320 research outputs found

    DFT-based Hybrid Beamforming Multiuser Systems: Rate Analysis and Beam Selection

    Get PDF
    This paper considers the discrete Fourier transform (DFT) based hybrid beamforming multiuser system and studies the use of analog beam selection schemes. We first analyze the uplink ergodic achievable rates of the zero-forcing (ZF) receiver and the maximum-ratio combining (MRC) receiver under Ricean fading conditions. We then examine the downlink ergodic achievable rates for the ZF and maximum-ratio transmitting (MRT) precoders. The long-term and short-term normalization methods are introduced, which utilize long-term and instantaneous channel state information (CSI) to implement the downlink power normalization, respectively. Also, approximations and asymptotic expressions of both the uplink and downlink rates are obtained, which facilitate the analog beam selection solutions to maximize the achievable rates. An exhaustive search provides the optimal results but to reduce the time-consumption, we resort to the derived rate limits and propose the second selection scheme based on the projected power of the line-of-sight (LoS) paths. We then combine the advantages of the two schemes and propose a two-step scheme that achieves near optimal performances with much less time-consumption than exhaustive search. Numerical results confirm the analytical results of the ergodic achievable rate and reveal the effectiveness of the proposed two-step method

    Radio Resource Management for New Application Scenarios in 5G: Optimization and Deep Learning

    Get PDF
    The fifth-generation (5G) New Radio (NR) systems are expected to support a wide range of emerging applications with diverse Quality-of-Service (QoS) requirements. New application scenarios in 5G NR include enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-reliable low-latency communications (URLLC). New wireless architectures, such as full-dimension (FD) massive multiple-input multiple-output (MIMO) and mobile edge computing (MEC) system, and new coding scheme, such as short block-length channel coding, are envisioned as enablers of QoS requirements for 5G NR applications. Resource management in these new wireless architectures is crucial in guaranteeing the QoS requirements of 5G NR systems. The traditional optimization problems, such as subcarriers and user association, are usually non-convex or Non-deterministic Polynomial-time (NP)-hard. It is time-consuming and computing-expensive to find the optimal solution, especially in a large-scale network. To solve these problems, one approach is to design a low-complexity algorithm with near optimal performance. In some cases, the low complexity algorithms are hard to obtain, deep learning can be used as an accurate approximator that maps environment parameters, such as the channel state information and traffic state, to the optimal solutions. In this thesis, we design low-complexity optimization algorithms, and deep learning frameworks in different architectures of 5G NR to resolve optimization problems subject to QoS requirements. First, we propose a low-complexity algorithm for a joint cooperative beamforming and user association problem for eMBB in 5G NR to maximize the network capacity. Next, we propose a deep learning (DL) framework to optimize user association, resource allocation, and offloading probabilities for delay-tolerant services and URLLC in 5G NR. Finally, we address the issue of time-varying traffic and network conditions on resource management in 5G NR

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Media-Based MIMO: A New Frontier in Wireless Communications

    Full text link
    The idea of Media-based Modulation (MBM), is based on embedding information in the variations of the transmission media (channel state). This is in contrast to legacy wireless systems where data is embedded in a Radio Frequency (RF) source prior to the transmit antenna. MBM offers several advantages vs. legacy systems, including "additivity of information over multiple receive antennas", and "inherent diversity over a static fading channel". MBM is particularly suitable for transmitting high data rates using a single transmit and multiple receive antennas (Single Input-Multiple Output Media-Based Modulation, or SIMO-MBM). However, complexity issues limit the amount of data that can be embedded in the channel state using a single transmit unit. To address this shortcoming, the current article introduces the idea of Layered Multiple Input-Multiple Output Media-Based Modulation (LMIMO-MBM). Relying on a layered structure, LMIMO-MBM can significantly reduce both hardware and algorithmic complexities, as well as the training overhead, vs. SIMO-MBM. Simulation results show excellent performance in terms of Symbol Error Rate (SER) vs. Signal-to-Noise Ratio (SNR). For example, a 4×164\times 16 LMIMO-MBM is capable of transmitting 3232 bits of information per (complex) channel-use, with SER ≃10−5 \simeq 10^{-5} at Eb/N0≃−3.5E_b/N_0\simeq -3.5dB (or SER ≃10−4 \simeq 10^{-4} at Eb/N0=−4.5E_b/N_0=-4.5dB). This performance is achieved using a single transmission and without adding any redundancy for Forward-Error-Correction (FEC). This means, in addition to its excellent SER vs. energy/rate performance, MBM relaxes the need for complex FEC structures, and thereby minimizes the transmission delay. Overall, LMIMO-MBM provides a promising alternative to MIMO and Massive MIMO for the realization of 5G wireless networks.Comment: 26 pages, 11 figures, additional examples are given to further explain the idea of Media-Based Modulation. Capacity figure adde

    Unsourced Random Massive Access with Beam-Space Tree Decoding

    Get PDF
    The core requirement of massive Machine-Type Communication (mMTC) is to support reliable and fast access for an enormous number of machine-type devices (MTDs). In many practical applications, the base station (BS) only concerns the list of received messages instead of the source information, introducing the emerging concept of unsourced random access (URA). Although some massive multiple-input multiple-output (MIMO) URA schemes have been proposed recently, the unique propagation properties of millimeter-wave (mmWave) massive MIMO systems are not fully exploited in conventional URA schemes. In grant-free random access, the BS cannot perform receive beamforming independently as the identities of active users are unknown to the BS. Therefore, only the intrinsic beam division property can be exploited to improve the decoding performance. In this paper, a URA scheme based on beam-space tree decoding is proposed for mmWave massive MIMO system. Specifically, two beam-space tree decoders are designed based on hard decision and soft decision, respectively, to utilize the beam division property. They both leverage the beam division property to assist in discriminating the sub-blocks transmitted from different users. Besides, the first decoder can reduce the searching space, enjoying a low complexity. The second decoder exploits the advantage of list decoding to recover the miss-detected packets. Simulation results verify the superiority of the proposed URA schemes compared to the conventional URA schemes in terms of error probability
    • …
    corecore