponer de información semántica del entorno ha
posibilitado que la misión a realizar por los robots se pueda detallar en un lenguaje de alto nivel a
modo de instrucciones.

8.1. Trabajo futuro

Podemos concluir que la información semántica mejora significativamente la autonomı́a de los robots.
El trabajo futuro debe orientarse a potenciar el contenido semántico de los mapas.

Por un lado, en cuanto a la detección e inserción de información semántica, serı́a interesante

114

8.1. Trabajo futuro

poder reconocer categorı́as genéricas en lugar de objetos. Además un reconocimiento basado en
contextos o una segmentación de la imagen aumentarı́a la cantidad de información que podriamos
insertar en los mapas. Otro aspecto a tener en cuenta serı́a el determinar que información capturada
del entorno es relevante para ser insertada en el mapa.

En segundo lugar, el papel que la computación y la robótica en la nube pueden aportar. En nuestro
caso, este trabajo futuro irı́a en la lı́nea de explotar la capacidad de computo de la nube para poder
ejecutar algoritmos mas complejos que en un robot no podrı́an realizarse a la frecuencia adecuada.
Por ejemplo, el reconocimiento en las imagenes se verı́a mejorado si aplicamos técnicas de machine
learning. El cómputo que requieren estas técnicas podrı́a externalizarse en la nube y un robot con
poca capacidad de cálculo podrı́a utilizarlas.

Finalmente, la posibilidad de detectar personas e insertarlas en el mapa presentado en el capı́tulo
5 abré una linea de investigación planteando las siguientes cuestiones: ¿Qué beneficios aporta saber
la ubicación de las personas en un mapa? ¿Puede un robot mejorar su navegación en un entorno
conociendo la ubicación de las personas en el mismo?, ¿Es posible planificar una mejor trayectoria
teniendo en cuenta el flujo de movimiento de las personas?. Estas preguntas plantean un trabajo futuro
en relación a la planificación de movimiento de un robot teniendo en cuenta no sólo la semántica de
los objetos y lugares en la escena, sino también la semántica de las personas que rodean el robot.

115

116

Appendix A
Creating and using RoboEarth object
models

A.1. Introduction

This work introduces a way to build up and use an extensive sensor-independent object model database.
In a first step, a cost-effective and computationally cheap way to create colored point cloud models
from common household objects by using a Microsoft Kinect camera Microsoft (2011) is presented.
Those object models are stored in a world-wide accessible, distributed database called RoboEarth
RoboEarth Consortium (2011), Waibel et al. (2010). Finally, the models are used for recognizing the
corresponding objects with any kind of camera. In the presented implementation the demonstration
was done with both a Kinect and common RGB cameras. The implementation is available as a set of
ROS Quigley et al. (2009) packages.

A.2. Related work

There are multiple instances of 3D object databases available on the Internet today. Popular examples
include Google 3D Warehouse Google (2011), the KIT object model database Karlsruhe Institute
of Technology (KIT) (2011) or Willow Garage’s household objects SQL database Willow Garage
(2011). A common property of these databases is that the object models are stored as triangular
meshes. They are mostly of high quality, but object creation requires either a lot of manual work or
expensive scanning equipment.

In contrast, the focus of the work presented in this video is on providing a simple and cost-
effective way to create object models for object recognition and pose estimation. Instead of triangular
meshes, object models are stored as 3D colored point clouds.

A.3. Recording arbitrary objects

For the object recording process the Kinect camera is used in conjunction with a marker pattern.
Before starting the object recording process, the target object is placed in the center of the predefined

117

Appendix A. Creating and using RoboEarth object models

Figure A.1.: Object recording setup (left) and merged point cloud (right)

marker pattern on a table (see figure A.1 left).Subsequently, the marker pattern is rotated slowly by
the user so that the Kinect camera records the object from different views.

The ARToolkit library Kato and Billinghurst (1999) is used to extract the approximate positions
of the markers in the camera’s RGB image. To further improve the precision, two lines are selected
that cross in the center of the marker. Using the depth information from the Kinect, we sample at least
six 3D points from each line and apply a least-square fitting approach to estimate the line parameters
and the marker’s position. The intersection point of these two lines gives a better estimation for the
respective marker’s center point. In case the lines do not meet, the marker’s center point is defined
as the point where the distance of both lines is minimal, as long as this distance is below a given
threshold.

To discard implausible marker positions, we compare the detected marker positions with the
a-priori known relative distances between the markers on the marker template. If at least three of
the detected marker center points are classified as plausible in this manner, a coordinate system is
established with its origin in the center of the marker pattern by applying the Gram-Schmidt process
(e.g. in Arfken et al. (2011)).

Finally, the different recordings can be transformed into the marker pattern center coordinate
system and merged into the final object model (see figure A.1 right for an example). For further
details on this we refer to Koch et al. (2011).

A.4. Database

In the next step, the data created in the recording process is compressed and uploaded to the RoboEarth
database, a Hadoop-based distributed database accessible over the Internet. The user may annotate the
recordings with an object class, name and a free-form, human-readable description. Also, a simple
OWL description is generated and uploaded to make the model usable in future knowledge processing.
We use KnowRob Tenorth and Beetz (2009) as knowledge processing framework. The description of
the database can be found in Schiessle et al. (2011).

118

A.5. Object detection and pose estimation

A.5. Object detection and pose estimation

The user may download one or more of the object model files stored in the RoboEarth database and
use them for object recognition and object pose estimation. Each object model consists of several
recordings from different points of view. For each recording, a 3D point cloud along with the SURF
features Bay et al. (2006) associated to some of those points are stored.

There are currently two different algorithms implemented that make use of the objects stored in
the database, one for using common RGB cameras and an CONCLUSION In this work we presented
an approach to create 3D object models for robotic and vision applications in a fastother one for use
with the Kinect. Though the recognition process could be moved onto the RoboEarth servers, they are
currently implemented to run on the client side. In principle the models can be used with any kind of
camera.

Figure A.2.: Pose estimation using a Kinect camera and the method presented in section IV-B. The
arrows indicate the position of the camera. The marker pattern is visible on the left.

A.5.1. RGB camera

When an image is acquired with an RGB camera, SURF features are extracted. Then correspondences
are calculated between each view of the object model and the camera image. Using the RANSAC
algorithm, at least five correspondences that describe a valid transformation from the model image to
the camera image are searched, and the object pose is estimated by solving the Perspective-N-Point
problem. This approach is described in detail in Civera et al. (2011).

A.5.2. Kinect camera

The detection method employed for use with a Kinect sensor is similar to the method presented in the
previous subsection. In this case, the pose is estimated with a rigid transformation between the model

119

Appendix A. Creating and using RoboEarth object models

and the camera point clouds. Additionally, the depth information for the feature points estimated in
the camera image is used to compare the distances between given feature points with the distances
in the respective object model feature points. This check is used to discard more implausible corres-
pondences. An example for successful pose estimation in a point cloud acquired from a Kinect camera
is shown in figure A.2.

A.6. Conclusion

In this work we presented an approach to create 3D object models for robotic and vision applications
in a fast and inexpensive way compared to established approaches. By using the RoboEarth system
for storing the created object models users have world-wide access to the data and can immediately
reuse a model as soon as it was created and uploaded. The approach shows general applicability for
different kinds of cameras. In this work this was shown by two example implementations for the
recognition process of objects. The quality of the recognition can be verified in the video. Combined
with the knowledge saved in the RoboEarth database the objects can also be properly classified.

The complete software in conjunction with the RoboEarth platform is already available for down-
load. For further details please see RoboEarth Consortium (2011).

120

Appendix B
Real-Time 3D Reconstruction using the
Cloud

B.1. Introduction

Cloud computing is an emerging technology in the last years. The ability to use this technology
in robotics opens a new line of reseach called Cloud Robotics Goldberg and Kehoe (2013). This
approach to robotics allows robots to benefit from the massively computational and storage resources
of cloud data centers. In addition, the increment of network bandwidth will reduce the transport delays
and hence make possible the computation offloading.

During the last years some robotic frameworks had addressed the cloud computing paradigm.
Rapyuta Hunziker et al. (2013) presents an open source platforms-as-a-Service (PaaS) cloud frame-
work for robotics applications that enables to offload heavy computation in the cloud. The DAvinCi
project Arumugam et al. (2010) proposes a frameworks based on Hadoop cluster with ROS (Robotic
Operating System) that provides the scalability and parallelism advantages of cloud computing.

Regarding the 3D reconstruction field, the incipient development of new low-cost sensors, such
as Microsoft Kinect or Asus Xtion, has led to the development of new tools to build 3D models of
the environment. These sensors are capable of adding the depth information of a scene together with
the RGB image that the camera provides. Thus, the sensor provides complete information of the
environment. Several approaches like Kinect Fusion, RGBDSlam, C2TAM Riazuelo et al. (2014b)
have been developed in the last years. The goal of theses applications is to provide a continuous
localization of the camera sensor while a 3D map of the environment is built. In particular, C2TAM
provides a distributed framework for cooperative tracking and mapping.

B.2. System overview

The presented work in based on an open source technology developed under the European project
Roboearth Waibel et al. (2010). Figure B.1 shows a scheme of the 3D reconstruction method pre-
sented. The system is mainly composed by 3 pieces: a tracking client, a map builder server and a 3D
visualizer. For the visual slam implementation we have used the C2TAM framework, developed by the
author of this contribution. As we mention before this framework has been developed for a distributed
execution an fits very well with the cloud approach. For the execution of a component in a cloud

121

Appendix B. Real-Time 3D Reconstruction using the Cloud

server we use the Rapyuta framework that enables the execution of a software component in a cloud
server. In this work, we use Amazon EC2 Amazon Inc. (2012) servers for computing offloading.

Figure B.1.: System overview of the 3D reconstruction method presented.

B.2.1. Client-side

The tracking component provides a continuously localization of the camera position estimating its
position using local descriptors based on salient FAST features on the camera image and the map
provided by the server after the optimization in the cloud. Tracking component works at 30 fps and
it is placed on the local computer (see figure B.1) where the camera is plugged. The tracking is a
light-power process that can be run on a low-power computer, in our case a laptop. It is in charge of
select the keyframes of the video stream that will be sent to the server in order to build the map. It
is essential to correctly choose the frequency in which these frames are sent to the server because the
system must to take into account the network bandwidth and deal with the network delay to avoid a
bad performance of the system.

B.2.2. Server-side

The mapping component creates a 3D model of the environment using the data provided by the track-
ing client (a collection of several keyframes composed by a RGB image and depth information). As
we can see on figure B.1, the mapping component runs on an Amazon EC2 server. Rapyuta Cloud
Engine provides the execution of this component in a cloud server. The estimation of the 3D map is
the most demanding computation of this approach because it requires an optimization process. Due to
this process does not require a strong real-time constraints it can be executed in the cloud. 3D model
visualizer

The visualizer provides a real-time representation of the 3D model of the environment that is
being built and the location of the camera (see figure B.2 for a real experiment visualization). The
main advantage of this component is that is able to run both the server side and the client, minimizing
data traffic in the network to reduce the bandwidth consumed.

122

B.3. Experimental results

B.3. Experimental results

On this section we present a 3D reconstruction of a real environment using the proposed system.
We use a Microsoft Kinect camera that provides RGBD images with a resolution of 640x480 at a
frequency of 30Hz, a low-power laptop (AMD Fusion, Asus EeePC 1600.0 MHz) and a Amazon EC2
instance (m1.medium, Intel Xeon). According to the schema proposed on the figure B.1 , the tracking
process is allocated on the laptop and the map builder runs in the cloud server. For communication
issues we use a standard wireless network. We perform a real time map of a hospital room (see figure
B.2 left). The tracking estimates continuously the position of the camera during the experiment and
the mapping process builds a map using the keyframes. As a result, figure B.2 right shows the 3D
model of this environment generated. A video of the full experiment, and the 3D model generated can
be found at ∗..

Figure B.2.: Experimental environment (left image) and 3D model of this environment generated
(right image).

B.4. Conclusions

This contribution presents a 3D reconstruction of an environment using a low-power computer. We
believe that this result opens a new research line in the field of low-cost devices and computation
offloading. Using a cloud server for allocating the most expensive tasks, enables the execution 3D
reconstruction in real time.

∗https://youtu.be/_zaDoBYGr9I

123

https://youtu.be/_zaDoBYGr9I

124

Bibliography

ABAD, P., FRANCO, M., CASTILLON, R., ALONSO, I., CAMBRA, A., SIERRA, J., RIAZUELO, L.,
MONTANO, L., AND MURILLO, A. C. 2017. Integrating an autonomous robot on a dance and new
technologies festival. In ROBOT 2017: Third Iberian Robotics Conference. Advances in Intelligent
Systems and Computing, A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira, Eds. Vol. 1.
(Cited on page 11.)

ACHTELIK, M. W., WEISS, S., LYNEN, S., CHLI, M., AND SIEGWART, R. 2012. Vision-based
MAV Navigation: Implementation Challenges Towards a Usable System in Real-Life Scenarios.
In Workshop on Integration of perception with control and navigation for resource-limited, highly
dynamic, autonomous systems, in Robotics: Science and Systems (RSS). (Cited on page 29.)

AMAZON INC. 2012. Amazon elastic compute cloud. Available at http://aws.amazon.com/
ec2/. (Cited on pages 60 y 122.)

ANDRILUKA, M., ROTH, S., AND SCHIELE, B. 2009. Pictorial Structures Revisited: People Detec-
tion and Articulated Pose Estimation. (Cited on page 75.)

ARFKEN, G., WEBER, H., AND HARRIS, F. 2011. Mathematical Methods for Physicists: A Com-
prehensive Guide. Elsevier Science. (Cited on page 118.)

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A., KATZ, R., KONWINSKI, A., LEE, G., PAT-
TERSON, D., RABKIN, A., STOICA, I., ET AL. 2010. A view of cloud computing. Communications
of the ACM 53, 4, 50–58. (Cited on page 30.)

ARUMUGAM, R., ENTI, V., BINGBING, L., XIAOJUN, W., BASKARAN, K., KONG, F. F., KUMAR,
A., MENG, K. D., AND KIT, G. W. 2010. Davinci: A cloud computing framework for service
robots. In Robotics and Automation (ICRA), 2010 IEEE International Conference on. 3084–3089.
(Cited on pages 30 y 121.)

AYDEMIR, A., PRONOBIS, A., GÖBELBECKER, M., AND JENSFELT, P. 2013. Active visual object
search in unknown environments using uncertain semantics. IEEE Transactions on Robotics 29, 4,
986–1002. (Cited on page 56.)

BAKAMBU, J. N. AND POLOTSKI, V. 2007. Autonomous system for navigation and surveying in
underground mines. Field Robotics, Journal of 24, 10 (July), 829–847. (Cited on page 87.)

BARRIOS, S., AYUSO, N., TARDIOLI, D., RIAZUELO, L., MOSTEO, A. R., LERA, F., AND VIL-
LARROEL, J. L. 2017. Low-bandwidth telerobotics in fading scenarios. In ROBOT 2017: Third
Iberian Robotics Conference. Advances in Intelligent Systems and Computing, A. Ollero, A. San-
feliu, L. Montano, N. Lau, and C. Cardeira, Eds. Vol. 2. (Cited on page 11.)

BAUDAT, G. AND ANOUAR, F. 2000. Generalized discriminant analysis using a kernel approach.
Neural Comput. 12, 10 (Oct.), 2385–2404. (Cited on page 94.)

125

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

Bibliography

BAY, H., ESS, A., TUYTELAARS, T., AND VAN GOOL, L. 2008. Speeded-Up Robust Features
(SURF). Computer Vision and Image Understanding 110, 3, 346–359. (Cited on pages 15 y 60.)

BAY, H., TUYTELAARS, T., AND VAN GOOL, L. 2006. Surf: Speeded up robust features. In
Computer Vision-ECCV 2006. Vol. 3951. 404–417. (Cited on page 119.)

BEETZ, M., MÖSENLECHNER, L., AND TENORTH, M. 2010. CRAM – A Cognitive Robot Abstract
Machine for Everyday Manipulation in Human Environments. In Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS). (Cited on page 56.)

BERGTHOLDT, M., KAPPES, J., SCHMIDT, S., AND SCHNÖRR, C. 2010. A study of parts-based
object class detection using complete graphs. Int. J. Comput. Vision 87, 1-2 (Mar.), 93–117. (Cited
on page 75.)

BIRK, A., SCHWERTFEGER, S., AND PATHAK, K. 2009. A networking framework for teleoperation
in safety, security, and rescue robotics. Wireless Commun. 16, 1 (Feb.), 6–13. (Cited on page 88.)

BISTRY, H. AND ZHANG, J. 2010. A cloud computing approach to complex robot vision tasks using
smart camera systems. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 3195 –3200. (Cited on page 30.)

BLANCHARD, E., HARZALLAH, M., BRIAND, H., AND KUNTZ, P. 2005. A typology of ontology-
based semantic measures. In EMOI-INTEROP workshop at the 17th Conf. on Advanced Informa-
tion Systems Engineering. Porto, Portugal. (Cited on page 57.)

BOOIJ, O., TERWIJN, B., ZIVKOVIC, Z., AND KROSE, B. 2007. Navigation using an appearance
based topological map. In Robotics and Automation, 2007 IEEE International Conference on.
3927–3932. (Cited on page 87.)

BURGARD, W., MOORST, M., FOX, D., SIMMONS, R., AND THRUN, S. 2000. Collaborative Multi-
Robot Exploration. In 2000 International Conference on Robotics and Automation. San Francisco,
USA, 476–481. (Cited on pages 87 y 89.)

CADENA, C., GÁLVEZ, D., RAMOS, F., TARDÓS, J., AND NEIRA, J. 2010. Robust place recognition
with stereo cameras. Taipei, Taiwan. (Cited on page 14.)

CASTLE, R., KLEIN, G., AND MURRAY, D. 2010. Combining monoSLAM with object recognition
for scene augmentation using a wearable camera. Image and Vision Computing 28, 11, 1548–1556.
(Cited on pages 14, 55 y 75.)

CASTLE, R., KLEIN, G., AND MURRAY, D. 2011. Wide-area augmented reality using camera track-
ing and mapping in multiple regions. Computer Vision and Image Understanding. (Cited on
page 30.)

CASTLE, R. O., GAWLEY, D. J., KLEIN, G., AND MURRAY, D. W. 2007. Towards simultaneous
recognition, localization and mapping for hand-held and wearable cameras. In Proceedings of the
IEEE International Conference on Robotics and Automation. 4102–4107. (Cited on page 14.)

CASTLE, R. O., KLEIN, G., AND MURRAY, D. W. 2008. Video-rate localization in multiple maps
for wearable augmented reality. In 12th IEEE International Symposium on Wearable Computers.
15–22. (Cited on page 30.)

CHURCHILL, W. AND NEWMAN, P. 2012. Practice makes perfect? managing and leveraging visual
experiences for lifelong navigation. In IEEE International Conference on Robotics and Automation
(ICRA2012). (Cited on page 29.)

126

Bibliography

CIVERA, J., DAVISON, A., AND MONTIEL, J. 2008a. Interacting multiple model monocular SLAM.
In IEEE International Conference on Robotics and Automation (ICRA). 3704–3709. (Cited on
page 32.)

CIVERA, J., DAVISON, A. J., AND MONTIEL, J. M. M. 2008b. Inverse depth parametrization for
monocular SLAM. IEEE Transactions on Robotics 24, 5 (October), 932–945. (Cited on page 19.)

CIVERA, J., GÁLVEZ-LÓPEZ, D., RIAZUELO, L., TARDÓS, J. D., AND MONTIEL, J. M. M. 2011.
Towards semantic slam using a monocular camera. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). 1277 –1284. (Cited on pages 10, 29, 51, 55, 60, 75 y 119.)

CIVERA, J., GRASA, O. G., DAVISON, A. J., AND MONTIEL, J. M. M. 2010. 1-point ransac for
ekf filtering: Application to real-time structure from motion and visual odometry. Journal of Field
Robotics 27, 5 (October), 609–631. (Cited on pages 14 y 18.)

CLEMENTE, L. A., DAVISON, A. J., REID, I. D., NEIRA, J., AND TARDOS, J. D. 2007. Mapping
large loops with a single hand-held camera. In Robotics: Science and Systems. (Cited on page 35.)

CUMMINS, M. AND NEWMAN, P. 2008. FAB-MAP: Probabilistic localization and mapping in the
space of appearance. The International Journal of Robotics Research 27, 6, 647. (Cited on pages 14
y 87.)

DIXON, C. AND FREW, E. W. 2009. Maintaining Optimal Communiaction Chains in Robotic Sensors
Networks Using Mobility Control. Mobile Networks and Applications 14, 3, 281–291. (Cited on
page 88.)

DONDRUP, C., BELLOTTO, N., JOVAN, F., AND HANHEIDE, M. 2015. Real-time multisensor people
tracking for human-robot spatial interaction. In Workshop on Machine Learning for Social Robotics
at International Conference on Robotics and Automation (ICRA). ICRA/IEEE. (Cited on page 75.)

DURRANT-WHYTE, H. AND BAILEY, T. 2006. Simultaneous localisation and mapping (SLAM):
Part I the essential algorithms. Robotics and Automation Magazine 13, 2, 99–110. (Cited on
page 30.)

EKVALL, S., JENSFELT, P., AND KRAGIC, D. 2006. Integrating active mobile robot object recogni-
tion and slam in natural environments. In 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 5792–5797. (Cited on page 14.)

EKVALL, S. AND KRAGIC, D. 2005. Receptive field cooccurrence histograms for object detection.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 84–89. (Cited on page 55.)

ESS, A., LEIBE, B., SCHINDLER, K., AND VAN GOOL, L. 2009. Robust multiperson tracking
from a mobile platform. Pattern Analysis and Machine Intelligence, IEEE Transactions on 31, 10,
1831–1846. (Cited on page 75.)

FERRARI, V., JURIE, F., AND SCHMID, C. 2010. From images to shape models for object detection.
International journal of computer vision 87, 3, 284–303. (Cited on page 25.)

FOX, D. 2003. Adapting the sample size in particle filters through kld-sampling. The International
Journal of Robotics Research 22, 12, 985–1003. (Cited on pages 89 y 91.)

FURUKAWA, Y., CURLESS, B., SEITZ, S., AND SZELISKI, R. 2010. Towards internet-scale multi-
view stereo. In IEEE Conference on Computer Vision and Pattern Recognition. 1434–1441. (Cited
on page 50.)

127

Bibliography

FURUKAWA, Y. AND PONCE, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 32, 8, 1362–1376. (Cited on page 16.)

GALINDO, C., FERNÁNDEZ-MADRIGAL, J.-A., GONZÁLEZ, J., AND SAFFIOTTI, A. 2008. Robot
task planning using semantic maps. Robotics and Autonomous Systems 56, 11, 955–966. (Cited
on page 55.)

GALLUP, D., FRAHM, J., AND POLLEFEYS, M. 2010. Piecewise planar and non-planar stereo for
urban scene reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 1418–1425. (Cited on page 50.)

GÁLVEZ-LÓPEZ, D., SALAS, M., TARDÓS, J. D., AND MONTIEL, J. 2016. Real-time monocular
object slam. Robot. Auton. Syst. 75, PB (Jan.), 435–449. (Cited on page 75.)

GÁLVEZ-LÓPEZ, D. AND TARDÓS, J. D. 2012. Bags of Binary Words for Fast Place Recognition in
Image Sequences. IEEE Transactions on Robotics 28, 5, 1188–1197. (Cited on pages 68 y 79.)

GAUGLITZ, S., SWEENEY, C., VENTURA, J., TURK, M., AND HOLLERER, T. 2012. Live tracking
and mapping from both general and rotation-only camera motion. In Mixed and Augmented Reality
(ISMAR), 2012 IEEE International Symposium on. IEEE, 13–22. (Cited on page 32.)

GOERKE, N. AND BRAUN, S. 2009. Building semantic annotated maps by mobile robots tracking.
Towards Autonomous Robotic Systems, 149–156. (Cited on page 75.)

GOLDBERG, K. AND KEHOE, B. 2013. Cloud robotics and automation: A survey of related work.
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2013-5. (Cited on
pages 27 y 121.)

GOOGLE. 2011. 3d warehouse. Available at http://sketchup.google.com/
3dwarehouse/. (Cited on page 117.)

GOULD, S., FULTON, R., AND KOLLER, D. 2010. Decomposing a scene into geometric and seman-
tically consistent regions. In Computer Vision, 2009 IEEE 12th International Conference on. IEEE,
1–8. (Cited on page 25.)

GRANSTRÖM, K., SCHÖN, T. B., NIETO, J. I., AND RAMOS, F. T. 2011. Learning to close loops
from range data. The International Journal of Robotics Research 30, 14, 1728–1754. (Cited on
page 87.)

GRISETTI, G., KUMMERLE, R., STACHNISS, C., AND BURGARD, W. 2010. A tutorial on graph-
based slam. Intelligent Transportation Systems Magazine, IEEE 2, 4 (winter), 31–43. (Cited on
pages 87 y 89.)

GRISETTI, G., STACHNISS, C., AND BURGARD, W. 2005. Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling. In Robotics and Au-
tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. 2432–
2437. (Cited on page 91.)

GRISETTI, G., STACHNISS, C., AND BURGARD, W. 2007. Improved techniques for grid mapping
with rao-blackwellized particle filters. IEEE Transactions on Robotics 23, 1 (February), 34–46.
(Cited on page 60.)

GRISETTI, G., TIPALDI, G. D., STACHNISS, C., BURGARD, W., AND NARDI, D. 2007. Fast and
accurate {SLAM} with rao–blackwellized particle filters. Robotics and Autonomous Systems 55, 1,
30 – 38. Simultaneous Localisation and Map Building. (Cited on page 91.)

128

http://sketchup.google.com/3dwarehouse/
http://sketchup.google.com/3dwarehouse/

Bibliography

GUIZZO, E. 2011. Robots with their heads in the clouds. IEEE Spectrum 48, 3, 16–18. (Cited on
page 30.)

GÜNTHER, M., WIEMANN, T., ALBRECHT, S., AND HERTZBERG, J. 2013. Building semantic
object maps from sparse and noisy 3d data. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). 2228–2233. (Cited on pages 55 y 75.)

GUPTA, R. AND KOCHENDERFER, M. J. 2004. Common sense data acquisition for indoor mobile
robots. In Nineteenth National Conf. on Artificial Intelligence (AAAI-04). 605–610. (Cited on
page 62.)

HABIB, M., BAUDOIN, Y., AND NAGATA, F. 2011. Robotics for rescue and risky intervention. In
IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society. 3305–3310. (Cited
on page 87.)

HARNAD, S. 1990. The symbol grounding problem. Physica D 42, 335–346. (Cited on page 54.)

HARTLEY, R. I. AND ZISSERMAN, A. 2004. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518. (Cited on pages 16 y 18.)

HERMANS, A., FLOROS, G., AND LEIBE, B. 2014. Dense 3d semantic mapping of indoor scenes
from RGB-D images. In 2014 IEEE International Conference on Robotics and Automation, ICRA
2014, Hong Kong, China, May 31 - June 7, 2014. 2631–2638. (Cited on page 75.)

HINTERSTOISSER, S., LEPETIT, V., ILIC, S., FUA, P., AND NAVAB, N. 2010. Dominant orien-
tation templates for real-time detection of texture-less objects. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. 2257 –2264. (Cited on page 14.)

HOIEM, D., EFROS, A., AND HEBERT, M. 2007. Recovering surface layout from an image. Inter-
national Journal of Computer Vision 75, 1, 151–172. (Cited on page 29.)

HORNUNG, A., WURM, K. M., BENNEWITZ, M., STACHNISS, C., AND BURGARD, W. 2013.
Octomap: An efficient probabilistic 3d mapping framework based on octrees. Auton. Robots 34, 3
(Apr.), 189–206. (Cited on pages 29, 50, 61, 73, 75 y 79.)

HOWARD, A. 2006. Multi-robot Simultaneous Localization and Mapping using Particle Filters. The
International Journal of Robotics Research 25, 1243–1256. (Cited on pages 87 y 89.)

HUBER, P. J. 1981. Robust Statistics. Wiley-Interscience. (Cited on page 77.)

HUNZIKER, D., GAJAMOHAN, M., WAIBEL, M., AND D’ANDREA, R. 2013. Rapyuta: The Robo-
Earth cloud engine. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Karlsruhe,
Germany. 438–444. (Cited on pages 60 y 121.)

JAFARI, O. H., MITZEL, D., AND LEIBE, B. 2014. Real-time RGB-D based people detection and
tracking for mobile robots and head-worn cameras. In 2014 IEEE International Conference on
Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7, 2014. 5636–5643.
(Cited on pages 76, 77, 79, 80 y 81.)

JOHO, D., SENK, M., AND BURGARD, W. 2011. Learning search heuristics for finding objects in
structured environments. Robotics and Autonomous Systems 59, 5 (May), 319–328. (Cited on
page 55.)

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT). 2011. Kit object models web database. Available
at http://i61p109.ira.uka.de/ObjectModelsWebUI/. (Cited on page 117.)

129

http://i61p109.ira.uka.de/ObjectModelsWebUI/

Bibliography

KATO, H. AND BILLINGHURST, M. 1999. Marker tracking and hmd calibration for a video-based
augmented reality conferencing system. In Augmented Reality, 1999. (IWAR ’99) Proceedings. 2nd
IEEE and ACM International Workshop on. 85–94. (Cited on page 118.)

KEHOE, B., PATIL, S., ABBEEL, P., AND GOLDBERG, K. 2015. A survey of research on cloud
robotics and automation. IEEE T-ASE Special Issue on Cloud Robotics and Automation 12, 2.
(Cited on page 53.)

KEHOE, B., WARRIER, D., PATIL, S., AND GOLDBERG, K. 2015. Cloud-based grasp planning
for toleranced parts using parallelized monte carlo sampling. IEEE T-ASE Special Issue on Cloud
Robotics and Automation 12, 2. (Cited on page 53.)

KIM, B., KAESS, M., FLETCHER, L., LEONARD, J., BACHRACH, A., ROY, N., AND TELLER, S.
2010. Multiple relative pose graphs for robust cooperative mapping. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on. 3185–3192. (Cited on page 29.)

KLEIN, G. AND MURRAY, D. 2007. Parallel tracking and mapping for small ar workspaces. In
Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM Int. Symposium on. 225–
234. (Cited on pages 27, 30, 32, 39, 76 y 78.)

KLEIN, G. AND MURRAY, D. 2008. Improving the Agility of Keyframe-Based SLAM. In Proceed-
ings of the 10th European Conference on Computer Vision: Part II. Springer, 802–815. (Cited on
pages 31 y 34.)

KLEIN, G. AND MURRAY, D. 2009. Parallel tracking and mapping on a camera phone. In 8th IEEE
International Symposium on Mixed and Augmented Reality. 83–86. (Cited on page 41.)

KOCH, A., MARCO, D. D., WINLKER, J., AND HÄUSSERMANN, K. 2011. Recording and storing
in the roboearth database. (Cited on page 118.)

KOENIG, N. AND HOWARD, A. 2004. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
2149–2154. (Cited on page 66.)

KOLLAR, T. AND ROY, N. 2009. Utilizing object-object and object-scene context when planning to
find things. In IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE, 2168–2173. (Cited on
page 55.)

KRUSE, T., PANDEY, A. K., ALAMI, R., AND KIRSCH, A. 2013. Human-aware robot navigation: A
survey. Robot. Auton. Syst. 61, 12 (Dec.), 1726–1743. (Cited on page 75.)

KUIPERS, B., MODAYIL, J., BEESON, P., MACMAHON, M., AND SAVELLI, F. 2004. Local metrical
and global topological maps in the hybrid spatial semantic hierarchy. In Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on. Vol. 5. 4845–4851 Vol.5.
(Cited on page 87.)

KUNZE, L., BEETZ, M., SAITO, M., AZUMA, H., OKADA, K., AND INABA, M. 2012. Searching
objects in large-scale indoor environments: A decision-thereotic approach. In IEEE Int. Conf. on
Robotics and Automation (ICRA). St. Paul, MN, USA. (Cited on page 55.)

KUNZE, L., DORESWAMY, K. K., AND HAWES, N. 2014. Indirect object search based on qualitative
spatial relations. In IEEE Int. Conf. on Robotics and Automation (ICRA). Hong Kong, China.
Accepted for publication. (Cited on page 55.)

130

Bibliography

KUNZE, L., ROEHM, T., AND BEETZ, M. 2011. Towards semantic robot description languages. In
IEEE Int. Conf. on Robotics and Automation (ICRA). Shanghai, China, 5589–5595. (Cited on
page 53.)

KUNZE, L., TENORTH, M., AND BEETZ, M. 2010. Putting People’s Common Sense into Knowledge
Bases of Household Robots. In 33rd Annual German Conf. on Artificial Intelligence (KI 2010).
Springer, Karlsruhe, Germany, 151–159. (Cited on page 62.)

LAI, K., BO, L., REN, X., AND FOX, D. 2011. A large-scale hierarchical multi-view rgb-d object
dataset. In IEEE International Conference on Robotics & Automation (ICRA). (Cited on page 29.)

LATOMBE, J.-C. 1991. Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, USA.
(Cited on page 59.)

LAZARO, M. T., URCOLA, P., CASTELLANOS, J., AND MONTANO, L. 2012. Position Tracking and
Path Planning in Uncertain Maps for Robot Formations. In 2nd IFAC Workshop on Multivehicle
Systems. Espoo, Finland. (Cited on pages 87 y 89.)

LEIBE, B., SEEMANN, E., AND SCHIELE, B. 2005. Pedestrian detection in crowded scenes. In Pro-
ceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05) - Volume 1 - Volume 01. IEEE Computer Society, Washington, DC, USA, 878–885.
(Cited on page 75.)

LITOMISKY, K. AND BHANU, B. 2012. Removing moving objects from point cloud scenes. X. Jiang,
O. R. P. Bellon, D. B. Goldgof, and T. Oishi, Eds. Lecture Notes in Computer Science, vol. 7854.
Springer, 50–58. (Cited on page 75.)

LUNENBURG, J., VAN DEN DRIES, S., ELFRING, J., JANSSEN, R., SANDEE, J., AND VAN DE

MOLENGRAFT, M. 2012. Tech united eindhoven team description 2012. In RoboCup Team De-
scription Papers 2012. (Cited on page 66.)

MARCO, D. D., KOCH, A., ZWEIGLE, O., HÄUSSERMANN, K., SCHIESSLE, B., LEVI, P.,
GÁLVEZ-LÓPEZ, D., RIAZUELO, L., CIVERA, J., MONTIEL, J. M. M., TENORTH, M.,
PERZYLO, A. C., WAIBEL, M., AND VAN DE MOLENGRAFT, R. 2012. Creating and using robo-
earth object models. In IEEE International Conference on Robotics and Automation, ICRA 2012,
14-18 May, 2012, St. Paul, Minnesota, USA. 3549–3550. (Cited on page 11.)

MARINAKIS, D. AND DUDEK, G. 2010. Pure topological mapping in mobile robotics. Robotics,
IEEE Transactions on 26, 6 (Dec), 1051–1064. (Cited on page 87.)

MARTINEZ, M., COLLET, A., AND SRINIVASA, S. 2010. Moped: A scalable and low latency
object recognition and pose estimation system. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on. 2043 –2049. (Cited on page 14.)

MASON, J. AND MARTHI, B. 2012. An object-based semantic world model for long-term change
detection and semantic querying. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE, 3851–3858. (Cited on page 55.)

MEGER, D., FORSSÉN, P.-E., LAI, K., HELMER, S., MCCANN, S., SOUTHEY, T., BAUMANN, M.,
LITTLE, J. J., AND LOWE, D. G. 2008. Curious george: An attentive semantic robot. Robotics
and Autonomous Systems 56, 6 (June), 503–511. (Cited on pages 14 y 55.)

MICROSOFT. 2011. Kinect camera. Available at http://www.xbox.com/kinect. (Cited on
page 117.)

131

http://www.xbox.com/kinect

Bibliography

MIKOLAJCZYK, K., LEIBE, B., AND SCHIELE, B. 2006. Multiple object class detection with a
generative model. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on. Vol. 1. 26–36. (Cited on page 75.)

MILFORD, M. 2013. Vision-based place recognition: how low can you go? The International Journal
of Robotics Research 32, 7, 766–789. (Cited on page 34.)

MINGUEZ, J. 2005. The obstacle-restriction method (orm) for robot obstacle avoidance in difficult
environments. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS). (Cited on
pages 60 y 91.)

MINGUEZ, J. AND MONTANO, L. 2004. Nearness diagram (nd) navigation: Collision avoidance in
troublesome scenarios. IEEE Transactions on Robotics and Automation 20, 1, 45–59. (Cited on
pages 88 y 91.)

MINGUEZ, J., MONTANO, L., SIMÉON, T., AND ALAMI, R. 2001. Global nearness diagram naviga-
tion (gnd). In IEEE Int. Conf. on Robotics and Automation (ICRA’01). 33–39. (Cited on page 91.)

MORENO-NOGUER, F., LEPETIT, V., AND FUA, P. 2007. Accurate non-iterative o(n) solution to the
pnp problem. Computer Vision, IEEE International Conference on 0, 1–8. (Cited on pages 18
y 35.)

MÖSENLECHNER, L. AND BEETZ, M. 2011. Parameterizing Actions to have the Appropriate Effects.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). San Francisco, CA, USA, 4141–
4147. (Cited on page 63.)

MOURIKIS, A. AND ROUMELIOTIS, S. 2006. Predicting the performance of cooperative simulta-
neous localization and mapping (c-slam). The International Journal of Robotics Research 25, 12,
1273–1286. (Cited on page 29.)

MOZOS, O. M., ROTTMANN, A., TRIEBEL, R., JENSFELT, P., AND BURGARD, W. 2007. Su-
pervised semantic labeling of places using information extracted from sensor data. Robotics and
Autonomous Systems 55, 391–402. (Cited on page 87.)

MUJA, M. AND LOWE, D. G. 2009. Fast approximate nearest neighbors with automatic algorithm
configuration. In International Conference on Computer Vision Theory and Application VISS-
APP’09). INSTICC Press, 331–340. (Cited on page 17.)

MUNARO, M., BASSO, F., AND MENEGATTI, E. 2016. Openptrack: Open source multi-camera
calibration and people tracking for rgb-d camera networks. Robot. Auton. Syst. 75, PB (Jan.), 525–
538. (Cited on page 80.)

MUR-ARTAL, R., MONTIEL, J. M. M., AND TARDOS, J. D. 2015. Orb-slam: a versatile and accurate
monocular slam system. IEEE Transactions on Robotics 31, 5, 1147–1163. (Cited on pages 73, 76
y 78.)

MUR-ARTAL, R. AND TARDOS, J. D. 2016. Orb-slam2: an open-source slam system for monocular,
stereo and rgb-d cameras. arXiv preprint arXiv:1610.06475. To appear in IEEE Trans. on Robotics..
(Cited on pages 73, 75, 76, 78 y 80.)

MURPHY, K., TORRALBA, A., AND FREEMAN, W. 2003. Using the forest to see the trees: a graph-
ical model relating features, objects and scenes. Advances in Neural Information Processing Sys-
tems 16. (Cited on page 25.)

MURPHY, R., KRAVITZ, J., STOVER, S., AND SHOURESHI, R. 2009. Mobile robots in mine rescue
and recovery. Robotics Automation Magazine, IEEE 16, 2 (June), 91–103. (Cited on page 87.)

132

Bibliography

NEWCOMBE, R. AND DAVISON, A. 2010. Live dense reconstruction with a single moving camera. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 1498–1505.
(Cited on page 25.)

NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D., KIM, D., DAVISON, A. J.,
KOHLI, P., SHOTTON, J., HODGES, S., AND FITZGIBBON, A. 2011. Kinectfusion: Real-time
dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Sym-
posium on Mixed and Augmented Reality. ISMAR ’11. IEEE Computer Society, Washington, DC,
USA, 127–136. (Cited on page 75.)

NEWMAN, P., COLE, D., AND HO, K. 2006. Outdoor slam using visual appearance and laser ranging.
In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on. 1180–1187. (Cited on page 87.)

NGUYEN, H. G., FARRINGTON, N., AND PEZESHKIAN, N. 2004. Maintaining Communication
Link for Tactical Ground Robots. In AUVSI Unmanned System North America. Anaheim, CA,
USA. (Cited on page 88.)

NÜCHTER, A. AND HERTZBERG, J. 2008. Towards semantic maps for mobile robots. Robot. Auton.
Syst. 56, 11 (Nov.), 915–926. (Cited on page 75.)

OLIVA, A., TORRALBA, A., CASTELHANO, M. S., AND HENDERSON, J. M. 2003. Top-down
control of visual attention in object detection. In Int. Conf. on Image Processing (ICIP). Vol. 1.
I–253. (Cited on page 55.)

PANGERCIC, D., TENORTH, M., PITZER, B., AND BEETZ, M. 2012. Semantic object maps for
robotic housework - representation, acquisition and use. In 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Vilamoura, Portugal. (Cited on page 55.)

PEASGOOD, M., MCPHEE, J., AND CLARK, C. 2006. Complete and scalable multi-robot planning
in tunnel environments. In 1st IFAC Workshop on Multivehicle Systems. (Cited on page 87.)

QUIGLEY, M., CONLEY, K., GERKEY, B. P., FAUST, J., FOOTE, T., LEIBS, J., WHEELER, R., AND

NG, A. Y. 2009. Ros: an open-source robot operating system. In ICRA Workshop on Open Source
Software. (Cited on pages 39, 80, 98 y 117.)

RANGANATHAN, A. AND DELLAERT, F. 2007. Semantic modeling of places using objects. In
Robotics: Science and Systems. (Cited on page 15.)

RANGANATHAN, A. AND DELLAERT, F. 2011. Online probabilistic topological mapping. Int. J.
Rob. Res. 30, 6 (May), 755–771. (Cited on page 87.)

REMY, S. AND BLAKE, M. 2011. Distributed service-oriented robotics. IEEE Internet Comput-
ing 15, 2, 70–74. (Cited on page 30.)

RIAZUELO, L., CIVERA, J., AND MONTIEL, J. M. M. 2013. C2TAM: A First Approach to a Cloud
framework for Cooperative Tracking And Mapping. In IROS 2013 Workshop on Cloud Robotics:
Online Knowledge Bases, Web Services, and Cloud Computing for Robots. Tokyo, Japan. (Cited
on page 10.)

RIAZUELO, L., CIVERA, J., AND MONTIEL, J. M. M. 2014a. Actas de la III Jornada de Jóvenes
Investigadores del I3A. Vol. 2. (Cited on page 10.)

RIAZUELO, L., CIVERA, J., AND MONTIEL, J. M. M. 2014b. C2TAM: A Cloud framework for
Cooperative Tracking And Mapping. Robotics and Autonomous Systems 62, 4 (April), 401–413.
(Cited on pages 10, 60, 73, 75, 76, 78, 80 y 121.)

133

Bibliography

RIAZUELO, L., MONTANO, L., AND MONTIEL, J. M. 2017. Semantic visual slam in populated
environments. In The European Conference on Mobile Robotics (ECMR). Paris, France. (Cited on
page 10.)

RIAZUELO, L., TENORTH, M., MARCO, D. D., SALAS, M., GÁLVEZ-LÓPEZ, D., MÖSENLECH-
NER, L., KUNZE, L., BEETZ, M., TARDÓS, J. D., MONTANO, L., AND MONTIEL, J. M. M.
2015. Roboearth semantic mapping: A cloud enabled knowledge-based approach. IEEE Transac-
tions on Automation Science and Engineering PP, 99, 1–12. (Cited on page 10.)

RIAZUELO, L., TENORTH, M., MARCO, D. D., SALAS, M., MÖSENLECHNER, L., KUNZE, L.,
BEETZ, M., TARDOS, J. D., MONTANO, L., AND MONTIEL, J. M. M. 2013. Roboearth web-
enabled and knowledge-based active perception. In IROS 2013 Workshop on AI-based Robotics.
Tokyo, Japan. (Cited on page 10.)

RIZZO, C., SICIGNANO, D., RIAZUELO, L., TARDIOLI, D., LERA, F., VILLARROEL, J. L., AND

MONTANO, L. 2015. Guaranteeing communication for robotic intervention in long tunnel sce-
narios. In ROBOT 2015, Second Iberian Robotics Conference. Advances in Intelligent Systems and
Computing., L. P. Reis, A. P. Moreira, P. U. Lima, L. Montano, and V. Muñoz-Martinez, Eds. Vol. 1.
(Cited on page 11.)

RIZZO, C., TARDIOLI, D., SICIGNANO, D., RIAZUELO, L., VILLARROEL, J. L., AND MONTANO,
L. 2013. Signal-based deployment planning for robot teams in tunnel-like fading environments.
The International Journal of Robotics Research 32, 12, 1381–1397. (Cited on pages 11, 88, 89
y 107.)

ROBOEARTH CONSORTIUM. 2011. Roboearth. Available at http://www.roboearth.org.
(Cited on pages 117 y 120.)

ROGERS, J., TREVOR, A., NIETO-GRANDA, C., AND CHRISTENSEN, H. 2011. Simultaneous local-
ization and mapping with learned object recognition and semantic data association. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). 1264–1270. (Cited on page 30.)

ROMEO, A. AND MONTANO, L. 2006. Environment understanding: Robust feature extraction from
range sensor data. In IROS (2009-05-11). IEEE, 3337–3343. (Cited on pages 89, 93 y 94.)

ROS ROBOEARTH. 2014. Ros packages for interfacing with roboearth. Available at http://
wiki.ros.org/roboearth_stack. (Cited on page 64.)

ROSTEN, E. AND DRUMMOND, T. 2006. Machine learning for high-speed corner detection. Euro-
pean Conference on Computer Vision (ECCV), 430–443. (Cited on pages 33 y 77.)

RUSSELL, B., TORRALBA, A., MURPHY, K., AND FREEMAN, W. 2008. Labelme: a database and
web-based tool for image annotation. International Journal of Computer Vision 77, 1, 157–173.
(Cited on page 29.)

SABATTINI, L., CHOPRA, N., AND SECCHI, C. 2013. Decentralized connectivity maintenance
for cooperative control of mobile robotic systems. The International Journal of Robotics Re-
search 32, 12, 1411–1423. (Cited on page 88.)

SALAS, M. AND MONTIEL, J. 2011. Keyframe based semantic mapping. Tech. rep. December.
(Cited on pages 29 y 51.)

SALAS-MORENO, R., NEWCOMBE, F. R. A., STRASDAT, H., KELLY, P. H., AND DAVISON, A. J.
2013. Slam++: Simultaneous localisation and mapping at the level of objects. In IEEE Proc.
Computer Vision and Pattern Recognition (CVPR). (Cited on pages 55 y 75.)

134

http://www.roboearth.org
http://wiki.ros.org/roboearth_stack
http://wiki.ros.org/roboearth_stack

Bibliography

SALMERÓN-GARCÍA, J., D ÍAZ-DEL R ÍO, F., P., I.-B., AND D., C. 2015. A trade-off analysis of a
cloud-based robot navigation assistant using stereo image processing. IEEE T-ASE Special Issue
on Cloud Robotics and Automation 12, 2. (Cited on page 53.)

SCHIESSLE, B., HÄUSSERMANN, K., AND ZWEIGLE, O. 2011. Deliverable 6.1: Complete specifi-
cation of the roboearth platform. technical report. (Cited on page 118.)

SCHUSTER, M., JAIN, D., TENORTH, M., AND BEETZ, M. 2012. Learning organizational principles
in human environments. In IEEE Int. Conf. on Robotics and Automation (ICRA). St. Paul, MN,
USA. (Cited on page 55.)

SHERMER, T. 1992. Recent results in art galleries. Proc. IEEE 80, 9, 1384 – 1399. (Cited on
page 69.)

SHUBINA, K. AND TSOTSOS, J. K. 2010. Visual search for an object in a 3d environment using a
mobile robot. Computer Vision and Image Understanding 114, 5, 535–547. (Cited on page 55.)

SNAVELY, N., SEITZ, S., AND SZELISKI, R. 2006. Photo tourism: exploring photo collections in
3D. In ACM SIGGRAPH 2006 Papers. ACM, 835–846. (Cited on page 60.)

SNAVELY, N., SEITZ, S., AND SZELISKI, R. 2008. Modeling the world from internet photo collec-
tions. International Journal of Computer Vision 80, 2, 189–210. (Cited on pages 14 y 16.)

STENMARK, M., MALEC, J., NILSSON, K., AND ROBERTSSON, A. 2015. On distributed knowl-
edge bases for robotized small-batch assembly. IEEE T-ASE Special Issue on Cloud Robotics and
Automation 12, 2. (Cited on page 53.)

STRASDAT, H., MONTIEL, J., AND DAVISON, A. 2010a. Real-time Monocular SLAM: Why Filter?
In IEEE International Conference on Robotics and Automation (ICRA). (Cited on pages 29 y 30.)

STRASDAT, H., MONTIEL, J., AND DAVISON, A. 2010b. Scale drift-aware large scale monocular
SLAM. In Proceedings of Robotics: Science and Systems (RSS). (Cited on page 25.)

TARDIOLI, D., MOSTEO, A., RIAZUELO, L., VILLARROEL, J., AND MONTANO, L. 2010. En-
forcing Network Connectivity in Robot Team Missions. The International Journal of Robotics
Research 29, 4 (April), 460–480. (Cited on pages 11, 88 y 89.)

TARDIOLI, D., RIAZUELO, L., SECO, T., ESPELOSÍN, J., LALANA, J., VILLARROEL, J. L., AND

MONTANO, L. 2017. A robotized dumper for debris removal in tunnels under construction. In
ROBOT 2017: Third Iberian Robotics Conference. Advances in Intelligent Systems and Computing,
A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira, Eds. Vol. 1. (Cited on page 11.)

TARDIOLI, D., SICIGNANO, D., RIAZUELO, L., ROMEO, A., VILLARROEL, J. L., AND MONTANO,
L. 2016. Robot teams for intervention in confined and structured environments. Journal of Field
Robotics 33, 6, 765–801. (Cited on pages 10 y 85.)

TARDIOLI, D., SICIGNANO, D., AND VILLARROEL, J. 2014. A wireless multi-hop protocol for real-
time applications. Computer Communications Available online 30 August 2014, ISSN 0140-3664,
http://dx.doi.org/10.1016/j.comcom.2014.08.012. (Cited on pages 89 y 94.)

TARDIOLI, D. AND VILLARROEL, J. L. 2007. Real time communications over 802.11: Rt-wmp.
In 2007 IEEE International Conference on Mobile Adhoc and Sensor Systems. 1–11. (Cited on
page 95.)

TARDIOLI, D. AND VILLARROEL, J. L. 2014. Odomety-less localization in tunnel-like environ-
ments (to be published). In IEEE International Conference on Autonomous Robot Systems and
Competitions (IEEE ICARSC). IEEE. (Cited on page 92.)

135

Bibliography

TENORTH, M. AND BEETZ, M. 2009. Knowrob - knowledge processing for autonomous personal
robots. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 4261–4266.
(Cited on page 118.)

TENORTH, M. AND BEETZ, M. 2013. KnowRob – A Knowledge Processing Infrastructure for
Cognition-enabled Robots. Part 1: The KnowRob System. Int. Journal of Robotics Research 32, 5,
566 – 590. (Cited on page 64.)

TENORTH, M., PERZYLO, A. C., LAFRENZ, R., AND BEETZ, M. 2013. Representation and Ex-
change of Knowledge about Actions, Objects, and Environments in the RoboEarth Framework.
IEEE Transactions on Automation Science and Engineering (T-ASE) 10, 3, 643–651. (Cited on
pages 53, 56 y 59.)

THRUN, S. AND MONTEMERLO, M. 2006. The graph slam algorithm with applications to large-scale
mapping of urban structures. Int. J. Rob. Res. 25, 5-6 (May), 403–429. (Cited on page 87.)

TORRALBA, A. AND EFROS, A. 2011. Unbiased look at dataset bias. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE, 1521–1528. (Cited on page 29.)

TORRALBA, A., FERGUS, R., AND FREEMAN, W. T. 2008. 80 million tiny images: A large data set
for nonparametric object and scene recognition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 30, 11, 1958–1970. (Cited on page 34.)

TRIGGS, B., MCLAUCHLAN, P., HARTLEY, R., AND FITZGIBBON, A. 2000. Bundle adjustment –
A modern synthesis. In Vision Algorithms: Theory and Practice. LNCS. Springer Verlag, 298–375.
(Cited on page 32.)

TULLY, S., KANTOR, G., AND CHOSET, H. 2012. A unified bayesian framework for global localiza-
tion and slam in hybrid metric/topological maps. The International Journal of Robotics Research.
(Cited on page 87.)

TULLY, S., KANTOR, G., CHOSET, H., AND WERNER, F. 2009. A multi-hypothesis topological
slam approach for loop closing on edge-ordered graphs. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on. 4943–4948. (Cited on page 87.)

VASUDEVAN, S. AND SIEGWART, R. 2008. Bayesian space conceptualization and place classification
for semantic maps in mobile robotics. Robotics and Autonomous Systems 56, 6, 522–537. (Cited
on page 55.)

VIOLA, P., JONES, M. J., AND SNOW, D. 2005. Detecting pedestrians using patterns of motion and
appearance. Int. J. Comput. Vision 63, 2 (July), 153–161. (Cited on page 75.)

W3C. 2009. OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax.
World Wide Web Consortium. http://www.w3.org/TR/2009/REC-owl2-syntax-20091027. (Cited
on page 56.)

WAIBEL, M., BEETZ, M., D’ANDREA, R., JANSSEN, R., TENORTH, M., CIVERA, J., ELFRING, J.,
GALVEZ-LOPEZ, D., HAUSSERMANN, K., MONTIEL, J. M. M., PERZYLO, A., SCHIESSLE, B.,
ZWEIGLE, O., AND VAN DE MOLENGRAFT, R. 2010. Roboearth - a world wide web for robots.
IEEE Robotics and Automation Magazine. Accepted for publication. (Cited on pages 23, 30, 53,
117 y 121.)

WALKER, V. 2009. Idaho national laboratory. In INL Communications & Public Affairs. (Cited on
page 87.)

136

Bibliography

WANG, C., THORPE, C. E., THRUN, S., HEBERT, M., AND DURRANT-WHYTE, H. F. 2007. Si-
multaneous localization, mapping and moving object tracking. I. J. Robotic Res. 26, 9, 889–916.
(Cited on page 75.)

WANG, Z., JENSFELT, P., AND FOLKESSON, J. 2015. Multi-scale conditional transition map: Mod-
eling spatial-temporal dynamics of human movements with local and long-term correlations. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 6244–6251.
(Cited on page 75.)

WANG, Z., JENSFELT, P., AND FOLKESSON, J. 2016. Building a human behavior map from lo-
cal observations. In 2016 25th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN). 64–70. (Cited on page 75.)

WENDEL, A., MAURER, M., GRABER, G., POCK, T., AND BISCHOF, H. 2012. Dense reconstruc-
tion on-the-fly. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 1450–1457. (Cited on page 30.)

WHITE, C., HIRANANDANI, D., OLSTAD, C. S., BUHAGIAR, K., GAMBIN, T., AND CLARK, C. M.
2010. The malta cistern mapping project: Underwater robot mapping and localization within an-
cient tunnel systems. J. Field Robot. 27, 4 (July), 399–411. (Cited on page 87.)

WILLIAMS, B., KLEIN, G., AND REID, I. 2007. Real-time SLAM relocalisation. In IEEE 11th
International Conference on Computer Vision. 1:8. (Cited on pages 14 y 19.)

WILLOW GARAGE. 2011. Household objects database. Available at http://www.ros.org/
wiki/household_objects. (Cited on page 117.)

WONG, L. L., KAELBLING, L. P., AND LOZANO-PÉREZ, T. 2013. Manipulation-based active search
for occluded objects. In IEEE Int. Conf. on Robotics and Automation (ICRA). Karlsruhe, Germany,
2814–2819. (Cited on page 55.)

XIAO, S., WANG, Z., AND FOLKESSON, J. 2015. Unsupervised robot learning to predict person
motion. In 2015 IEEE International Conference on Robotics and Automation (ICRA). 691–696.
(Cited on page 75.)

YAMAUCHI, B. 1997. A frontier-based approach for autonomous exploration. In Proc. of the IEEE
Int. Symposium on Computational Intelligence, Robotics and Automation. 146–151. (Cited on
page 60.)

YANG, J., JIN, Z., YU YANG, J., ZHANG, D., AND FRANGI, A. F. 2004. Essence of kernel fisher
discriminant: {KPCA} plus {LDA}. Pattern Recognition 37, 10, 2097 – 2100. (Cited on page 94.)

YANG, Y. AND RAMANAN, D. 2011. Articulated pose estimation with flexible mixtures-of-parts. In
The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado
Springs, CO, USA, 20-25 June 2011. 1385–1392. (Cited on page 75.)

ZENDER, H., MARTÍNEZ MOZOS, O., JENSFELT, P., KRUIJFF, G. J. M., AND BURGARD, W.
2008. Conceptual spatial representations for indoor mobile robots. Robotics and Autonomous
Systems 56, 6 (June), 493–502. (Cited on pages 14, 55 y 87.)

ZHOU, K., ZILLICH, M., ZENDER, H., AND VINCZE, M. 2012. Web mining driven object locality
knowledge acquisition for efficient robot behavior. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS). 3962–3969. (Cited on page 55.)

ZHUANG, F., ZUPAN, C., CHAO, Z., AND YANZHENG, Z. 2008. A cable-tunnel inspecting robot for
dangerous environment. 5, 3, 243–248. (Cited on page 87.)

137

http://www.ros.org/wiki/household_objects
http://www.ros.org/wiki/household_objects

Bibliography

ZLOT, R. AND BOSSE, M. 2014. Efficient Large-Scale Three-Dimensional Mobile Mapping for
Underground Mines. Field Robotics, Journal of 31, 758–779. (Cited on page 87.)

138

	tesisRiazueloLatasLuisMiguel.pdf
	List of Figures
	List of Tables
	1 Introduction
	1.1 Service Robotics: Concept and Architecture
	1.2 Contributions and organization of the thesis
	1.2.1 Contributions
	1.2.2 Related contributions
	1.2.3 Open-Source Software
	1.2.4 Videos

	2 Towards Semantic SLAM using a Monocular Camera
	2.1 Introduction
	2.2 Related work
	2.3 Notation and general overview
	2.4 Object model
	2.5 Object recognition
	2.6 Monocular SLAM
	2.6.1 Standard Mode EKF
	2.6.2 State Augmentation with Past Camera Pose
	2.6.3 Object Insertion
	2.6.4 Relocalization

	2.7 Experimental results
	2.7.1 Desktop Environment
	2.7.2 Hospital Room Environment –RoboEarth Project

	2.8 Discussion

	3 A Cloud framework for Cooperative Tracking And Mapping
	3.1 Introduction
	3.2 Related work
	3.3 A discussion on the SLAM components
	3.4 The SLAM formulation as Tracking and Mapping
	3.4.1 Mapping
	3.4.2 Tracking
	3.4.3 Relocation
	3.4.4 Place recognition and ego-location
	3.4.5 Map fusion

	3.5 C2TAM: A SLAM in the Cloud
	3.5.1 Mapping as a Cloud Service
	3.5.2 Tracking as a client in the robot
	3.5.3 Relocation as a client in the robot
	3.5.4 Place recognition and ego-location in two steps
	3.5.5 Map fusion as a Cloud service

	3.6 Experimental results
	3.6.1 Cost and Bandwidth Analysis
	3.6.2 Relocation in Multiple Maps
	3.6.3 Overlapping map fusion
	3.6.4 Cooperative SLAM

	3.7 Discussion

	4 Semantic Mapping System: A Cloud Enabled Knowledge-Based Approach
	4.1 Introduction
	4.2 Related Work
	4.3 System overview
	4.4 Action Recipes for Active Perception Tasks
	4.4.1 SemanticMapping Action Recipe
	4.4.2 ObjectSearch Action Recipe

	4.5 Robot Capabilities for Active Perception
	4.6 Reasoning about Object Locations
	4.7 Experiments
	4.7.1 Real-world experiments
	4.7.2 Simulation Experiments
	4.7.3 Performance Improvements

	4.8 Discussion

	5 Semantic Visual SLAM in Populated Environments
	5.1 Introduction
	5.2 Related work
	5.3 System Description
	5.3.1 Frontend process
	5.3.2 Backend process
	5.3.3 Camera Relocation
	5.3.4 People detection and human activity layer

	5.4 Experiments
	5.5 Discussion

	6 Service robotics in confined and structured environments
	6.1 Introduction
	6.2 Related Work
	6.2.1 Challenges

	6.3 System Description
	6.3.1 Overview
	6.3.2 Localization and Map Building
	6.3.3 Navigation and obstacle avoidance
	6.3.4 Recognition of Semantic Features
	6.3.5 Communication module

	6.4 Deployment Planning and Navigation
	6.5 Experiments
	6.5.1 Simulations
	6.5.2 Field experiments

	6.6 Lessons learned
	6.6.1 Localization
	6.6.2 Navigation
	6.6.3 Semantic feature recognition
	6.6.4 Communication

	6.7 Discussion

	7 Conclusions
	7.1 Future work

	8 Conclusiones
	8.1 Trabajo futuro

	A Creating and using RoboEarth object models
	A.1 Introduction
	A.2 Related work
	A.3 Recording arbitrary objects
	A.4 Database
	A.5 Object detection and pose estimation
	A.5.1 RGB camera
	A.5.2 Kinect camera

	A.6 Conclusion

	B Real-Time 3D Reconstruction using the Cloud
	B.1 Introduction
	B.2 System overview
	B.2.1 Client-side
	B.2.2 Server-side

	B.3 Experimental results
	B.4 Conclusions

	Bibliography

