147 research outputs found

    Improved Lightweight Implementations of CAESAR Authenticated Ciphers

    Get PDF
    Authenticated ciphers offer potential benefits to resource-constrained devices in the Internet of Things (IoT). The CAESAR competition seeks optimal authenticated ciphers based on several criteria, including performance in resource-constrained (i.e., low-area, low-power, and low-energy) hardware. Although the competition specified a ”lightweight” use case for Round 3, most hardware submissions to Round 3 were not lightweight implementations, in that they employed architectures optimized for best throughput-to-area (TP/A) ratio, and used the Pre- and PostProcessor modules from the CAE-SAR Hardware (HW) Development Package designed for high-speed applications. In this research, we provide true lightweight implementations of selected ciphers (ACORN, NORX, CLOC-AES, SILC-AES, and SILC-LED). These implementations use an improved version of the CAESAR HW DevelopmentPackage designed for lightweight applications, and are fully compliant with the CAESAR HW Application programming interface for Authenticated Ciphers. Our lightweight implementations achieve an average of 55% reduction in area and40% reduction in power compared to their corresponding high-speed versions. Although the average energy per bit of lightweight ciphers increases by a factor of 3.6, the lightweight version of NORX actually uses 47% less energy per bit than its corresponding high-speed implementation

    THE HARDWARE PERFORMANCE OF AUTHENTICATED ENCRYPTION MODES

    Get PDF
    Abstract Authenticated encryption has long been a vital operation in cryptography by its ability to provide confidentiality, integrity and authenticity at the same time. Its use has progressed in parallel with the worldwide use of Internet Protocol (IP), which has led to development of several new schemes as well as improved versions of existing ones. There have already been studies investigating software performance of various schemes. However, performance of authenticated encryption schemes on hardware has been left as an open question. We study the comprehensive evaluation of hardware performance of the most commonly used authenticated encryption modes CCM, GCM, OCB3 and EAX. These modes are block cipher based with additional authentication data (AAD). In order to make our evaluation fair, we have implemented each scheme with AES block cipher algorithm. In our evaluation, we targeted ASIC platforms and used 45 nm generic NANGATE Open Cell Library for syntheses. In each design, we have targeted minimizing the time-area product while maximizing the throughput. In the results, area, speed, time-area product, throughput, and power figures are presented for each scheme. Finally, we provide an unbiased discussion on the impact of the structure and complexity of each scheme on hardware implementation, together with recommendations on hardware-friendly authenticated encryption scheme design

    Security analysis of NIST-LWC contest finalists

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringTraditional cryptographic standards are designed with a desktop and server environment in mind, so, with the relatively recent proliferation of small, resource constrained devices in the Internet of Things, sensor networks, embedded systems, and more, there has been a call for lightweight cryptographic standards with security, performance and resource requirements tailored for the highly-constrained environments these devices find themselves in. In 2015 the National Institute of Standards and Technology began a Standardization Process in order to select one or more Lightweight Cryptographic algorithms. Out of the original 57 submissions ten finalists remain, with ASCON and Romulus being among the most scrutinized out of them. In this dissertation I will introduce some concepts required for easy understanding of the body of work, do an up-to-date revision on the current situation on the standardization process from a security and performance standpoint, a description of ASCON and Romulus, and new best known analysis, and a comparison of the two, with their advantages, drawbacks, and unique traits.Os padrões criptográficos tradicionais foram elaborados com um ambiente de computador e servidor em mente. Com a proliferação de dispositivos de pequenas dimensões tanto na Internet of Things, redes de sensores e sistemas embutidos, apareceu uma necessidade para se definir padrões para algoritmos de criptografia leve, com prioridades de segurança, performance e gasto de recursos equilibrados para os ambientes altamente limitados em que estes dispositivos operam. Em 2015 o National Institute of Standards and Technology lançou um processo de estandardização com o objectivo de escolher um ou mais algoritmos de criptografia leve. Das cinquenta e sete candidaturas originais sobram apenas dez finalistas, sendo ASCON e Romulus dois desses finalistas mais examinados. Nesta dissertação irei introduzir alguns conceitos necessários para uma fácil compreensão do corpo deste trabalho, assim como uma revisão atualizada da situação atual do processo de estandardização de um ponto de vista tanto de segurança como de performance, uma descrição do ASCON e do Romulus assim como as suas melhores análises recentes e uma comparação entre os dois, frisando as suas vantagens, desvantagens e aspectos únicos

    Face-off between the CAESAR Lightweight Finalists: ACORN vs. Ascon

    Get PDF
    Authenticated ciphers potentially provide resource savings and security improvements over the joint use of secret-key ciphers and message authentication codes. The CAESAR competition has aimed to choose the most suitable authenticated ciphers for several categories of applications, including a lightweight use case, for which the primary criteria are performance in resource-constrained devices, and ease of protection against side channel attacks (SCA). In March 2018, two of the candidates from this category, ACORN and Ascon, were selected as CAESAR contest finalists. In this research, we compare two SCA-resistant FPGA implementations of ACORN and Ascon, where one set of implementations has area consumption nearly equivalent to the defacto standard AES-GCM, and the other set has throughput (TP) close to that of AES-GCM. The results show that protected implementations of ACORN and Ascon, with area consumption less than but close to AES-GCM, have 23.3 and 2.5 times, respectively, the TP of AES-GCM. Likewise, implementations of ACORN and Ascon with TP greater than but close to AES-GCM, consume 18 percent and 74 percent of the area, respectively, of AES-GCM

    APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography

    Get PDF
    The domain of lightweight cryptography focuses on cryptographic algorithms for extremely constrained devices. It is very costly to avoid nonce reuse in such environments, because this requires either a hardware source of randomness, or non-volatile memory to store a counter. At the same time, a lot of cryptographic schemes actually require the nonce assumption for their security. In this paper, we propose APE as the first permutation-based authenticated encryption scheme that is resistant against nonce misuse. We formally prove that APE is secure, based on the security of the underlying permutation. To decrypt, APE processes the ciphertext blocks in reverse order, and uses inverse permutation calls. APE therefore requires a permutation that is both efficient for forward and inverse calls. We instantiate APE with the permutations of three recent lightweight hash function designs: Quark, Photon, and Spongent. For any of these permutations, an implementation that sup- ports both encryption and decryption requires less than 1.9 kGE and 2.8 kGE for 80-bit and 128-bit security levels, respectively

    SUNDAE: Small Universal Deterministic Authenticated Encryption for the Internet of Things

    Get PDF
    Lightweight cryptography was developed in response to the increasing need to secure devices for the Internet of Things. After significant research effort, many new block ciphers have been designed targeting lightweight settings, optimizing efficiency metrics which conventional block ciphers did not. However, block ciphers must be used in modes of operation to achieve more advanced security goals such as data confidentiality and authenticity, a research area given relatively little attention in the lightweight setting. We introduce a new authenticated encryption (AE) mode of operation, SUNDAE, specially targeted for constrained environments. SUNDAE is smaller than other known lightweight modes in implementation area, such as CLOC, JAMBU, and COFB, however unlike these modes, SUNDAE is designed as a deterministic authenticated encryption (DAE) scheme, meaning it provides maximal security in settings where proper randomness is hard to generate, or secure storage must be minimized due to expense. Unlike other DAE schemes, such as GCM-SIV, SUNDAE can be implemented efficiently on both constrained devices, as well as the servers communicating with those devices. We prove SUNDAE secure relative to its underlying block cipher, and provide an extensive implementation study, with results in both software and hardware, demonstrating that SUNDAE offers improved compactness and power consumption in hardware compared to other lightweight AE modes, while simultaneously offering comparable performance to GCM-SIV on parallel high-end platforms

    General Classification of the Authenticated Encryption Schemes for the CAESAR Competition

    Get PDF
    An Authenticated encryption scheme is a scheme which provides privacy and integrity by using a secret key. In 2013, CAESAR (the ``Competition for Authenticated Encryption: Security, Applicability, and Robustness\u27\u27) was co-founded by NIST and Dan Bernstein with the aim of finding authenticated encryption schemes that offer advantages over AES-GCM and are suitable for widespread adoption. The first round started with 57 candidates in March 2014; and nine of these first-round candidates where broken and withdrawn from the competition. The remaining 48 candidates went through an intense process of review, analysis and comparison. While the cryptographic community benefits greatly from the manifold different submission designs, their sheer number implies a challenging amount of study. This paper provides an easy-to-grasp overview over functional aspects, security parameters, and robustness offerings by the CAESAR candidates, clustered by their underlying designs (block-cipher-, stream-cipher-, permutation-/sponge-, compression-function-based, dedicated). After intensive review and analysis of all 48 candidates by the community, the CAESAR committee selected only 30 candidates for the second round. The announcement for the third round candidates was made on 15th August 2016 and 15 candidates were chosen for the third round

    A Comprehensive Framework for Fair and Efficient Benchmarking of Hardware Implementations of Lightweight Cryptography

    Get PDF
    In this paper, we propose a comprehensive framework for fair and efficient benchmarking of hardware implementations of lightweight cryptography (LWC). Our framework is centered around the hardware API (Application Programming Interface) for the implementations of lightweight authenticated ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the minimum compliance criteria, interface, and communication protocol supported by the LWC core. The proposed API is intended to meet the requirements of all candidates submitted to the NIST Lightweight Cryptography standardization process, as well as all CAESAR candidates and current authenticated cipher and hash function standards. In order to speed-up the development of hardware implementations compliant with this API, we are making available the LWC Development Package and the corresponding Implementer’s Guide. Equipped with these resources, hardware designers can focus on implementing only a core functionality of a given algorithm. The development package facilitates the communication with external modules, full verification of the LWC core using simulation, and generation of optimized results. The proposed API for lightweight cryptography is a superset of the CAESAR Hardware API, endorsed by the organizers of the CAESAR competition, which was successfully used in the development of over 50 implementations of Round 2 and Round 3 CAESAR candidates. The primary extensions include support for optional hash functionality and the development of cores resistant against side-channel attacks. Similarly, the LWC Development Package is a superset of the part of the CAESAR Development Package responsible for support of Use Case 1 (lightweight) CAESAR candidates. The primary extensions include support for hash functionality, increasing the flexibility of the code shared among all candidates, as well as extended support for the detection of errors preventing the correct operation of cores during experimental testing. Overall, our framework supports (a) fair ranking of candidates in the NIST LWC standardization process from the point of view of their efficiency in hardware before and after the implementation of countermeasures against side-channel attacks, (b) ability to perform benchmarking within the limited time devoted to Round2 and any subsequent rounds of the NIST LWC standardization process, (c) compatibility among implementations of the same algorithm by different designers and (d) fast deployment of the best algorithms in real-life applications

    Impact of System-on-Chip Integration of AEAD Ciphers

    Get PDF
    Authenticated Encryption has emerged as a high-performance and resource-efficient solution to achieve message authentication in addition to encryption. This has motivated extensive study of algorithms for Authenticated Encryption with Associated Data (AEAD). While there have been significant efforts to benchmark these algorithms on hardware and software platforms, very little work has focused on the integration of these ciphers onto a System-on-Chip (SoC). This work looks at design alternatives for the SoC integration of few of the finalists of the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR). We highlight the penalty on area and performance that is incurred during SoC integration, and analyze the impact of design choices on the same. Our observations indicate that integration onto a system significantly affects the lightweight and high-performance properties of these ciphers, and achieving a trade-off requires careful design decisions
    corecore