82 research outputs found

    Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies

    Get PDF
    This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance

    Millimeter-wave Communication and Radar Sensing — Opportunities, Challenges, and Solutions

    Get PDF
    With the development of communication and radar sensing technology, people are able to seek for a more convenient life and better experiences. The fifth generation (5G) mobile network provides high speed communication and internet services with a data rate up to several gigabit per second (Gbps). In addition, 5G offers great opportunities of emerging applications, for example, manufacture automation with the help of precise wireless sensing. For future communication and sensing systems, increasing capacity and accuracy is desired, which can be realized at millimeter-wave spectrum from 30 GHz to 300 GHz with several tens of GHz available bandwidth. Wavelength reduces at higher frequency, this implies more compact transceivers and antennas, and high sensing accuracy and imaging resolution. Challenges arise with these application opportunities when it comes to realizing prototype or demonstrators in practice. This thesis proposes some of the solutions addressing such challenges in a laboratory environment.High data rate millimeter-wave transmission experiments have been demonstrated with the help of advanced instrumentations. These demonstrations show the potential of transceiver chipsets. On the other hand, the real-time communication demonstrations are limited to either low modulation order signals or low symbol rate transmissions. The reason for that is the lack of commercially available high-speed analog-to-digital converters (ADCs); therefore, conventional digital synchronization methods are difficult to implement in real-time systems at very high data rates. In this thesis, two synchronous baseband receivers are proposed with carrier recovery subsystems which only require low-speed ADCs [A][B].Besides synchronization, high-frequency signal generation is also a challenge in millimeter-wave communications. The frequency divider is a critical component of a millimeter-wave frequency synthesizer. Having both wide locking range and high working frequencies is a challenge. In this thesis, a tunable delay gated ring oscillator topology is proposed for dual-mode operation and bandwidth extension [C]. Millimeter-wave radar offers advantages for high accuracy sensing. Traditional millimeter-wave radar with frequency-modulated continuous-wave (FMCW), or continuous-wave (CW), all have their disadvantages. Typically, the FMCW radar cannot share the spectrum with other FMCW radars.\ua0 With limited bandwidth, the number of FMCW radars that could coexist in the same area is limited. CW radars have a limited ambiguous distance of a wavelength. In this thesis, a phase-modulated radar with micrometer accuracy is presented [D]. It is applicable in a multi-radar scenario without occupying more bandwidth, and its ambiguous distance is also much larger than the CW radar. Orthogonal frequency-division multiplexing (OFDM) radar has similar properties. However, its traditional fast calculation method, fast Fourier transform (FFT), limits its measurement accuracy. In this thesis, an accuracy enhancement technique is introduced to increase the measurement accuracy up to the micrometer level [E]

    A Low-Voltage 77-GHz Automotive Radar Chipset

    Get PDF
    Index Terms -Automotive radar, millimeter-wave receivers and transmitters, millimeter-wave imaging, low-noise amplifiers, power amplifiers, monolithic inductors and transformers

    A Direct Carrier I/Q Modulator for High-Speed Communication at D-Band Using 130 nm SiGe BiCMOS Technology

    Get PDF
    This paper presents a 110-170 GHz direct conversion I/Q modulator realized in 130 nm SiGe BiCMOS technology with ft/fmax values of 250 GHz/ 370 GHz. The design is based on double-balanced Gilbert mixer cells with on-chip quadrature LO phase shifter and RF balun. In single-sideband operation, the modulator exhibits up to 9.5 dB conversion gain and has measured 3 dB IF bandwidth of 12 GHz. The measured image rejection ratio and LO to RF isolation are as high as 20 dB and 31 dB respectively. Meas-ured input P1dB is -17 dBm at 127 GHz output. The DC power con-sumption is 53 mW. The active chip area is 620 ÎĽmĂ— 480 ÎĽm in-cluding the RF and LO baluns. The circuit is capable of transmit-ting more than 12 Gbit/s QPSK signal

    A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas

    Get PDF
    In this paper, we present the receiver and the on-chip antenna sections of a fully integrated 77-GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver section of the chip includes the complete down-conversion path comprising low-noise amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-chip dipole antennas. The signal combining is performed using a novel distributed active combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52-GHz VCO is routed to different elements and can be phase shifted locally by the phase rotators. A silicon lens on the backside is used to reduce the loss due to the surface-wave power of the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a noise figure of 6.0 dB. Each of the four receive paths has a gain of 37 dB and a noise figure of 8.0 dB. Each on-chip antenna has a gain of +2 dBi

    Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    Full text link
    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that might benefit from wireless techniques. The objective is to provide a common platform for research and development in order to optimize effectiveness and cost, with the aim of designing and testing wireless demonstrators for large instrumentation systems

    Terahertz Sources, Detectors, and Transceivers in Silicon Technologies

    Get PDF
    With active devices lingering on the brink of activity and every passive device and interconnection on chip acting as potential radiator, a paradigm shift from “top-down” to “bottom-up” approach in silicon terahertz (THz) circuit design is clearly evident as we witness orders-of-magnitude improvements of silicon THz circuits in terms of output power, phase noise, and sensitivity since their inception around 2010. That is, the once clear boundary between devices, circuits, and function blocks is getting blurrier as we push the devices toward their limits. And when all else fails to meet the system requirements, which is often the case, a logical step forward is to scale these THz circuits to arrays. This makes a lot of sense in the terahertz region considering the relatively efficient on-chip THz antennas and the reduced size of arrays with half-wavelength pitch. This chapter begins with the derivation of conditions for maximizing power gain of active devices. Discussions of circuit topologies for THz sources, detectors, and transceivers with emphasis on their efficacy and scalability ensue, and this chapter concludes with a brief survey of interface options for channeling THz energy out of the chip

    A QPSK 110-Gb/s Polarization-Diversity MIMO Wireless Link with a 220-255 GHz Tunable LO in a SiGe HBT Technology

    Get PDF
    In this article, a polarization-diversity technique multiple-input multiple-output (MIMO) is demonstrated to double the spectral efficiency of a line-of-sight quadrature phase-shift keying (QPSK) wireless link at 220-255 GHz with a pair of highly integrated single-chip transmitter (TX) and receiver (RX) front-end modules in 0.13-µ {m SiGe HBT technology ( fTmax=350 /550 GHz) exploiting only a low-cost wire-bonded chip-on-board packaging solution for high-speed baseband (BB) signals. Both TX and RX chips accommodate two independent fundamentally operated direct-conversion in-phase and quadrature (IQ) paths with separately tunable on-chip multiplier-based ( × 16 ) local oscillator (LO) generation paths driven from a single external highly stable 13.75-16-GHz frequency synthesizer. On the RX side, a mixer-first architecture is implemented to improve the symmetry between upper and lower sidebands (USB and LSB) at the cost of an increased noise figure (NF), whereas, on the TX chip, each upconversion mixer is followed by a gain-bandwidth (BW)-limited four-stage power amplifier (PA) to support the link budget at a meter distance. Next, two independent IQ data streams from the upconversion/downconversion paths on each chip are directed to a common lens-coupled broadband on-chip slot antenna system. This way, two orthogonal circular polarizations [left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP)] can be transmitted with sufficient isolation for link operation without the need for a high-speed depolarizer in the BB for any relative orientation between TX and RX modules. The antenna combined with a 9-mm diameter Si-lens provides a directivity of 23.5-27 dBi at 210-270 GHz for each of the modules. This, along with a peak radiated power of 7.5 dBm/ch from the TX module, and the cascaded conversion gain (CG)/single sideband (SSB) NF of 18/18 dB/ch for the RX module followed by a broadband amplifier (PSPL5882) from Tektronix allowed successful transmission of two independent QPSK data streams with an aggregate speed of 110 and 80 Gb/s over 1 and 2 m, respectively, at 230 GHz with a board-level limited channel BB bandwidth (BW) of 13.5 GHz. © 1963-2012 IEEE
    • …
    corecore