375 research outputs found

    Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid

    Full text link
    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved

    Low-complexity iterative receiver design for high spectral efficiency communication systems

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.With the rapid development of the modern society, people have an increasing demand of higher data rate. Due to the limited available bandwidth, how to improve the spectral efficiency becomes a key issue in the next generation wireless systems. Recent researches show that, compared to the conventional orthogonal communication systems, the non-orthogonal system can transmit more information with the same resources by introducing non-orthogonality. The non-orthogonal communication systems can be achieved by using faster-than-Nyquist (FTN) signaling to transmit more data symbols in the same time period. On the other hand, by designing appropriate codebook, the sparse code multiple access (SCMA) system can support more users while preserving the same resource elements. Utilisation of these new technologies leads to challenge in receiver design, which becomes severer in complex channel environments. This thesis studies the receiver design for high spectral efficiency communication systems. The main contributions are as follows: 1. A hybrid message passing algorithm is proposed for faster-than-Nyquist, which solves the problem of joint data detection and channel estimation when the channel coefficients are unknown. To fully exploit the known ISI imposed by FTN signaling, the interference induced by FTN signaling and channel fading are intentionally separated. 2. Gaussian message passing and variational inference based estimation algorithms are proposed for faster-than-Nyquist signaling detection in doubly selective channels. Iterative receivers using mean field and Bethe approximations based on variational inference framework are proposed. Moreover, a novel Gaussian message passing based FTN signaling detection algorithm is proposed. 3. An energy minimisation based SCMA decoding algorithm is proposed and convergence analysis of the proposed algorithm is derived. Following optimisation theory and variational free energy framework, the posterior distribution of data symbol is derived in closed form. Then, the convergence property of the proposed algorithm is analysed. 4. A stretched factor graph is designed for MIMO-SCMA system in order to reduce the receiver complexity. Then, a convergence guaranteed message passing algorithm is proposed by convexifying the Bethe free energy. Finally, cooperative communication methods based on belief consensus and alternative direction method of multipliers are proposed. 5. A low complexity detection algorithm is proposed for faster-than-Nyquist SCMA system, which enables joint channel estimation, decoding and user activity detection in grant-free systems. The combination of FTN signaling with SCMA to further enhance the spectral efficiency is first considered. Then, a merging belief propagation and expectation propagation algorithm is proposed to estimate channel state and perform SCMA decoding

    Advanced transceivers for spectrally-efficient communications

    Get PDF
    In this thesis, we will consider techniques to improve the spectral efficiency of digital communication systems, operating on the whole transceiver scheme. First, we will focus on receiver schemes having detection algorithms with a complexity constraint. We will optimize the parameters of the reduced detector with the aim of maximizing the achievable information rate. Namely, we will adopt the channel shortening technique. Then, we will focus on a technique that is getting very popular in the last years (although presented for the first time in 1975): faster-than-Nyquist signaling, and its extension which is time packing. Time packing is a very simple technique that consists in introducing intersymbol interference on purpose with the aim of increasing the spectral efficiency of finite order constellations. Finally, in the last chapters we will combine all the presented techniques, and we will consider their application to satellite channels.Comment: PhD Thesi

    Deep Learning-based Auto-encoder for Time-offset Faster-than-Nyquist Downlink NOMA with Timing Errors and Imperfect CSI

    Full text link
    We examine encoding and decoding of transmitted sequences for the downlink time-offset faster than Nyquist signaling non-orthogonal multiple access NOMA (T-NOMA) channel. We employ a previously proposed singular value decomposition (SVD)-based scheme as a benchmark. While this SVD scheme provides reliable communication, our findings reveal that it is not optimal in terms of bit error rate (BER). Additionally, the SVD is sensitive to timing offset errors, and its time complexity increases quadratically with the sequence length. We propose a convolutional neural network (CNN) auto-encoder (AE) for encoding and decoding with linear time complexity. We explain the design of the encoder and decoder architectures and the training criteria. By examining several variants of the CNN AE, we show that it can achieve an excellent trade-off between performance and complexity. The proposed CNN AE surpasses the SVD method by approximately 2 dB in a T-NOMA system with no timing offset errors or channel state information estimation errors. In the presence of channel state information (CSI) error variance of 1%\% and uniform timing error at ±\pm4\% of the symbol interval, the proposed CNN AE provides up to 10 dB SNR gain over the SVD method. We also propose a novel modified training objective function consisting of a linear combination of the traditionally used cross-entropy (CE) loss function and a closed-form expression for the bit error rate (BER) called the Q-loss function. Simulations show that the modified loss function achieves SNR gains of up to 1 dB over the CE loss function alone

    Successive interference cancellation in multistream faster-than-Nyquist Signaling

    Full text link
    In earlier work we have extended Mazo's concept of faster-than-Nyquist signaling to pulse trains that modulate adjacent subcarriers, a method we called two dimensional Mazo signaling. The signal processing is similar to orthogonal frequency division multiplex (OFDM) transmission. Despite pulses that are faster than the Nyquist limit and subcarriers that significantly overlap, the transmission achieves the isolated pulse error performance. In this paper we review the method and test a receiver based on successive interference cancellation. It virtually achieves the matched filter bound

    Machine Learning Approaches for Faster-than-Nyquist (FTN) Signaling Detection

    Get PDF
    There will be a significant demand on having a fast and reliable wireless communication systems in future. Since bandwidth and bit rate are tightly connected to each other, one approach will be increasing the bandwidth. However, the number of wireless devices are growing exponentially, and we don't have infinite bandwidth to allocate. On the other hand, increasing the bit rate for a given bandwidth, i.e., improving the spectral efficiency (SE), is another promising approach to have a fast and reliable wireless communication systems. Faster-than-Nyquist (FTN) is one of the candidates to improve the SE while this improvement comes at the expense of complexity of removing the introduced inter-symbol interference (ISI). In this thesis, we propose two algorithms to decrease the computational complexity regarding removing the ISI in FTN signaling. In the first main contribution of the thesis, we introduce an equivalent FTN signaling model based on orthonormal basis pulses to transform the non-orthogonal FTN signaling transmission to an orthogonal transmission carrying real-number constellations. Then we propose a deep learning (DL) based algorithm to decrease the computational complexity of the known list sphere decoding (LSD) algorithm. In essence, the LSD is one of the algorithm that can be used for the detection process of the FTN signaling; however, at huge computational complexity. Simulation results show the proposed DL-based LSD reduces computational complexity by orders of magnitude while maintaining close-to-optimal performance. In the second main contribution of the thesis, we view the FTN signaling detection problem as a classification problem, where the received FTN signaling signal viewed as an unlabeled class sample that is an element of a set of all potential classes samples. Assuming receiving NN samples, conventional detectors search over an NN-dimensional space which is computationally expensive especially for large value of NN. However, we propose a low-complexity classifier (LCC) that performs the classification in NpN_p dimensional space where NpNN_p\ll N. The proposed LCC's ability to balance performance and complexity is demonstrated by simulation results

    Design tradeoffs and challenges in practical coherent optical transceiver implementations

    Get PDF
    This tutorial discusses the design and ASIC implementation of coherent optical transceivers. Algorithmic and architectural options and tradeoffs between performance and complexity/power dissipation are presented. Particular emphasis is placed on flexible (or reconfigurable) transceivers because of their importance as building blocks of software-defined optical networks. The paper elaborates on some advanced digital signal processing (DSP) techniques such as iterative decoding, which are likely to be applied in future coherent transceivers based on higher order modulations. Complexity and performance of critical DSP blocks such as the forward error correction decoder and the frequency-domain bulk chromatic dispersion equalizer are analyzed in detail. Other important ASIC implementation aspects including physical design, signal and power integrity, and design for testability, are also discussed.Fil: Morero, Damián Alfonso. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; ArgentinaFil: Castrillon, Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Aguirre, Alejandro. ClariPhy Argentina S.A.; ArgentinaFil: Hueda, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Agazzi, Oscar Ernesto. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; Argentin

    On distributed coding, quantization of channel measurements and faster-than-Nyquist signaling

    Get PDF
    This dissertation considers three different aspects of modern digital communication systems and is therefore divided in three parts. The first part is distributed coding. This part deals with source and source- channel code design issues for digital communication systems with many transmitters and one receiver or with one transmitter and one receiver but with side information at the receiver, which is not available at the transmitter. Such problems are attracting attention lately, as they constitute a way of extending the classical point-to-point communication theory to networks. In this first part of this dissertation, novel source and source-channel codes are designed by converting each of the considered distributed coding problems into an equivalent classical channel coding or classical source-channel coding problem. The proposed schemes come very close to the theoretical limits and thus, are able to exhibit some of the gains predicted by network information theory. In the other two parts of this dissertation classical point-to-point digital com- munication systems are considered. The second part is quantization of coded chan- nel measurements at the receiver. Quantization is a way to limit the accuracy of continuous-valued measurements so that they can be processed in the digital domain. Depending on the desired type of processing of the quantized data, different quantizer design criteria should be used. In this second part of this dissertation, the quantized received values from the channel are processed by the receiver, which tries to recover the transmitted information. An exhaustive comparison of several quantization cri- teria for this case are studied providing illuminating insight for this quantizer design problem. The third part of this dissertation is faster-than-Nyquist signaling. The Nyquist rate in classical point-to-point bandwidth-limited digital communication systems is considered as the maximum transmission rate or signaling rate and is equal to twice the bandwidth of the channel. In this last part of the dissertation, we question this Nyquist rate limitation by transmitting at higher signaling rates through the same bandwidth. By mitigating the incurred interference due to the faster-than-Nyquist rates, gains over Nyquist rate systems are obtained
    corecore