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Abstract— This paper considers the discrete Fourier transform
(DFT) based hybrid beamforming multiuser system and studies
the use of analog beam selection schemes. We first analyze the
uplink ergodic achievable rates of the zero-forcing (ZF) receiver
and the maximum-ratio combining (MRC) receiver under Ricean
fading conditions. We then examine the downlink ergodic achiev-
able rates for the ZF and maximum-ratio transmitting (MRT)
precoders. The long-term and short-term normalization methods
are introduced, which utilize long-term and instantaneous chan-
nel state information (CSI) to implement the downlink power
normalization, respectively. Also, approximations and asymptotic
expressions of both the uplink and downlink rates are obtained,
which facilitate the analog beam selection solutions to maximize
the achievable rates. An exhaustive search provides the optimal
results but to reduce the time-consumption, we resort to the
derived rate limits and propose the second selection scheme based
on the projected power of the line-of-sight (LoS) paths. We then
combine the advantages of the two schemes and propose a two-
step scheme that achieves near optimal performances with much
less time-consumption than exhaustive search. Numerical results
confirm the analytical results of the ergodic achievable rate and
reveal the effectiveness of the proposed two-step method.

Index Terms— Hybrid beamforming, DFT beams, beam selec-
tion, ergodic achievable rates, multiuser transmission.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technology
is a key enabler for the enormous data rate required by the
fifth-generation mobile communication [1, 2]. Using a large-
scale antenna array, base stations (BSs) can now obtain highly
selective beams to pinpoint users [3, 4]. The effects of uncorre-
lated noise and fast fading are also known to vanish when the
number of antennas grows without limit [5]. Massive MIMO
provides abundant spatial degrees of freedom for diversity and
multiplexing [6, 7]. In the early days, the studies of massive
MIMO largely focused on the full-digital system where all the
signal processing is done at the baseband and each antenna
element requires one distinct radio frequency (RF) chain. The
large number of expensive transceivers and the huge amount of
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power consumption nevertheless become the bottlenecks that
limit the developments of massive MIMO systems.

To overcome these problems, low-cost solutions have been
proposed, ranging from, for example, decreasing the number of
RF chains [8, 9] to lowering the resolutions of analog-to-digital
converters [10–12]. One such example is the hybrid beamform-
ing architecture, which uses a small number of RF chains to
control the large-scale antenna array. Different from the full-
digital system, there are two beamforming components in the
hybrid beamforming system. One is the high-dimensional ana-
log beamforming implemented at the RF module and another
is the low-dimensional digital beamforming implemented at
the baseband module. Due to the non-linear characteristics of
power amplifiers, it is not suggested to adjust the amplitude
of the signals for beamforming use at the RF module. The
commonly used analog beamforming enablers include phase
shifters [13–15], switch networks [17], lens antennas [18, 19],
and Butler matrices or other discrete Fourier transform (DFT)
modules embedded on field-programmable analog arrays [20,
21]. All the above devices only shift the phase of the signal
without changing its modulus. Due to the constant-modulus
restriction at the analog component, it is important to design
proper analog beamforming weights for best performance. The
methods to design the analog beamforming weights can be
classified into two categories. One is the non-analog-codebook
based design, where the analog beamforming weights are first
calculated from a closed-form expression and then regulated
according to the hardware constraint [15, 16]. For example,
[16] computed the analog beamforming weights based on the
spatial channel matrix and then iteratively adjusted the weights
to satisfy the constraint of constant-module. The other is the
analog-codebook based design, where an analog codebook that
contains more than one beam is predefined and the analog
beamforming weights are selected from the codebook.

In the analog-codebook based hybrid beamforming design,
many efforts were paid on analog beam selection. In particular,
[22] adopted the DFT codebooks at the analog beamforming
module and formulated the hybrid beamforming design into
an optimization problem. Also, [23] and [24] introduced the
multi-stage or multi-resolution codebook which would allow
hierarchical searching and could significantly reduce the time
for beam selection. Unfortunately, the selection process cannot
be performed by more than one user in parallel, which hinders
the application of multi-stage codebooks. In addition, in [25],
it was proposed to decompose the full-digital beamforming
weights into two parts: the analog part and the digital part
by an orthogonal matching pursuit algorithm. To be more
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specific, the analog beamforming weights were selected from
a vector set. Each vector in the set was a steering vector
of the antenna array pointing to a sampled spatial direction.
The weight decomposition based algorithm performed well in
single-user systems, but suffered from inter-user interference if
applied in the multiuser case. Practical analog beam selection
schemes for multiuser systems are therefore needed.

All of the above-mentioned designs are based on the phase
shifter networks which suffer from problems, such as difficult-
to-implement integration and high energy consumption, etc.
In light of this, low-cost and easy-to-implement devices such
as Butler matrices have since gained much importance [26].
Results in [27] demonstrate that the Butler matrix based DFT
analog beamforming network introduces less power losses and
outperforms the phase shifter based fully connected analog
beamforming network with more RF chains. Later, [28] ana-
lyzed the achievable rate of the DFT-based multiuser hybrid
system in Rayleigh fading channels when the zero-forcing
(ZF) receiver was employed in the uplink. However, the DFT
beams in [28] were fixed and could not be switched according
to the actual situations. For this reason, it has motivated the
use of the analog beam selection schemes of the Butler matrix
based hybrid beamforming for multiuser systems.

This paper focuses on the Butler matrix based hybrid beam-
forming architecture and investigates analog beam selection
schemes for multiuser systems. We use Ricean fading channel
models to account for typical current and future applications,
for example, machine-type communications [12]. In order to
find the beams that optimize the rate performance, we first
derive the approximations of the ergodic achievable rate1

under the assumption that the analog beams are fixed. Then
based on the ergodic rate analysis, we obtain optimal and
suboptimal beam selection solutions. Note that the selection
results are effective during the channel’s coherent time. The
main contributions of this paper are twofold:

• Approximations of the uplink and downlink achievable
rates—We first analyze the uplink achievable rates of the
ZF and the maximum-ratio combining (MRC) receivers
and derive their approximations, respectively. The effect
of the analog beamformed line-of-sight (LoS) paths on
the achievable rate is examined. We demonstrate that the
orthogonality of the analog beamformed LoS paths from
different users as well as the the complete projection of
the LoS paths on the selected beams contribute to high
rates. Then utilizing a similar approach for the downlink,
we obtain approximations of the achievable rate for the
ZF and the maximum-ratio transmitting (MRT) precoders
when the long-term normalization and short-term normal-
ization methods are adopted, respectively. We find that for
ZF precoders short-term normalization gives higher rate
than the long-term normalization case, while in the case
of MRT precoders the result is not conclusive.

• Practical analog beam selection schemes—The approx-
imations and asymptotic expressions of the achievable
rates help us develop more efficient DFT beam selection

1For convenience, the terms “achievable rate” and “ergodic achievable rate”
are used interchangeably for the rest of this paper.

schemes. An approximation-based exhaustive search is
first introduced to achieve the optimum performance at
the price of the highest time-consumption. In particular,
referring to the observation on the effect of the projected
power of the LoS paths on the rate, we propose a pro-
jected power based per-user selection scheme to choose
beams according to the maximum projected power on the
LoS paths for each user. The scheme reduces the compu-
tation time greatly, but ignores the inter-user interference.
To tackle this, we propose a two-step selection scheme
where we perform the per-user selection in the first step
using the asymptotic rate expressions assuming there are
more RF chains than they have before the extra beams
are removed in the second step. This scheme strikes the
balance between performance and time-consumption.

It is worth emphasizing that a distinguishing feature from the
prior work in [28] is that our work aims to design analog beam
selection schemes for Ricean fading channels. The proposed
beam selection schemes can be applied to uplink ZF/MRC
receivers, as well as downlink ZF/MRT precoders with both
long-term and short-term normalization methods.

The rest of the paper is organized as follows. Section II
introduces the hybrid beamforming multiuser system, includ-
ing the Butler matrix based hybrid architecture, Ricean fading
channel, and uplink and downlink signal models. Sections III
and IV analyze the uplink achievable rates of the ZF/MRC
receivers and the downlink rates of the ZF/MRT precoders,
respectively. Section V presents and compares the three analog
beam selection schemes. The numerical results are shown in
Section VI. Finally, Section VII concludes the paper.

Notations—In this paper, matrices and vectors are denoted
by uppercase and lowercase boldface letters, respectively. We
use I to represent the identity matrix. The superscripts (·)†,
(·)H , (·)T , and (·)∗ denote, respectively, the pseudo-inverse,
conjugate-transpose, transpose, and conjugate operations. E{·}
represents the expectation with respect to all random variables
within the brackets. We also use |·| and ‖·‖ to denote taking
absolute value and modulus operations respectively, and b·c to
represent rounding a decimal to its nearest lower integer.

II. SYSTEM MODEL

Consider a massive MIMO multiuser system where the BS
is located at the cell center and communicates with Nu single-
antenna users on the same time-frequency resource block.

A. Hybrid Beamforming

In this paper, we focus on the low-cost hybrid analog-and-
digital architecture. The Butler matrix based hybrid architec-
ture is adopted at the BS as shown in Fig.1. The total number
of BS antenna elements is M . The M dimensional DFT matrix
corresponds to M DFT beam ports. We assume that there are
Ns (Nu ≤ Ns ≤ M ) RF chains. Each RF chain controls its
switch to connect with one of the M beam ports.

In this model, we denote the M dimensional DFT matrix
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Fig. 1. The BS adopts the Butler Matrix based hybrid architecture. Each RF
chain connects with one of the M ports by controlling its own switch.

as U, which is written as

U =
1√
M


1 1 · · · 1

1 ej2π
1
M · · · ej2π

M−1
M

...
...

...

1 ej2π
M−1
M · · · ej2π

(M−1)2

M

 . (1)

The analog beamforming matrix is constructed with Ns rows
of U, i.e.,

F = ΨU, (2)

where Ψ =
[
ei1 , ei2 , . . . , eiNs

]T
and ej ∈ ZM×1 is a vector

with the jth element being 1 and zero elsewhere. Since U is
invariable, the beam selection matrix Ψ plays a decisive role
in the analog beamforming. In this paper, we will investigate
the effect of Ψ on the achievable rate and exploit this in the
beam selection schemes in the subsequent sections. In order
to simplify the expressions in the following analysis, we adopt
the same notation F to represent the uplink and the downlink
analog beamformer. It should be noted that F may consist of
different DFT beams in uplink and downlink.

B. Channel Model

To fully describe the characteristics of the wireless channel,
we write the multiuser MIMO channel as

G = HD
1
2 , (3)

where D = diag{β1, β2, . . . , βNu
}, in which βk ∈ R+ reflects

the energy of the kth user channel, and H ∈ CM×Nu denotes
the fast fading factor matrix which models the propagation
condition of the channel. Here, we focus on the Ricean fading
condition, so that H is written as [12]

H = H̄
[
Ω (Ω + INu)

−1
] 1

2

+ Hw

[
(Ω + INu)

−1
] 1

2

, (4)

where Ω = diag (K1,K2, . . . ,KNu
), in which Kk is the

Ricean K-factor of the kth user channel, H̄ ∈ CM×Nu is the
deterministic LoS component with the kth column h̄k referring
to user k, Hw ∈ CM×Nu denotes the random component with
independent and identically distributed (i.i.d.) elements, and
each element of Hw is a complex Gaussian random variable
with zero mean and unit variance.

C. Signal Model

In the uplink, the BS receives the signals from all the Nu
users. We assume that each user has equal transmit power.

Then, the uplink received signal vector at the BS antennas
can be written as

r =
√
PavgGs + n, (5)

where Pavg is the transmit power of each user, G is defined
in (3), s ∈ CNu×1 is the transmit signal vector satisfying
E
{
ssH

}
= INu

, n ∈ CM×1 denotes the complex Gaussian
noise vector, and each element of n has zero mean and unit
variance. Due to the hybrid beamforming structure at the BS,
the received signals will be firstly analog beamformed via
the Butler matrix network, and then equalized via the digital
beamformer. Therefore, r is further processed by

y = WUFr =
√
PavgWUFGs + WUFn, (6)

where WU ∈ CNu×Ns is the digital beamformer which is
considered as the MIMO receiver in the uplink. Then we use
the beamformed signal y to estimate the original signal s. It
should be noted that the noise is also beamformed. Let us
analyze the components of y and write the kth data stream as

yk =
√
PavgwU,kFgksk +

∑
j 6=k

√
PavgwU,kFgjsj + wU,kFn,

(7)
where wU,k and gk are the kth row and column vectors of
WU and G, respectively. We can easily find that in addition
to the colored noise, inter-user interference exists as well.

Similarly, in the downlink, the BS transmits the hybrid
beamformed signals to all users simultaneously. The received
signal vector at the user side is expressed as

r =
√
PGTFTWDx + n, (8)

where P is the total transmit power at the BS, WD ∈ CNs×Nu

is the downlink digital precoder satisfying ‖WD‖F= 1, x ∈
CNu×1 is the transmit signal vector satisfying E

{
xxH

}
=

INu
, and n ∈ CNu×1 is the complex Gaussian noise vector

with each element having zero mean and unit variance. For the
kth user, the received signal also contains the target signal, the
interference and the noise, i.e.,

rk =
√
PgTk FTwD,kxk +

∑
j 6=k

√
PgTk FTwD,jxj + nk, (9)

where wD,k is the kth column vector of WD.

III. UPLINK RATE ANALYSIS

To perform analog beam selection for the DFT-based hybrid
beamforming system, we first choose proper digital beamform-
ers and analyze their performance assuming that the analog
beamformer F is fixed. Considering the reduced dimensional
processing at the baseband module, conventional MIMO tech-
niques are applicable in the digital beamforming design. In this
section, we focus on the uplink and evaluate two popular linear
receivers, namely the ZF and MRC receivers, by deriving the
approximations of the achievable rates.

A. ZF Receiver

If the ZF receiver is used in the uplink, WU is written as

WU =

√
1

Pavg
G†eq =

√
1

Pavg

(
GH
eqGeq

)−1
GH
eq, (10)
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where
Geq = FG (11)

is the effective channel seen from the air interface. Then, (6)
is expressed as

y = s +

√
1

Pavg
G†eqFn, (12)

which will be used for detection. Since F is abstracted from
the DFT matrix and n is a multivariable Gaussian random
vector, Fn can be seen as a new Ns-dimensional complex
Gaussian vector with each element having zero mean and unit
variance. Hence, the achievable rate is calculated as

RZF =

Nu∑
k=1

E

log2

1 +
Pavg[(

GH
eqGeq

)−1
]
k,k


, (13)

where [A]m,n represents the (m,n)th entry of matrix A.

Based on (13), we provide the approximation of the achiev-
able rate of the ZF receiver and have the following theorem.

Theorem 1: When the ZF receiver is adopted in the uplink
of the DFT-based hybrid beamforming system, the achievable
rate can be approximated as

RZF
App =

Nu∑
k=1

log2 (1+Pavgβkεk exp (ψ (Ns −Nu + 1))),

(14)
where ψ (·) denotes the digamma function,

εk =

Nu∏
i=1

αi

Nu−1∏
i=1

ᾱk,i

, (15)

{αi}i=1,...,Nu
are the eigenvalues of

Σ̂ = (Ω + INu
)
−1

+
1

Ns
THT (16)

sorted in an ascending order, T = FH̄
[
Ω(Ω + INu)

−1
] 1

2

,
{ᾱk,i}i=1,...,Nu−1 are the eigenvalues of

Σ̂k =
(
Ω̄k + INu−1

)−1
+

1

Ns
TH
k Tk (17)

in an increasing order, Tk = FH̄k

[
Ω̄k

(
Ω̄k + INu−1

)−1
] 1

2

,
H̄k is H̄ with the kth column removed, and Ω̄k is Ω with the
kth row and the kth column removed.

Proof: See Appendix A.

From (14), we can find that when Ns, Nu and βk are fixed,
the rate of the ZF receiver increases in proportional to εk,
which is decided by the selected analog beams and the Ricean
components of the user channels. For better understanding of
the effect of εk on the achievable rate, we give insights on
some special cases. We start with the asymptotic analysis of
the achievable rate under Rayleigh fading conditions.

Corollary 1: When Ricean fading reduces to Rayleigh fad-
ing, i.e., Kk = 0 for k = 1, . . . , Nu, the approximation (14)

is rewritten as

RZF
App =

Nu∑
k=1

log2 (1 + Pavgβk exp (ψ (Ns −Nu + 1))).

(18)
Proof: In this case, Σ̂ and Σ̂k are reduced to identity

matrices. As such, their eigenvalues satisfy αk = 1 for k =
1, . . . , Nu and ᾱk,i = 1 for k = 1, . . . , Nu, i = 1, . . . , Nu−1.
Hence, εk = 1 and we get the desired results.

With Rayleigh fading, LoS paths no longer exist, and εk has
no effect on the achievable rate. The beam selection results
make no difference to the system performance. Thus, we can
choose arbitrary beams. Besides, the achievable rate can be
enhanced by increasing the number of RF chains. Note that
if we set Ns = M , then (18) coincides with Proposition 2 of
[29], which illustrates the effectiveness of Theorem 1.

We regard the Rayleigh fading case as a reference and now
investigate εk in Ricean fading environments. Obviously, Σ̂ is
Hermitian and Σ̂k can be seen as Σ̂ with the kth row and the
kth column removed. According to Theorem 4.3.8 of [30], the
eigenvalues of Σ̂ and Σ̂k satisfy

α1 ≤ ᾱk,1 ≤ α2 ≤ · · · ≤ ᾱk,Nu−1 ≤ αNu . (19)

We now move on to another special case of Ricean fading
and derive the asymptotic rate in the following corollary.

Corollary 2: In the case that Kk →∞ for k = 1, . . . , Nu,
if the effective LoS components hold orthogonality, i.e.,
h̄
H
j FHFh̄k = 0 for j 6= k, then (14) approaches to

RZF
App →

Nu∑
k=1

RZF
App,k, (20)

where

RZF
App,k = log2 (1+Pavgβkε̂k exp (ψ (Ns−Nu+1))), (21)

and ε̂k =
∥∥Fh̄k

∥∥2
/Ns.

Proof: See Appendix B.
We find that if LoS paths are completely projected on the

selected beams, then
∥∥Fh̄k

∥∥2
= M and ε(1)

k � 1 when M �
Ns. On the contrary, if there is very little power projected
on the beams, then

∥∥Fh̄k
∥∥2 ≈ 0 and ε

(1)
k ≈ 0. Therefore,

good beam selection results are critical under Ricean fading
conditions. It is suggested to select beams that cover the LoS
paths and meanwhile contribute to the orthogonality among
the effective LoS paths from different users.

B. MRC Receiver

MRC is another well-known linear receiver, which combines
the received signals on multiple RF chains to enhance the
signal power. When adopting the MRC receiver in the uplink,
WU is expressed as

WU = GH
eq, (22)

and the combined signal vector is

y =
√
PavgG

H
eqGeqs + GH

eqFn. (23)

Then the achievable rate of the MRC receiver is calculated as

RMRC =

Nu∑
k=1

E{log2 (1 + γk)}, (24)
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where

γk =
Pavg‖geq,k‖4

Pavg
∑
j 6=k

∣∣∣gHeq,kgeq,j∣∣∣2 + ‖geq,k‖2
(25)

reflects the signal to interference-and-noise ratio (SINR), and
geq,k denotes the kth column vector of Geq . Taking a similar
approach as previously, we have the following theorem to
evaluate the achievable rate performance.

Theorem 2: When adopting the MRC receiver in the DFT-
based hybrid beamforming system, the uplink achievable rate
can be approximated as

RMRC
App =

Nu∑
k=1

log2

1 +

Pavgβk

Kk+1 χ
(k)
1∑

j 6=k

Pavgβj

Kj+1 χ
(k)
2,j + χ

(k)
3

, (26)

where

χ
(k)
3 , Kk

∥∥Fh̄k
∥∥2

+Ns, (27)

χ
(k)
1 , χ

(k)2
3 + 2χ

(k)
3 −Ns, (28)

and

χ
(k)
2,j , KkKj

∣∣∣h̄Hj FHFh̄k

∣∣∣2 + χ
(j)
3 + χ

(k)
3 −Ns. (29)

Proof: See Appendix C.
To analyze the effect of the analog beamformed LoS paths

on the achievable rate, we first derive the asymptotic expres-
sion of the achievable rate in Rayleigh fading channels.

Corollary 3: When Kk = 0 for k = 1, . . . , Nu, Ricean
fading reduces to Rayleigh fading, and (26) is rewritten as

RMRC
App =

Nu∑
k=1

log2

1 +
Pavgβk (Ns + 1)∑
j 6=k

Pavgβj + 1

. (30)

Proof: In Ricean fading channels, geq,k is expressed as

geq,k =
√
βkFhw,k. (31)

Accordingly, the expectation items can be calculated as

E
{
‖geq,k‖4

}
= β2

k

(
N2
s +Ns

)
, (32)

E
{∣∣gHeq,kgeq,j∣∣2} = βkβjNs, (33)

E
{
‖geq,k‖2

}
= βkNs. (34)

Applying (32)–(34) into (79) which is shown in Appendix C,
we can obtain (30), which completes the proof.

Similarly, with Rayleigh fading, the analog beam selection
results make no difference and we can choose arbitrary beams.
Note that when it comes to the full-digital system and if large-
scale fading coefficients satisfy β1 = β2 = · · · = βNu

= 1,
the derived expression from (30) is exactly in accordance with
[31]. This verifies the effectiveness of Theorem 2.

The following corollary provides the achievable rate limit
in the case of pure Ricean fading.

Corollary 4: When Kk → ∞ for k = 1, . . . , Nu and the
effective LoS components hold orthogonality, the achievable
rate of the MRC receiver approaches to

RMRC
App →

Nu∑
k=1

RMRC
App,k, (35)

where
RMRC

App,k = log2

(
1 + Pavgβk

∥∥Fh̄k
∥∥2
)
. (36)

From (36), we can obtain similar insights with Corollary 2
that the more the power projected on the selected beams from
the LoS paths, the higher the rate one can achieve in Ricean
fading. Moreover, if the number of RF chains configured at
the BS is increased, the projected power of LoS paths on the
selected beams is enhanced as well, which further contributes
to the improvement of the achievable rate.

IV. DOWNLINK RATE ANALYSIS

In this section, we focus on the downlink of the DFT-based
hybrid beamforming system. Following the similar approach
as in the uplink, we analyze the downlink rates when adopting
the ZF and the MRT precoders. Considering the total transmit
power constraint at the BS, power normalization is required
in the downlink, which differs from the uplink analysis.

A. ZF Precoder

In the downlink, the ZF precoder is designed as

WD = W̄P, (37)

where
W̄ = G∗eq

(
GT
eqG

∗
eq

)−1
(38)

is the zero-forcing matrix,

P = diag (ρ1, ρ2, . . . , ρNu
) (39)

is the power normalization matrix, and ρk ∈ R+ is the nor-
malization coefficient for the kth data stream. Since GT

eqW̄ =
INu

, the achievable rate of the ZF precoder is

RZF =

Nu∑
k=1

E
{

log2

(
1 + Pρ2

k

)}
. (40)

From (40), the rate of the ZF precoder can be seen to be
solely determined by the power normalization coefficients. In
this paper, we consider two power normalization methods. The
first is referred to as long-term normalization where the matrix
P is adjusted by the long-term channel state information (CSI)
and holds for the coherent time of the channel. In particular,
the normalization coefficients are expressed as

ρ = ρ1 = ρ2 = · · · = ρNu =
1√

E
{∥∥W̄∥∥2

F

} . (41)

Based on the achievable rate expression of the ZF precoder
and the definition of long-term normalization, we derive the
following theorem to provide its approximation.

Theorem 3: When adopting the ZF precoder and the long-
term normalization in the downlink of the DFT-based hybrid
beamforming system, the achievable rate is approximated to

RZF1
App = Nulog2

1 +
P (Ns −Nu)

Nu∑
k=1

β−1
k

[
Σ̂
−1
]
k,k

 , (42)

where Σ̂ is defined in (16).
Proof: See Appendix D.
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From (42), it is found that for the ZF precoder, when the
long-term normalization is adopted, all the users have equal
received SINR and the rate of each user is same as well. It is
not optimal because the user channels are different in quality.
Therefore, we further introduce the second method.

The second power normalization method is referred to as
the short-term normalization where the power normalization
coefficients are derived according to the instantaneous channel
information. In this method, we have

ρk =
1√

Nu ‖w̄k‖
, (43)

which means that each data stream is allocated with equal
transmit power. Moreover, it requires real-time CSI calculation
and normalization factor adjustment.

Theorem 4: When adopting the ZF precoder and the short-
term normalization in the downlink of the DFT-based hybrid
beamforming system, the achievable rate is approximated to

RZF2
App =

Nu∑
k=1

log2

1 +
P (Ns −Nu + 1)

Nuβ
−1
k

[
Σ̂
−1
]
k,k

. (44)

Proof: See Appendix E.
Let us now compare (44) with (42). Since the function

log2

(
1 + ax−1

)
, for a > 0 is concave for x > 0, when regard-

ing β−1
k

[
Σ̂
−1
]
k,k

as xk, we can derive that RZF1
App ≤ RZF2

App

according to the Jensen’s inequality. It validates our previous
thoughts that short-term normalization performs better than
long-term normalization for the ZF precoder.

Furthermore, following the example of the uplink, we give
the asymptotic expressions of the achievable rates for the ZF
precoder in the pure Ricean fading environments.

Corollary 5: When Kk → ∞ for k = 1, . . . , Nu, if
orthogonality holds among the effective LoS components from
different users, (42) and (44) approach, respectively, to

RZF1
App → NuR

ZF1
App,k, RZF2

App →
Nu∑
k=1

RZF2
App,k, (45)

where

RZF1
App,k = log2

1 +
P (Ns −Nu)

Ns
Nu∑
i=1

β−1
i

∥∥Fh̄i
∥∥−2

 (46)

and

RZF2
App,k = log2

(
1 +

P (Ns −Nu + 1)

NsNuβ
−1
k

∥∥Fh̄k
∥∥−2

)
. (47)

Proof: The proof is based on the fact that
[
Σ̂
−1
]
k,k

=

α−1
k = Ns

‖Fh̄k‖2 .

B. MRT Precoder

With the MRT precoder in the downlink, WD is found as

WD = G∗eqP, (48)

where P is previously defined as the power normalization
matrix. The achievable rate is calculated as

RMRT =

Nu∑
k=1

E

log2

1 +
Pρ2

k‖geq,k‖
4

P
∑
j 6=k

ρ2
j

∣∣∣gHeq,kgeq,j∣∣∣2 + 1


.
(49)

We first derive the achievable rate approximation for the long-
term normalization.

Theorem 5: Using the MRT precoder and the long-term
normalization in the downlink, the achievable rate is approxi-
mated to
RMRT1

App =

Nu∑
k=1

log2

1 +

Pβ2
k

(Kk+1)2
χ

(k)
1∑

j 6=k

Pβkβj

(Kk+1)(Kj+1)χ
(k)
2,j +

Nu∑
i=1

βi

Ki+1χ
(i)
3

 ,

(50)
where χ(k)

1 , χ(k)
2 and χ(k)

3 are defined in (28), (29) and (27),
respectively.

Proof: See Appendix F.
Similarly, for the short-term normalization, the following

theorem provides the approximation of the achievable rate.
Theorem 6: When employing the MRT precoder and the

short-term normalization in the downlink, the achievable rate
is approximated as

RMRT2
App =

Nu∑
k=1

log2

1 +

Pβk

Nu(Kk+1)χ
(k)
3∑

j 6=k

Pβk

Nu(Kk+1)

χ
(k)
2,j

χ
(j)
3

+ 1

 . (51)

Proof: See Appendix G.
To compare the performance of the long-term and the short-

term normalization for the MRT precoder, we derive the rate
limits in pure Ricean fading conditions below.

Corollary 6: When Kk → ∞ for k = 1, . . . , Nu, if
orthogonality holds among the effective LoS components of
different users, (50) and (51) are approaching to, respectively,

RMRT1
App →

Nu∑
k=1

RMRT1
App,k , RMRT2

App →
Nu∑
k=1

RMRT2
App,k , (52)

where

RMRT1
App,k = log2

1 +
Pβ2

k

∥∥Fh̄k
∥∥4

Nu∑
i=1

βi
∥∥Fh̄i

∥∥2

 (53)

and

RMRT2
App,k = log2

(
1 +

Pβk
∥∥Fh̄k

∥∥2

Nu

)
. (54)

For either Kk = 0 or Kk → ∞ cases, if the short-term
normalization is employed with the MRT precoder, users with
lower βk can obtain relatively higher received SINR when
compared with the long-term normalization. On the contrary,
for the long-term normalization, users with higher βk will be
allocated with more power on their data streams. Thus, we can
conclude that for MRT precoders, the long-term normalization
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is preferred for the users who have stronger channel quality,
and that the short-term normalization improves the quality of
users with poor propagation conditions. The situation will be
different in the case of the ZF precoder.

V. ANALOG BEAM SELECTION

The asymptotic expressions and the analytical results above
help us develop new beam selection solutions for the DFT-
based hybrid multiuser system. Here, we study how to design
the analog beamformer by utilizing these analytical results
and present three beam selection schemes to pursue high
achievable rate, which are realized by the designs of Ψ.

A. Achievable Rate Based Exhaustive Searching

One can aim to achieve the highest rate for the multiuser
system based on the previously derived approximations. Ac-
cording to the directions of transmission link, the type of
precoders or receivers and the normalization method, we can
use the appropriate approximation to help select the DFT
beams. This can be done by searching over all the possible
beam combinations to identify the joint optimum beams for
all the RF chains. We refer to this scheme as the achievable
rate based exhaustive searching scheme.

As mentioned above, each of the Ns RF chains will be as-
signed with a DFT beam selected from the M -sized codebook.
This scheme does not require Ns different beams. Instead, a
single beam may be repeatedly chosen by more than one RF
chains. Therefore, there are totally MNs beam combinations.
Assume that D, Ω and H̄ are known at the BS. Let us take
the uplink ZF receiver as an example. After calculating the
achievable rate of each beam combination, we get the optimum
combination that maximizes (14) by solving

max
F

RZF
App (55a)

s.t. F = ΨU,Ψ =
[
ei1 , ei2 , . . . , eiNs

]T
, (55b)

i1, i2, . . . , iNs
= 1, 2, . . . ,M. (55c)

The approach is formulated as Algorithm 1.
The achievable rate based exhaustive searching scheme uses

the derived theorems and strives for the optimization of global
achievable rate performance. Therefore, it obtains the optimum
beam selection results and achieves the highest ergodic rate.
However, it is incredibly time-consuming when either M or
Ns grows large, which can become infeasible quickly.

B. Projected Power Based Per-user Selection

Considering the drawback of exhaustive searching, there is
need to explore other suboptimal schemes which are practi-
cally more feasible. The first thing is to abandon exhaustive
searching which requires many power-level comparisons. To
do so, we refer to Corollaries 2, 4, 5 and 6 for simpler
expressions of the achievable rate.

Corollary 7: When Kk → ∞ for k = 1, . . . , Nu, if
orthogonality holds among the effective LoS components of
different users, then

max
F

RDBF
App , s.t. (55b) and (55c) (56)

Algorithm 1 Exhaustive Searching
Require: Ψ
1: set Rmax = 0
2: for i1, . . . , iNs

≤M do
3: Ψtmp =

[
ei1 , . . . , eiNs

]
4: calculate R (Ψtmp) using the corresponding

approximation expression
5: if R ≥ Rmax

6: Ψ = Ψtmp

7: end if
8: end for
return Ψ

can be recast into

max
F

∥∥Fh̄k
∥∥2
, s.t. (55b) and (55c) (57)

given Ns, Nu and h̄k, where ”DBF” can be ZF/MRC/ZF1/ZF2
/MRT1/MRT2.

Proof: The proof is evident for ZF/MRC/ZF2/MRT2
by observing (21), (36), (47) and (54). We denote x =

βk
∥∥Fh̄k

∥∥2
, a =

∑
i 6=k

β−1
i

∥∥Fh̄i
∥∥−2

. If a > 0 is a constant,

then the function (x−1 + a)−1 is monotonic increasing with
x > 0. When applied to (46), we find that the achievable
rate of user k is in proportion to

∥∥Fh̄k
∥∥2

for ZF1. The same
conclusion is drawn for MRT1 from the monotonicity of the
function x2/(x + b), where b =

∑
i 6=k

βi
∥∥Fh̄i

∥∥2
is a constant.

We find that the rate is improved with the increase of∥∥Fh̄k
∥∥2

under strong Ricean fading conditions.
∥∥Fh̄k

∥∥2
rep-

resents the projected power of the LoS component of user k on
the selected DFT beams. The enhancement of

∥∥Fh̄k
∥∥2

reflects
that the selected beams are more competent to capture the
main lobes of the LoS paths. Moreover, (57) can be achieved
without power-level comparisons, which is more time-saving.

Based on the analysis, we first introduce a per-user selection
scheme to maximize the projected power of the LoS paths.
For fairness, we strive to make each user use an equal number
of RF chains. Denote C = bNs/Nuc. Then each of the first
Nu − 1 users is allocated with C RF chains, and the Nuth
user is allocated with Ns − C (Nu − 1) RF chains. For user
k, we use h̄k to select beams. The steps for this beam selection
approach are presented in Algorithm 2.

This projected power based per-user selection scheme re-
duces the number of comparisons from MNs to M × Nu.
However, the orthogonality among the effective LoS paths
from different users is not promised in this scheme, which
will significantly impact the achievable rate performance.

C. The Proposed Two-Step Selection Scheme

Both the exhaustive searching method and the projected
power based per-user selection have advantages and disadvan-
tages. The exhaustive searching scheme insures the optimality
of the selected beam combinations, including the capture of
the LoS paths and the orthogonality among the effective LoS
paths from different users. For the per-user selection scheme,
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Algorithm 2 Per-user Selection
Require: Ψ
1: Ψ = empty matrix
2: for k ≤ Nu do

3:
[
j

(k)
1 , . . . , j

(k)
C

]
= arg max
n=1,...,M

(
UH h̄kh̄

H
k U

)
k,k

4: for C (k − 1) + 1 ≤ m ≤ min (Ck,Ns) do
5: im = j

(k)
m−C(k−1)

6: Ψ (:,m) = eim
7: end for
8: end for
return Ψ

it uses a simple metric, i.e., maximizing the projective power
of the LoS paths, to implement beam selection. We can jointly
utilize these two schemes to devise new and better solutions.

For the per-user selection scheme, beams are directly de-
termined after comparing the projected power. By doing so,
however, it is unclear if there exists severe interference among
the effective LoS paths from different users. As a result, there
needs to be a fix in the per-user selection. Since the CSI is
known at the BS, we can evaluate any beam combination
for any number of RF chains using the analytically derived
approximations. The fact that the increase of the number
of RF chains can enhance the performance of the hybrid
beamforming system, suggests that in the per-user selection
scheme, we should consider more than Ns RF chains to choose
more than Ns beams. Then the extra beams can later be
dropped using the approximations. This is the rationale of the
proposed two-step selection scheme as Algorithm 3.

As seen, the scheme chooses more beams than needed in
Step 1. There are C + n beams selected for each user, where
n is a positive integer that directly determines the number of
extra beams. Totally Nu (C + n) beams are selected, and a big
Ψ is derived in Step 1. Then in Step 2, the approximations
in Theorems are adopted to help remove Nu (C + n) − Ns
extra beams one by one. It requires Nu (C + n)−Ns rounds
and one beam is removed at the end of each round. At the
beginning of the ith round, there remain Nu (C + n)− i+ 1
beams. We calculate the rate when each of these beams is
removed, i.e., Ri (j) for the ith beam removed. Then, find the
one that has the least performance reduction and drop it from
Ψ. After Nu (C + n)−Ns rounds, we obtain the desired Ψ.

It should be noted that we do not suggest to choose less
than Ns beams and then add new beams in. This is because
under Ricean fading, the channel holds sparsity if the Ricean
K-factor grows large. A small number of beams can capture
the main lobe of the channel. If we assume there are more
RF chains and choose more beams at first, then the main lobe
will be totally captured and the inter-user interference can be
thoroughly canceled. These beams are adequate and we only
need to remove the ones which make insignificant contribu-
tions. However, if we assume there are less RF chains and
choose less beams, then the LoS paths cannot be completely
covered and the interference cannot be completely eliminated,
which will jeopardize the results from the first step.

Note that for the analog beamformer F = [f1, . . . , fNs
],

Algorithm 3 Two-Step Selection
Require: Ψ
1: Ψ = empty matrix
2: Step 1:
3: for k ≤ Nu do

4:
[
j

(k)
1 , . . . , j

(k)
C

]
= arg max
n=1,...,M

(
UH h̄kh̄

H
k U

)
k,k

5: for (C + n) (k − 1) + 1 ≤ m ≤ (C + n) k do
6: im = j

(k)
m−C(k−1)

7: Ψ (:,m) = eim
8: end for
9: end for
10: Step 2:
11: for 1 ≤ i ≤ Ns do
12: for 1 ≤ j ≤ Nu (C + n)− i+ 1 do
13: Calculate Ri (j) with ith column of Ψ removed
14: end for
15: iremove = arg maxRi (j)
16: Ψ with the iremoveth column removed
17: end for
return Ψ

the difference made by changing the order of f1, . . . , fNs is
negligible, but it requires much more comparisons to find
the optimal order according to the exhaustive searching rule.
Hence, to avoid expensive and time-consuming comparisons,
it is not a good idea to follow the exhaustive searching rule
in Step 2, but to keep the order of the beams derived in Step
1. For example, Ns = 4, Nu = 2, n = 1, and the selected
beams in Step 1 are f1, f2, f3 for user 1 and f4, f5, f6 for user 2.
Then the order of the beams derived in Step 1 is 1, 2, 3, 4, 5, 6.
In Step 2, this order will not be changed. If we evaluate
the performance when f2 is removed, then the only analog
beamformer to be evaluated will be F = [f1, f3, f4, f5, f6].
Other beam orders such as 1, 1, 3, 3, 5 or 3, 4, 1, 6, 5 will not
be in consideration. Therefore, a large amount of power-level
comparisons caused by the exhaustive searching are avoided.

Comparisons required by the two-step selection have two
parts. The first part contains the same number of comparisons
as the per-user selection scheme, M ×Nu, which are caused
by the power projection in Step 1. The second part includes
the rounds to remove the extra beams, which requires

Nu(C+n)−Ns∑
i=1

[Nu (C + n)− i+ 1]

=
1

2

[
N2
u (C + n)

2
+Nu (C + n)−N2

s −Ns
] (58)

comparisons. We realize that increasing n improves the final
selection results, but increases the number of comparisons at
the same time. The total number of comparisons required
by the two-step selection is given in Table I. With M =
256, Ns = 8, Nu = 4 and n = 2, the numbers of compar-
isons for exhaustive searching, per-user selection and two-step
selection are 1.8× 109, 1024 and 1124, respectively.
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TABLE I
THE NUMBERS OF COMPARISONS OF THE SCHEMES

Exhaustive Searching MNs

Per-user Selection M ×Nu
Two-step Selection M ×Nu + 1

2

[
N2
u (C + n)

2
+Nu (C + n)−N2

s −Ns
]
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Fig. 2. Uplink achievable rates versus SNR for the DFT-based hybrid
beamforming multiuser system, with M = 512, Ns = 32, Nu = 4,K1 =
K2 = ... = KNu = 10dB and the two-step selection adopted.
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Fig. 3. Uplink achievable rates versus Ricean K-factor for the DFT-based
hybrid beamforming multiuser system, with M = 512, Ns = 32, Nu =
4, SNR = 10dB and the two-step selection adopted.

VI. NUMERICAL RESULTS

To validate the derived uplink and downlink achievable rate
approximations in Theorems 1–6 and evaluate the performance
of the proposed analog beam selection schemes for this DFT-
based hybrid beamforming multiuser system, we here conduct
computer simulations and discuss the numerical results.

Fig. 2 compares the Monte Carlo (exact) and approximation
results of the uplink achievable rates. In order to save the pro-
cessing time, the two-step selection is adopted. Here, signal-
to-noise ratio (SNR) measures the uplink transmit power of
each user against the noise power on each BS antenna. In
the simulations, we set M = 512, Ns = 32, Nu = 4. For
convenience, the Ricean K-factors of the user are set to be
equal as K1 = K2 = · · · = KNu

= 10dB. The elements of H̄
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Fig. 4. Downlink achievable rate versus SNR for the DFT-based hybrid
beamforming multiuser system, with M = 512, Ns = 32, Nu = 4,K1 =
K2 = ... = KNu = 10dB and the two-step selection adopted.
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Fig. 5. Downlink achievable rate versus Ricean K-factor for the DFT-based
hybrid beamforming multiuser system, with M = 512, Ns = 32, Nu =
4, SNR = 10dB and the two-step selection adopted.

are i.i.d. and generated with zero mean and unit variance and
fixed during a statistical period of 1000 drops. From the results
in Fig. 2, we can see that the ZF approximation approaches
the exact results closely, and the MRC approximation almost
coincides with the exact results. These results strongly validate
the effectiveness of both the ZF and the MRC approximations.
Also, we observe that in the low SNR regime, it is the noise
that impacts the achievable rate most. The MRC receiver
combines and improves the received power of the target signal;
therefore it has competitive behavior with the ZF receiver.
As SNR increases, the power of both the target signal and
the inter-user interference increases. ZF effectively eliminates
the interference and performs far more better than the MRC
receiver. Since both the ZF receiver and the MRC receiver are
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Fig. 6. Comparison of the analog beam selection schemes in the uplink, with
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Fig. 7. Comparison of the analog beam selection schemes in the downlink
when ZF precoder is adopted, with M = 128, Ns = 4, n = 1, Nu =
2,K1 = K2 = ... = KNu = 10dB.

susceptible to noise and interference, respectively, their gap in
performance becomes wider with the increase of SNR.

Fig. 3 examines the influence of Ricean K-factor on the
achievable rate. The simulations were conducted with the same
configuration as in Fig. 2 except that SNR was set to 10dB.
From Fig. 3, it can be clearly observed that when the Ricean
K-factor is small, the channel becomes more like Rayleigh
distributed, and the rate performance is poor. With the increase
of the Ricean K-factor, both the ZF receiver and the MRC
receiver achieve higher achievable rate, especially for the MRC
receiver. This is because on the one hand, the increase of
the Ricean K-factor reflects greater dominance of the LoS
path as well as the lower channel sidelobes, which further
contributes to less inter-user interference; on the other hand,
according to the analysis in Section III, the achievable rate
in pure Ricean fading conditions is not always higher than
that under Rayleigh fading conditions except that the selected
analog beams capture the LoS paths and contribute to the
orthogonality among the analog beamformed LoS paths from
different users. The improvement of the achievable rate reflects
the effectiveness of the two-step beam selection results.

For the downlink, Fig. 4 and Fig. 5 give the exact and the
approximation results of the achievable rate versus SNR and
Ricean K-factor, respectively. Simulation conditions are the
same as that used in Fig. 2 and Fig. 3 accordingly. It should
be noted that the downlink SNR represents the total transmit
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Fig. 8. Comparison of the analog beam selection schemes in the downlink
when MRT precoder is adopted, with M = 128, Ns = 4, n = 1, Nu =
2,K1 = K2 = ... = KNu = 10dB.
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Fig. 9. Evaluation of the margin n for the downlink MRT precoder when the
long-term normalization is adopted, with M = 128, Ns = 4, Nu = 2,K1 =
K2 = ... = KNu = 10dB and n = 1, 2.

power at the BS side against the noise power on each user
antenna. A close observation from the figures reveals that the
approximations are close to the exact results, demonstrating
that the downlink approximations are valid. Similarly, the ZF
precoder outperforms the MRT precoder in the high SNR
regime, and the achievable rate of both these two precoders
is proportional to the Ricean K-factor. When it comes to the
normalization methods, we can see that for the ZF precoder
the short-term normalization always achieves higher rate than
the long-term normalization, while for the MRT precoder the
two normalization methods have mixed performance since
each of them has its own advantages, which justifies our
previous analysis. Furthermore, we also see that for the ZF
receiver/precoder, the approximations are less tight due to the
loose central Wishart approximation when Ricean K-factors
are large but the difference between Ns and Nu is small.

Next, we examine the exhaustive search, the per-user se-
lection and the two-step selection through Monte Carlo sim-
ulations. Fig. 6 compares the uplink achievable rate of the
proposed three selections with the two-stage multiuser hybrid
precoder introduced in [14]. The two-stage multiuser hybrid
precoder first chooses analog beams from a codebook through
the downlink training process and then calculates the digital
beamformer with low-dimensional CSI that is fed back to
the BS. When implementing two-stage hybrid precoders in
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the simulations, we adopt DFT codebooks and ZF/MRC/MTR
receivers/precoders as well, and assume that CSI is perfectly
sent back to the BS. Considering the implementation of the
exhaustive search, we set M = 128, Ns = 4, Nu = 2
and K1 = K2 = ... = KNu

= 10dB. The margin for
the two-step selection scheme is set to n = 1. An obvious
performance gap can be seen between the exhaustive search
and the per-user selection, especially for the MRC receiver.
The reason is that on the one hand, the per-user selection only
guarantees the capture of the LoS paths, without considering
the interference among the analog beamformed LoS paths
from different users. On the other hand, even if the interference
is not completely eliminated by the exhaustive search based
analog beamforming, the MRC receiver behaves much more
sensitive to the interference than the ZF receiver. If the two-
step selection is adopted, the achievable rate will become much
closer to that of the exhaustive search. The rate improvement
is significant for the MRC receiver, which demonstrates that
the beams chosen by the two-step selection scheme are more
effective for interference cancellation. The two-stage multiuser
hybrid precoder behaves better than the per-user selection
because it utilizes short-term CSI instead of long-term CSI.
However, its performance is inferior to the two-step selection
since the latter takes advantage of the rate approximations and
benefits from a margin. Moreover, the numbers of comparisons
required by exhaustive search, per-user selection and two-step
selection are 1284, 256 and 282. If we further increase M or
Ns, the exhaustive search will be incredibly time-consuming,
while the complexity of the two-step selection increases only
slightly. Fig. 7 and Fig. 8 illustrate the downlink comparison
results of these three selections, which leads to similar insights
as the uplink results. We can now conclude that the two-step
selection is a near optimal scheme with low complexity.

To better approach the performance of exhaustive search,
we can keep more margin in the first step, that is, increase the
value of n. Fig. 9 illustrates the improvement of the achievable
rate when n is set from 1 to 2 and the long-term normalization
is employed by the MRT precoder. This improvement comes
from the better separation among the analog beamformed LoS
paths from different users. If we increase the margin n, we can
select beams from a more complete beam subset and enhance
the effectiveness of the selection results. Furthermore, when n
increases from 1 to 2, the number of comparisons required for
the two-step selection increases from 267 to 282, with only
15 comparisons more. Therefore, we can harvest significant
performance enhancement with little more cost.

VII. CONCLUSION

This paper studied the analog beam selection schemes for
the DFT-based hybrid beamforming multiuser system. For
both uplink and downlink, we analyzed the achievable rates
of the system using the ZF/MRC receivers and the ZF/MRT
precoders considering long-term and short-term downlink nor-
malization methods. Based on our approximations and asymp-
totic expressions of the achievable rates, we presented three
analog beam selection schemes. The first one is the exhaustive
searching scheme which is the optimal solution but with huge

time-consumption. To avoid power-level comparisons, we then
proposed the projected power based per-user selection. Then
we further proposed the two-step selection scheme which can
obtain near-optimal results and has much more time-saving.
Simulation results demonstrated that the asymptotic analysis
is effective and the performance of the two-step selection
approaches to that of exhaustive searching.

APPENDIX

A. Proof of Theorem 1

Since Geq = FG and G = HD
1
2 , we can write a detailed

expression of the uplink achievable rate of the ZF receiver as

RZF =

Nu∑
k=1

E

log2

1 +
Pavgβk[

(HHFHFH)
−1
]
k,k


. (59)

First, we recall the Jensen’s inequality on log2 (1 + a exp (x))
for a > 0 [29], which is expressed as

E {log2 (1 + a exp (x))} ≥ log2 (1 + a exp (E {x})) . (60)

Applying (60) into (59), we can rewrite the uplink rate as

RZF ≥
Nu∑
k=1

log2 (1 + Pavgβk exp (E {Xk})), (61)

where

Xk = ln

 1[
(HHFHFH)

−1
]
k,k

. (62)

For convenience, we denote Heq = FH as the equivalent
instantaneous channel matrix. Then Xk is equal to

Xk = ln

 1[(
HH
eqHeq

)−1
]
k,k

. (63)

Since for any matrix Q, it holds that [29][(
QHQ

)−1
]
k,k

=
det
(
QH
k Qk

)
det (QHQ)

, (64)

where Qk denotes Q with the kth column removed. Applying
(63) and (64) into (62), we write the expectation of Xk as

E{Xk}=E
{

ln
(
det
(
HH
eqHeq

))}
− E

{
ln
(
det
(
HH
eq,kHeq,k

))}
.

(65)
To simplify the expressions, we define

Req , HH
eqHeq, (66)

as the instantaneous correlation matrix of Heq , and

R̄eq,k , HH
eq,kHeq,k (67)

as the instantaneous correlation matrix of Heq,k, where Heq,k

denotes Heq with the kth column removed. Recalling (4), the
effective channel Heq can be written as

Heq=FH̄
[
Ω(Ω+INu

)
−1
] 1

2

+FHw

[
(Ω+INu

)
−1
] 1

2

, (68)

where the first component is denoted by T. Since FHw is an
extraction from the DFT transposition of Hw, Heq follows a
Gaussian distribution with the mean matrix equal to T and the
variance matrix of a row vector equal to Σ = (Ω + INu

)
−1.



12

Hence, Req follows a non-central Wishart distribution, i.e.,
Req ∼ WNu (Ns,T,Σ). According to [34], Req can be
approximated by a central Wishart distribution with covariance
Σ̂ defined in (16). The positive definite Hermitian matrix Σ̂
can be eigenvalue decomposed by

Σ̂ = UH
Σ̂

ΛUΣ̂,

Λ = diag {αi}Nu

i=1 ,

∞ ≥ αNu
≥ · · · ≥ α1 ≥ 0.

(69)

Then we can further assume that

det (Req) ≈ det
(
ΛH1H

H
1

)
, (70)

where H1 ∈ CNu×Ns follows a complex Gaussian distribution
with 0 mean and INu

⊗ INs
variance. Utilizing Lemma 4 of

[35], we get that

E {ln det (Req)} ≈
Nu∑
i=1

ψ (Ns − i+ 1) + ln det (Λ)

=

Nu∑
i=1

(ψ (Ns − i+ 1) + lnαi).

(71)

Similarly, R̄eq,k satisfies det
(
R̄eq,k

)
≈ det

(
Λ̄kH1,kH

H
1,k

)
,

where H1,k ∈ C(Nu−1)×Ns follows a complex Gaussian
distribution with 0 mean and INu−1 ⊗ INs variance, Λ̄k =
diag {ᾱk,i}Nu−1

i=1 , and ∞ ≥ ᾱk,Nu−1 ≥ · · · ≥ ᾱk,1 ≥ 0.
Accordingly,

E
{

ln det
(
R̄eq,k

)}
≈
Nu−1∑
i=1

(ψ (Ns−i+1)+ln ᾱk,i). (72)

With (71) and (72), we can rewrite (65) as

E {Xk} ≈
Nu∑
i=1

(ψ (Ns − i+ 1) + lnαi)−

Nu−1∑
i=1

(ψ (Ns − i+ 1) + ln ᾱk,i)

=ψ (Ns −Nu + 1) +

Nu∑
i=1

lnαi −
Nu−1∑
i=1

ln ᾱk,i

=ψ (Ns −Nu + 1) + ln εk.

(73)

Therefore, (14) is obtained.

B. Proof of Corollary 2

When Kk → ∞, the non-LoS (NLoS) components can be
neglected. For Σ̂, it holds that

Σ̂ ≈ 1

Ns
H̄
H

FHFH̄. (74)

The orthogonality among the equivalent LoS components
contributes to

H̄
H

FHFH̄ = diag
{∥∥Fh̄k

∥∥2
}Nu

k=1
. (75)

Hence, Σ̂ becomes diagonal and its eigenvalues correspond
to the diagonal elements. Here, we assume {αi}i=1,...,Nu

are
unordered eigenvalues, it can be written that

αk =

∥∥Fh̄k
∥∥2

Ns
(76)

for k = 1, . . . , Nu. Similarly, the eigenvalues of Σ̂k satisfy

ᾱk,i =

∥∥Fh̄j
∥∥2

Ns
(77)

for i = 1, . . . , Nu−1 and j = 1, . . . , k−1, k+1, . . . , Nu−1.
As a consequence, it holds that

Nu∑
i=1

lnαi −
Nu−1∑
i=1

ln ᾱk,i = lnαk. (78)

Applying (77) and (78) into (14) and (15), we can obtain (21).

C. Proof of Theorem 2

RMRC
k ≈

log2

1+
PavgE

{
‖geq,k‖4

}
∑
j 6=k

PavgE
{∣∣∣gHeq,kgeq,j∣∣∣2}+E

{
‖geq,k‖2

}
.

(79)
According to the definition of Geq , we can further write

geq,k = Fgk =

√
βk

Kk + 1
Fhw,k +

√
Kkβk
Kk + 1

Fh̄k, (80)

where hw,k and h̄k are the kth column vector of Hw and H̄,
respectively. Recalling the property of the DFT transformation
of a complex Gaussian vector, we know that Fhw,k is still
an Ns dimensional complex Gaussian vector. Therefore after
derivations, we get the expression of the third expectation item
in (79) as

E
{
‖geq,k‖2

}
=

βk
Kk + 1

(
Ns +Kk

∥∥Fh̄k
∥∥2
)

=
βk

Kk + 1
χ

(k)
3 ,

(81)

and the first and the second expectation items can be found in
(81) and (82) respectively at the bottom of this page. Applying
(81)–(82) into (79), we get the desired result.

E
{
‖geq,k‖4

}
=

β2
k

(Kk+1)
2

[
K2
k

∥∥Fh̄k
∥∥4

+2Kk (Ns+1)
∥∥Fh̄k

∥∥2
+Ns (Ns+1)

]
=

β2
k

(Kk+1)
2

[
χ

(k)2
3 +2χ

(k)
3 −Ns

]
, (81)

E
{∣∣gHeq,kgeq,j∣∣2} =

βkβj
(Kk + 1) (Kj + 1)

(
KkKj

∣∣∣h̄Hj FHFh̄k

∣∣∣2 +Kk

∥∥Fh̄k
∥∥2

+Kj

∥∥Fh̄j
∥∥2

+Ns

)
=

βkβj
(Kk + 1) (Kj + 1)

(
KkKj

∣∣∣h̄Hj FHFh̄k

∣∣∣2 +Kj

∥∥Fh̄j
∥∥2

+ χ
(k)
3

)
.

(82)
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D. Proof of Theorem 3

Since ρ is a constant during the coherence time of the
channel, we can remove the expectation symbol in (40) and
rewrite it as

RZF1 =

Nu∑
k=1

log2

(
1 + Pρ2

)
. (83)

Then we turn to the calculation for the expression of ρ2. After
a few steps of matrix transformation, it can be derived that

E
{∥∥W̄∥∥2

F

}
= E

{
trace

(
W̄

H
W̄
)}

= E
{

trace
((

GT
eqG

∗
eq

)−1
)}

=

Nu∑
k=1

β−1
k E

{[
R−1
eq

]∗
k,k

}
.

(84)

Since Σ̂ is symmetric and Hermitian with positive main
diagonal elements, its inverse matrix still holds the same
characteristics, that is,

[
Σ̂
−1
]∗
k,k

=
[
Σ̂
−1
]
k,k

for k =

1, . . . , Nu. Then, we recall the central Wishart approximation
of Req ≈ ΛH1H

H
1 . Utilizing Theorem of [36], we know that

γk = 1
/[

R−1
eq

]
k,k

satisfies the Chi-squared distribution

f (γk) =

[
Σ̂
−1
]
k,k
e
−γk

[
Σ̂

−1
]
k,k

(Ns −Nu)!

(
γk

[
Σ̂
−1
]
k,k

)Ns−Nu

,

(85)
and the expectation of γ−1

k is

E
{
γ−1
k

}
=

[
Σ̂
−1
]
k,k

Ns −Nu
. (86)

Substituting

ρ2 =
1

Nu∑
k=1

β−1
k E

{
γ

(−1)∗
k

} =
(Ns −Nu)

Nu∑
k=1

β−1
k

[
Σ̂
−1
]
k,k

(87)

into (83), we get the approximation (42).

E. Proof of Theorem 4

Under this condition, ρ1, . . . , ρNu
are not constant any

more. Then the achievable rate (40) can be approximated by

RZF2 ≈
Nu∑
k=1

log2

(
1 + PE

{
ρ2
k

})
. (88)

Recalling the definition of ρk, we know

ρ2
k =

1

Nu‖w̄k‖2
. (89)

Utilizing the matrix transformation property, ‖w̄k‖2 can be
calculated as

‖w̄k‖2 =
[
W̄W̄

H
]
k,k

= β−1
k

[
R−1
eq

]∗
k,k

= β−1
k γ

(−1)∗
k . (90)

According to (85), we can derive that

E
{
ρ2
k

}
=

βk
Nu

E {γ∗k} =
βk (Ns −Nu + 1)

Nu

[
Σ̂
−1
]
k,k

. (91)

Therefore, applying (91) into (88), (44) is formulated.

F. Proof of Theorem 5

According to Lemma 1 of [31], (49) can be approximated
by

RMRT1 ≈
Nu∑
k=1

log2

1 +
Pρ2

kE
{
‖geq,k‖4

}
∑
j 6=k

Pρ2
jE
{∣∣∣gHeq,kgeq,j∣∣∣2}+ 1

,
(92)

where the expressions of the two expectation items can be
found in (81) and (82), respectively. When it comes to ρ2

k,
we first write the definition of long-term normalization of the
MRT precoder as

ρ = ρ1 = ρ2 = · · · = ρNu
=

1√
E
{
‖Geq‖2F

} . (93)

Then we can derive that

E
{
‖Geq‖2F

}
= E

{
Nu∑
i=1

‖geq,i‖2
}

=

Nu∑
i=1

βi
Ki + 1

(
Ns +Ki

∥∥Fh̄i
∥∥2
)

=

Nu∑
i=1

βi
Ki + 1

χ
(i)
3 .

(94)

Applying (81), (82) and (94) into (92), it returns (50).

G. Proof of Theorem 6

According to the definition of the short-term normalization
of the MRT precoders, i.e.,

ρk =
1√

Nu ‖geq,k‖
, (95)

the achievable rate satisfies

RMRT2 =

Nu∑
k=1

E

log2

1+
P
Nu
‖geq,k‖2∑

j 6=k

P |gH
eq,kgeq,j|2

Nu‖geq,j‖2
+1


. (96)

Recalling Lemma 1 of [31], (96) can be approximated by

RMRT2 ≈
Nu∑
k=1

log2

1 +

P
Nu

E
{
‖geq,k‖2

}
∑
j 6=k

PE
{
|gH

eq,kgeq,j|2
}

NuE{‖geq,j‖2} + 1

. (97)

Utilizing the results in (81) and (82), we can obtain (51).
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