113,044 research outputs found

    Multimodal Network Alignment

    Full text link
    A multimodal network encodes relationships between the same set of nodes in multiple settings, and network alignment is a powerful tool for transferring information and insight between a pair of networks. We propose a method for multimodal network alignment that computes a matrix which indicates the alignment, but produces the result as a low-rank factorization directly. We then propose new methods to compute approximate maximum weight matchings of low-rank matrices to produce an alignment. We evaluate our approach by applying it on synthetic networks and use it to de-anonymize a multimodal transportation network.Comment: 14 pages, 6 figures, Siam Data Mining 201

    Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

    Full text link
    We introduce a model for bidirectional retrieval of images and sentences through a multi-modal embedding of visual and natural language data. Unlike previous models that directly map images or sentences into a common embedding space, our model works on a finer level and embeds fragments of images (objects) and fragments of sentences (typed dependency tree relations) into a common space. In addition to a ranking objective seen in previous work, this allows us to add a new fragment alignment objective that learns to directly associate these fragments across modalities. Extensive experimental evaluation shows that reasoning on both the global level of images and sentences and the finer level of their respective fragments significantly improves performance on image-sentence retrieval tasks. Additionally, our model provides interpretable predictions since the inferred inter-modal fragment alignment is explicit

    Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment

    Full text link
    Ren et al. recently introduced a method for aggregating multiple decision trees into a strong predictor by interpreting a path taken by a sample down each tree as a binary vector and performing linear regression on top of these vectors stacked together. They provided experimental evidence that the method offers advantages over the usual approaches for combining decision trees (random forests and boosting). The method truly shines when the regression target is a large vector with correlated dimensions, such as a 2D face shape represented with the positions of several facial landmarks. However, we argue that their basic method is not applicable in many practical scenarios due to large memory requirements. This paper shows how this issue can be solved through the use of quantization and architectural changes of the predictor that maps decision tree-derived encodings to the desired output.Comment: BMVC Newcastle 201
    corecore