199 research outputs found

    A Survey of Beam Management for mmWave and THz Communications Towards 6G

    Full text link
    Communication in millimeter wave (mmWave) and even terahertz (THz) frequency bands is ushering in a new era of wireless communications. Beam management, namely initial access and beam tracking, has been recognized as an essential technique to ensure robust mmWave/THz communications, especially for mobile scenarios. However, narrow beams at higher carrier frequency lead to huge beam measurement overhead, which has a negative impact on beam acquisition and tracking. In addition, the beam management process is further complicated by the fluctuation of mmWave/THz channels, the random movement patterns of users, and the dynamic changes in the environment. For mmWave and THz communications toward 6G, we have witnessed a substantial increase in research and industrial attention on artificial intelligence (AI), reconfigurable intelligent surface (RIS), and integrated sensing and communications (ISAC). The introduction of these enabling technologies presents both open opportunities and unique challenges for beam management. In this paper, we present a comprehensive survey on mmWave and THz beam management. Further, we give some insights on technical challenges and future research directions in this promising area.Comment: accepted by IEEE Communications Surveys & Tutorial

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    Power allocation in a QoS-aware cellular-based vehicular communication system.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.The task of a driver assistance system is to monitor the surrounding environment of a vehicle and provide an appropriate response in the case of detecting any hazardous condition. Such operation requires real-time processing of a large amount of information, which is gathered by a variety of sensors. Vehicular communication in future vehicles can pave the way for designing highly efficient and cost-effective driver assistance systems based on collaborative and remote processing solutions. The main transmission links of vehicular communication systems are vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). In this research, a cellular-based vehicular communication system is proposed where Device-to-device (D2D) communication links are considered for establishing V2V links, and cellular communication links are employed for V2I links. D2D communication is one of the enablers of the next generation of cellular networks for improving spectrum and power utilization. D2D communication allows direct communication between user equipments within a cellular system. Nevertheless, implementing D2D communication should not defect nearby ongoing communication services. As a result, interference management is a significant aspect of designing D2D communication systems. Communication links in a cellular network are supposed to support a required level of data rates. The capacity of a communication channel is directly proportional to the energy of a transmitted signal, and in fact, achieving the desired level of Quality of Service (QoS) requires careful control of transmission power for all the radio sources within a system. Among different methods that are recommended for D2D communications, in-band D2D can offer better control over power transmission sources. In an underlay in-band D2D communication system, D2D user equipments (DUEs) usually reuse the cellular uplink (UL) spectrum. In such a system, the level of interference can effectively be managed by controlling the level of power that is transmitted by user equipments. To effectively perform the interference management, knowledge of the channel state information is required. However, as a result of the distributed nature of DUEs, such information is not fully attainable in a practical D2D system. Therefore, statistical methods are employed to find boundaries on the allocated transmission powers for achieving sufficient spectral efficiencies in V2I and V2V links without considering any prior knowledge on vehicles’ locations or the channel state information. Furthermore, the concepts of massive multiple-input multiple-output and underlay D2D communication sharing the uplink spectrum of a cellular system are used to minimize the interference effect

    Efficient low-complexity data detection for multiple-input multiple-output wireless communication systems

    Get PDF
    The tradeoff between the computational complexity and system performance in multipleinput multiple-output (MIMO) wireless communication systems is critical to practical applications. In this dissertation, we investigate efficient low-complexity data detection schemes from conventional small-scale to recent large-scale MIMO systems, with the targeted applications in terrestrial wireless communication systems, vehicular networks, and underwater acoustic communication systems. In the small-scale MIMO scenario, we study turbo equalization schemes for multipleinput multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) and multipleinput multiple-output single-carrier frequency division multiple access (MIMO SC-FDMA) systems. For the MIMO-OFDM system, we propose a soft-input soft-output sorted QR decomposition (SQRD) based turbo equalization scheme under imperfect channel estimation. We demonstrate the performance enhancement of the proposed scheme over the conventional minimum mean-square error (MMSE) based turbo equalization scheme in terms of system bit error rate (BER) and convergence performance. Furthermore, by jointly considering channel estimation error and the a priori information from the channel decoder, we develop low-complexity turbo equalization schemes conditioned on channel estimate for MIMO systems. Our proposed methods generalize the expressions used for MMSE and MMSE-SQRD based turbo equalizers, where the existing methods can be viewed as special cases. In addition, we extend the SQRD-based soft interference cancelation scheme to MIMO SC-FDMA systems where a multi-user MIMO scenario is considered. We show an improved system BER performance of the proposed turbo detection scheme over the conventional MMSE-based detection scheme. In the large-scale MIMO scenario, we focus on low-complexity detection schemes because computational complexity becomes critical issue for massive MIMO applications. We first propose an innovative approach of using the stair matrix in the development of massive MIMO detection schemes. We demonstrate the applicability of the stair matrix through the study of the convergence conditions. We then investigate the system performance and demonstrate that the convergence rate and the system BER are much improved over the diagonal matrix based approach with the same system configuration. We further investigate low-complexity and fast processing detection schemes for massive MIMO systems where a block diagonal matrix is utilized in the development. Using a parallel processing structure, the processing time can be much reduced. We investigate the convergence performance through both the probability that the convergence conditions are satisfied and the convergence rate, and evaluate the system performance in terms of computational complexity, system BER, and the overall processing time. Using our proposed approach, we extend the block Gauss-Seidel method to large-scale array signal detection in underwater acoustic (UWA) communications. By utilizing a recently proposed computational efficient statistic UWA channel model, we show that the proposed scheme can effectively approach the system performance of the original Gauss-Seidel method, but with much reduced processing delay

    Beamforming management and beam training in 5G system

    Get PDF
    Massive multiple-input-multiple-output (MIMO) antenna system with beamforming technique is an integral part of upcoming 5G new radio (NR) system. For the upcoming deployment of 5G NR system in both stand-alone (SA) and non-stand-alone (NSA) structure, beamforming plays an important role to achieve its key features and meet the estimated requirement. To be employed with massive MIMO antenna structure, beamforming will allow 5G system to serve several users at a time with better throughput and spectral usage. Beamforming will also minimize the path loss due to high susceptibility of millimetre wave and provide beamforming gain. For a wide range of benefit scheme, beamforming is currently a hot topic regarding the deployment of 5G. With the advantage of both analog and digital beamforming, hybrid beamforming structure can provide better system benchmark performance in terms of cost and flexibility. Switched beam training and adaptive beam training approaches and algorithms are developed in order to reduce training time, signalling overhead and misdetection probability. Some of the approaches and algorithm are addressed in this thesis. Beamforming management ensures the initiation and sustainability of the established link between transmitter and receiver through different processes. Beam tracking helps to keep track of the receiver devices during mobility. As beamforming is related to antenna configuration, near-field spherical wave front incident problem was ignored, and all the references and examples presented in this topic was obtained with a far-field propagation perspective. To avoid mutual coupling between antenna elements and grating lobe problems in antenna radiation pattern, each element is separated by half of the wavelength. This thesis paper aims to provide a broader view into beamforming scenario, starting from the basics of beamforming to training the beams and management aspects in the hardware part of 5G structure. Another goal is to present the necessity of beamforming in a 5G system by stating different benefits scheme such as spatial diversity, interference suppression, energy efficiency, spectral efficiency and so on. These benefits are justified by evaluating various research paper and MATLAB simulations

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G

    Get PDF
    Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays with various beamforming technologies in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. This paper aims to overview the field of antenna array enabled space/air/ground communications and networking. The technical potentials and challenges of antenna array enabled space/air/ground communications and networking are presented first. Subsequently, the antenna array structures and designs are discussed. We then discuss various emerging technologies facilitated by antenna arrays to meet the new communication requirements of space/air/ground communication systems. Enabled by these emerging technologies, the distinct characteristics, challenges, and solutions for space communications, airborne communications, and ground communications are reviewed. Finally, we present promising directions for future research in antenna array enabled space/air/ground communications and networking

    LiDAR aided simulation pipeline for wireless communication in vehicular traffic scenarios

    Get PDF
    Abstract. Integrated Sensing and Communication (ISAC) is a modern technology under development for Sixth Generation (6G) systems. This thesis focuses on creating a simulation pipeline for dynamic vehicular traffic scenarios and a novel approach to reducing wireless communication overhead with a Light Detection and Ranging (LiDAR) based system. The simulation pipeline can be used to generate data sets for numerous problems. Additionally, the developed error model for vehicle detection algorithms can be used to identify LiDAR performance with respect to different parameters like LiDAR height, range, and laser point density. LiDAR behavior on traffic environment is provided as part of the results in this study. A periodic beam index map is developed by capturing antenna azimuth and elevation angles, which denote maximum Reference Signal Receive Power (RSRP) for a simulated receiver grid on the road and classifying areas using Support Vector Machine (SVM) algorithm to reduce the number of Synchronization Signal Blocks (SSBs) that are needed to be sent in Vehicle to Infrastructure (V2I) communication. This approach effectively reduces the wireless communication overhead in V2I communication

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements
    • …
    corecore