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Abstract. Lightweight cryptography was developed in response to the increasing
need to secure devices for the Internet of Things. After significant research effort,
many new block ciphers have been designed targeting lightweight settings, optimizing
efficiency metrics which conventional block ciphers did not. However, block ciphers
must be used in modes of operation to achieve more advanced security goals such as
data confidentiality and authenticity, a research area given relatively little attention
in the lightweight setting. We introduce a new authenticated encryption (AE) mode
of operation, SUNDAE, specially targeted for constrained environments. SUNDAE
is smaller than other known lightweight modes in implementation area, such as
CLOC, JAMBU, and COFB, however unlike these modes, SUNDAE is designed as a
deterministic authenticated encryption (DAE) scheme, meaning it provides maximal
security in settings where proper randomness is hard to generate, or secure storage
must be minimized due to expense. Unlike other DAE schemes, such as GCM-SIV,
SUNDAE can be implemented efficiently on both constrained devices, as well as the
servers communicating with those devices. We prove SUNDAE secure relative to
its underlying block cipher, and provide an extensive implementation study, with
results in both software and hardware, demonstrating that SUNDAE offers improved
compactness and power consumption in hardware compared to other lightweight
AE modes, while simultaneously offering comparable performance to GCM-SIV on
parallel high-end platforms.
Keywords: lightweight · block cipher · mode of operation · deterministic authenticated
encryption · nonce misuse resistance

1 Introduction
As computing on increasingly small devices becomes widespread, enabling security — and
in particular cryptography — in such constrained environments becomes critical. Recog-
nizing the fact that cryptographic algorithms optimized for high-performance computing
are not necessarily optimal for constrained environments, various research and standard-
ization efforts have set out to explore lightweight cryptography, such as ISO/IEC 29192,
CRYPTREC, the CAESAR competition [CAE16], and NIST’s lightweight project [nis17].

Lightweight block cipher design is one of the most mature research areas, with construc-
tions going back to 2007, optimizing for a variety of efficiency goals such as latency [BJK+16],
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area [CDK09], and energy [BBI+15]. Although optimizing block cipher design is an impor-
tant first step, block ciphers on their own are only building blocks, and should be used in
modes of operation to achieve security. In particular, ensuring data confidentiality and
authenticity is done using an authenticated encryption (AE) mode of operation.

Even if a block cipher is ideally suited to a given environment when considered in
isolation, it could be used in an AE mode of operation which erases many of the block
cipher’s benefits. In fact, AE modes are often not designed to account for the different
requirements imposed by lightweight settings. The mode might require two separate,
independent keys, as with SIV [RS06], a state size of at least thrice that of the underlying
block size, as with COPA [ABL+13], or multiple initial block cipher calls before it can
start processing data, like in EAX [BRW04].

Exceptions include the following AE modes CLOC [IMGM14], JAMBU [WH16], and
COFB [CIMN17a], which try to reduce state size and number of block cipher calls to
optimize for short messages. However, the challenges imposed by constrained environments
are not limited to efficiency constraints, as fundamental security assumptions might be
difficult to guarantee as well. For example, devices might lack proper randomness sources,
or have limited secure storage to maintain state, in which case they might not be able
to generate the nonces necessary to ensure that modes such as CLOC, JAMBU, and
COFB maintain security. In such cases, algorithms which provide more robust security
are better, such as nonce-misuse resistant AE [RS06], as they do not fail outright in the
wrong conditions.

An efficient nonce-misuse resistant dedicated instantiation of SIV called GCM-SIV was
proposed by Gueron and Lindell at CCS 2015 [GL15]. While it attains very competitive
performance in software on recent Intel architectures, it requires full multiplications in
GF (2128), which makes the scheme unattractive in hardware and on resource-constraint
platforms. The importance of good implementation characteristics on all platforms was
already pointed out in [MM12]: the same cryptographic algorithms used on the small devices
of the Internet of Things also have to be employed on the servers that are communicating
with them. Crucially, however, the few designs explicitly aiming at being simultaneously
efficient on lightweight as well as high-performance platforms such as [BMR+13,LPTY16]
do not provide nonce-misuse resistant authenticated encryption. In this paper, we aim to
address this gap.

1.1 Contributions
We introduce an AE mode of operation, SUNDAE, which

1. competes with CLOC and JAMBU in number of block cipher calls for short messages,
2. improves over those algorithms and COFB in terms of state size,
3. provides maximal robustness to a lack of proper randomness or secure state, and
4. simultaneously offers good implementation characteristics on lightweight and high-

performance platforms.

SUNDAE is designed to be a deterministic authenticated encryption mode [RS06], which
means that as long as its input is unique, it maintains both data confidentiality and
authenticity. If inputs are repeated, then only that fact is leaked.

SUNDAE processes inputs of the form (A,M), where A is associated data which need
not be encrypted, and M is plaintext data to be encrypted. If M is empty, then SUNDAE
becomes a MAC algorithm. If needed, nonces are included as the first x bits of associated
data, where x is a parameter fixing the nonce’s length per key.

SUNDAE’s structure is based on SIV [RS06], however it is optimized for lightweight
settings: it uses one key, consists of a cascade of block cipher calls, and its only additional
operations consist of XOR and multiplication by fixed constants. The use of efficienct
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intermediate functions is inspired by GCBC [Nan09]. Using an n-bit block cipher, aside
from storage for the key, CLOC requires 2n-bit state, JAMBU 1.5n-bit state, and COFB
1.5n-bit state, whereas SUNDAE only uses an n-bit state.

SUNDAE’s performance is fundamentally limited by the fact that it requires two block
cipher calls per data block, hence SUNDAE works best for communication which consists
of short messages. For a message consisting of one block of nonce, associated data, and
plaintext, COFB uses 3 block cipher calls, CLOC requires 4, JAMBU 5, and SUNDAE 5
as well (which can be reduced to 4 if one block cipher call can be precomputed). However,
SUNDAE’s strength lies in settings where communication outweighs computational costs:
if the combination of associated data and plaintext is never repeated, the nonce is no
longer needed, and communication or synchronization costs are reduced, in addition to
reducing the block cipher calls to 4.

SUNDAE is inherently serial, and although the client side is important, it is not
everything, especially given GCM-SIV’s excellent performance using AES-NI on Haswell
and Skylake. Even though parallel modes inherently profit most from modern parallel
architectures, the Comb scheduling technique proposed in [BLT15] can mitigate this issue
even for serial modes, at least on the server side. Therefore, we can afford to deploy a
serial approach to design a novel mode of operation.

1.2 Related Work
Aside from lightweight block ciphers, many other primitives have been optimized for the
lightweight setting, such as stream ciphers [CP08] and hash functions [BKL+13,GPP11], as
well as dedicated designs achieving authenticated encryption, such as Grain-128a [ÅHJM11].
Furthermore, permutation-based cryptography provides an approach to designing authenti-
cated encryption with better trade-offs suited to lightweight settings [DEMS14,ABB+14a,
BDP+14a,BDP+14b,AJN14,BDPV11,ABB+14b]. Applications which have the flexibility
to choose the underlying primitive will often find the better choice in using permutation-
based cryptography. However, there are settings where for legacy reasons one is restricted
to using block ciphers — our focus is on designing a scheme for such settings.

Nonce-misuse resistance has been studied extensively over the past years. Initially
introduced by Rogaway and Shrimpton [RS06], constructions include HBS [IY09b],
BTM [IY09a], SCT [PS16], and GCM-SIV [GL15]. Böck, Zauner, Devlin, Somorovsky,
and Jovanovic [BZD+16] investigate the applicability of nonce-misusing attacks in TLS by
searching for servers which repeat nonces with GCM. Security definitions describing weaker
levels of nonce misuse have been explored as well [FFL12,HRRV15,ABL+13,ADL17].

When run with empty plaintext data, SUNDAE looks similar to MAC algorithms such
as GCBC [Nan09] and CBCR [ZWZW11].

2 Notation
Unless specified otherwise, all sets are finite. If X is a set, then Xn is the set of length-n
sequences of X, X≤q the set of sequences of X of length not greater than q including the
empty sequence, and X∗ the set of finite-length sequences of X. If X ∈ X∗, then |X| is its
length. Given X,Y ∈ X∗, concatenation of X and Y is denoted X‖Y , or simply XY when
no confusion arises.

The notation x 7→ y is used to denote a function which maps the symbol x on the left
to the symbol y on the right. If f is a function with domain X× Y, then we write f(X,Y )
and fX(Y ) interchangeably, and use the notation fX to denote the function obtained by
fixing the first input of f to X.

Throughout the paper, n denotes block size. The set of blocks is {0, 1}≤n, and B :=
{0, 1}n denotes the subset of complete blocks, with all other blocks called incomplete. The
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element 0n ∈ B denotes the complete block consisting of only zeroes, and the function
pad : {0, 1}≤n → B pads an incomplete block X with a 1 followed by n− |X| − 1 zeroes,
and leaves complete blocks as-is:

pad(X) =
{
X ‖ 10n−|X|−1 if |X| < n

X otherwise .
(1)

The empty string is denoted ε. Given two equal-length elements X,Y ∈ {0, 1}∗, X ⊕Y
denotes their bitwise XOR. If X ∈ {0, 1}∗, then bXcm denotes truncating X to the m most
significant bits of X. Splitting a non-empty string X into blocks is done by computing its
block length `, which is the smallest integer greater than or equal to |X| /n, and processing
X as

X[1]X[2] · · ·X[`− 1]X[`] n←− X (2)

where |X[i]| = n for 1 ≤ i < `, and 0 < |X[`]| ≤ n.
The set of complete blocks can be viewed as a finite field by mapping strings to

polynomials over finite fields. For a positive divisor i of n, we map the bits b0, . . . , bn−1
to i elements of GF (2)[x]/(m) for a fixed irreducible polynomial m(x) of degree n/i over
GF (2): a0 = b0 + bix + · · ·+ bn−ixn/i−1, a1 = b1 + bi+1x + · · ·+ bn−i+1xn/i−1, . . . , ai−1 =
bi−1 +b2i−1x+ · · ·+bn−1xn/i−1. Given such a mapping and X ∈ B, we let 2×X and 4×X
denote multiplication by x and x2 of all a0, . . . , ai−1 in their polynomial basis, respectively.

Concrete instantiations for n = 64, 128 are proposed in Sect. 5.2, optimized for block
ciphers with 4-bit or 8-bit S-boxes, respectively.

The function E : K × B → B denotes a block cipher, with K the set of keys. The
expression a ? b : c evaluates to b if a is true and c otherwise.

3 Specification
SUNDAE consists of an encryption algorithm enc and a decryption algorithm dec. It is
parametrized by a block cipher E : K×B→ B, which fixes a key set K and block size n, and
a representation of B as a finite field. The encryption algorithm enc takes as input a key
K ∈ K, associated data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. It outputs a ciphertext
C ∈ {0, 1}n+|M |, where the first n bits of the ciphertext are interpreted as a tag. The
decryption algorithm dec takes as input a key K ∈ K, associated data A ∈ {0, 1}∗, and a
ciphertext C ∈ {0, 1}n × {0, 1}∗, and outputs M ∈ {0, 1}|C|−n, or the error symbol ⊥ if
verification is not successful. The encryption and decryption algorithms are such that for
all K ∈ K, A ∈ {0, 1}∗, M ∈ {0, 1}∗, with |A|+ |M | > 0,

decK
(
A, encK(A,M)

)
= M . (3)

The key K ∈ K must be generated as specified by the underlying block cipher E, which
usually involves choosing K uniformly at random from K. After fixing a key, uniqueness
should be guaranteed of each pair (A,M) of associated data and message input; associated
data can be repeated if the message is changed, and message input may be repeated if
the associated data is changed. Caution must be taken so that intermediate values used
during encryption and decryption are not leaked. In particular, unverified plaintext from
the decryption algorithm should not be released [ABL+14]. Finally, proper operation of
SUNDAE requires changing keys well before the bound from Thm. 1 becomes void.

Alg. 1 and Alg. 2 provide pseudocode for enc and dec respectively, and Fig. 1 gives a
diagram of encryption. All block cipher calls are performed with a fixed key K. Both
encryption and decryption algorithms only use the “forward” block cipher EK , hence the
block cipher inverse is not needed.
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Algorithm 1: encK(A,M)

Input: K ∈ K, A ∈ {0, 1}∗, M ∈ {0, 1}∗

Output: C ∈ {0, 1}n+|M |

1 b1 ← |A| > 0 ? 1 : 0
2 b2 ← |M | > 0 ? 1 : 0
3 V ← EK

(
b1‖b2‖0n−2)

4 T ← V // Initial tag
5 if |A| > 0 then
6 A[1]A[2] · · ·A[`A] n←− A
7 for i = 1 to `A − 1 do
8 V ← EK

(
V ⊕A[i]

)
9 end

10 X ← |A[`A]| < n ? 2 : 4
11 V ← EK

(
X ×

(
V ⊕ pad(A[`A])

))
12 T ← V

13 end

14 if |M | > 0 then
15 M [1]M [2] · · ·M [`M ] n←−M
16 for i = 1 to `M − 1 do
17 V ← EK

(
V ⊕M [i]

)
18 end
19 X ← |M [`M ]| < n ? 2 : 4
20 V ← EK

(
X ×

(
V ⊕ pad(M [`M ])

))
21 T ← V
22 for i = 1 to `M do
23 V ← EK

(
V
)

24 C[i]← bV c|M [i]| ⊕M [i]
25 end
26 return TC[1] · · ·C[`M ]
27 end
28 return T

Algorithm 2: decK(A,C)
Input: K ∈ K, A ∈ {0, 1}∗, C ∈ {0, 1}n × {0, 1}∗

Output: ⊥ or M ∈ {0, 1}|C|−n

1 C[1]C[2] · · ·C[`] n←− C
2 V ← C[1]
3 for i = 2 to ` do
4 V ← EK

(
V )

5 M [i− 1]← bV c|M [i]| ⊕ C[i]
6 end
7 M ← ` > 1 ? M [1]M [2] · · ·M [`− 1] : ε
8 T ← bencK(A,M)cn
9 if T 6= C[1] then

10 return ⊥
11 return M
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EK110n−2 EK EK EK EK EK EK+ + + +

A[1] A[2] M [1] M [2]

pad pad

× ×

b·c|M [2]|

+ +M [1] M [2]

C[1] C[2]T

(a) SUNDAE encryption with associated and plaintext data. The box below the rightmost block
cipher call represents truncation.

EK100n−2 EK EK+ +

A[1] A[2]

pad

×

T

(b) SUNDAE without plaintext data, meaning only a tag is produced, like a MAC.

EK010n−2 EK EK EK EK+ +

M [1] M [2]

pad

×

b·c|M [2]|

+ +M [1] M [2]

C[1] C[2]T

(c) SUNDAE encryption with only plaintext data.

Figure 1: Diagrams of SUNDAE encryption and authentication. The initial block ci-
pher call changes depending upon the presence of associated and plaintext data. The
multiplication × by 2 or 4 and depends on the length of the last blocks.

4 Security Analysis

4.1 Intuition and Proof Overview
SUNDAE is analyzed as a deterministic authenticated encryption (DAE) algorithm [RS06],
and therefore must achieve authenticity, and confidentiality up to repetition of inputs.
Although our formal analysis considers confidentiality and authenticity simultaneously,
here we give an intuitive explanation which considers the two goals separately.

SUNDAE generally follows the MAC-then-encrypt paradigm, much like SIV [RS06],
since SUNDAE processes associated data and plaintext first with a MAC algorithm, and
then uses the MAC algorithm output as the “IV” input to the stream cipher OFB [Nat80].
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However, the use of a single key for both the MAC algorithm and stream cipher means that
SIV’s analysis does not carry over. Furthermore, although SUNDAE exhibits similarities
with GCBC [Nan09] and OFB, the analyses of those schemes have limited applicability to
SUNDAE as the combination of deterministic encryption and authentication introduces
complications which do not arise when trying to achieve the goals separately. Therefore a
proof of SUNDAE requires new arguments, albeit using techniques from throughout the
literature.

Our formal argument starts with the simplifying step of applying a PRP-PRF switch
to analyze SUNDAE with uniform random function ρ. Although this limits our analysis
to the birthday bound, SUNDAE’s security will anyway be limited by birthday bound
attacks, for the same reasons the CBC and OFB encryption modes are.

Confidentiality After the PRP-PRF switch, confidentiality can be argued as follows.
Since plaintext is encrypted into ciphertext using the stream cipher OFB, confidentiality
is maintained if the stream cipher output looks uniformly random to the adversary. In the
proof we end up setting aside the fact that plaintext is XORed with the stream cipher
output to produce ciphertext since we are considering chosen-plaintext adversaries; the
resulting simplified construction is denoted enc-stream in the proof.

OFB maintains security if its “IV” is unpredictable to the adversary. In the case
of SUNDAE, the IV corresponds to the tag, hence intuitively, confidentiality will be
maintained if the tag is unpredictable. Unlike OFB, we need to take into account the MAC
algorithm which produces the tag. Complications arise due to the fact that associated data
and plaintext data are processed similarly, with the main method of domain separation
being the intermediate functions.

A large part of the formal argument is proving that SUNDAE’s domain separation
works. To do so, we calculate the probability that any two ρ-inputs collide in a meaningful
way — a meaningless ρ-collision would be one where the adversary keeps the prefix of two
different queries the same, resulting in the same ρ-input since SUNDAE is deterministic.
As long as there are no meaningful collisions, it is easy to argue SUNDAE’s confidentiality.
Many of the details in the calculation of the ρ-collision bound have little to do with
SUNDAE or with the specific intermediate functions that we choose, hence we abstract
away details of the argument and prove a more general result in Sect. 4.10.

To connect SUNDAE with the abstract analysis of Sect. 4.10, we recast SUNDAE into
different notation in Sect. 4.5 so that the intermediate functions become explicit. This way
SUNDAE can be viewed as a cascade of ρ-queries, alternated with intermediate function
calls. The sequence of intermediate function calls is denoted I(A,M), which makes explicit
the fact that they only depend on the associated data and plaintext input. Then, following
Patarin’s method, we focus on analyzing transcripts of interactions between adversaries
and SUNDAE, thereby fixing adversarial input, and as a result intermediate functions.
Each transcript then gets converted into a graph in Sect. 4.8.3, which characterizes the
relationship between all the ρ-inputs: each node of the graph represents an intermediate
function, and if you follow the graph from the “root” node to a leaf node, while applying ρ
while going from node to node, you will have executed a call to SUNDAE.

Once the connection between transcripts and graphs has been established, Sect. 4.8.4
describes the types of collisions that can occur, with the important ones being “structural”
and “accidental”. A structural collision is one which would happen if I(A,M) were poorly
designed, by, for example, using the same intermediate functions for two unrelated inputs.
Analysis of accidental collisions is done in Sect. 4.10.

Authenticity Consider an adversary which somehow produces a forgery (C, T ). This
means it found a tag T such that the output of the MAC algorithm during the (C, T )-
decryption call equals T . In particular, intuitively, it would have had to have found a
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pre-image or second pre-image of the underlying MAC algorithm, since, by definition,
C was never output by a previous encryption query (otherwise it would not be a valid
forgery). The bulk of the formal argument involves showing that it is in fact difficult for
the adversary to produce such an event.

We introduce an intermediate construction to arrive at our conclusion. First, the
decryption algorithm of SUNDAE is rewritten in terms of enc-stream and stream, the latter
essentially describing OFB mode. After removing the plaintext XOR, we end up with
the oracles (enc-stream, dec-stream). Looking more closely at dec-stream, one sees that its
internal stream call could be recreated with the enc-stream output that is available to the
adversary, since any dec-stream call that uses a tag input which is equal to some previous
enc-stream output, will make the exact same ρ-calls as that previous enc-stream query.
It is only when a dec-stream call is made which uses tag input which is unrelated to all
previous enc-stream output, or when a sufficiently long dec-stream call is made that new
ρ-queries are made. Using this knowledge, we introduce the intermediate construction
dec-stream∗, which tries to recreate dec-stream as best as possible using newly generated
uniform random values if necessary to recreate missing ρ-calls.

The argument on the difficultly to find pre-images and second pre-images is easy to
reason about with dec-stream∗, as shown in Sect. 4.7. The rest of the authenticity proof
focuses on bounding the distance between (enc-stream, dec-stream) and the intermediate
construction with dec-stream∗. Then, as explained above for confidentiality, as long as
no ρ-collision occurs, the adversary will not be able to distinguish SUNDAE from the
intermediate world which uses dec-stream∗. The general result from Sect. 4.10 is then
re-used.

4.2 Security Definitions, and Statements
For the security definitions we will need the following concepts. Oracles and adversaries
are probabilistic algorithms. Given two sequences of oracles (f1, . . . , fµ) and (g1, . . . , gµ),
we denote the advantage of an adversary A in distinguishing (f1, . . . , fµ) from (g1, . . . , gµ)
by

∆
A

(f1, . . . , fµ ; g1, . . . , gµ) :=
∣∣∣P [Af1,...,fµ → 1

]
−P

[
Ag1,...,gµ → 1

]∣∣∣ , (4)

where the notation AO1,...,Oµ → 1 indicates that A outputs 1 when interacting with oracles
O1, . . . , Oµ.

A uniformly distributed random function (URF) over X is a random variable uniformly
distributed over the set of all functions on X. Let $i,j,k represent a family of independent
URFs from {0, 1}i × {0, 1}j to {0, 1}k for i, j, k ≥ 0, then define $ : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ to be

$(A,M) := $|A|,|M |,n+|M |(A,M) . (5)

Definition 1 (DAE Security). Adversary A’s DAE advantage against SUNDAE is defined
as

DAE(A) := ∆
A

(enck, decK ; $,⊥) , (6)

where K is chosen uniformly at random from K and ⊥ is an oracle that always outputs
⊥. Letting (O1, O2) denote the oracles A interacts with, the adversary may not query
O2(A,C) if previously a query O1(A,M) with output C was made.

We follow the concrete security paradigm [BDJR97] by explicitly describing SUNDAE’s
security in terms of adversarial resources. An adversary’s associated data block length cost
is the sum of the block lengths of the associated data that it queries to either SUNDAE’s
encryption or decryption algorithms. Plaintext and ciphertext block length costs are
defined similarly, with an adversary’s total block length cost defined as the sum of its
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associated data, plaintext, and ciphertext block length costs. If σA, σP , and σC denote
A’s associated data, plaintext, and ciphertext block length costs, then A makes at most

NE := 4 + σA + 2σP + 2σC (7)

block cipher calls indirectly via SUNDAE.
SUNDAE is a mode of operation, hence its security relies on the quality of its underlying

block cipher, defined as follows.

Definition 2 (PRP Advantage). Let E : K× B→ B be a block cipher. Then adversary
A’s PRP-advantage against E is

PRPE(A) := ∆
A

(EK ; π) , (8)

where K is chosen uniformly at random from K, and π is chosen uniformly at random
from the set of all permutations on X.

Any adversary A against SUNDAE can be converted into an adversary AE against
the block cipher as follows: adversary AE runs A, and each time A makes a query to
SUNDAE, AE recreates SUNDAE encryption or decryption with its own oracle, either EK
or π, according to SUNDAE’s definition.

Theorem 1. Let A be an adversary making at most q encK and qv decK queries with
block length costs of at most σA, σP , and σC for associated, plaintext, and ciphertext data,
respectively, then

DAE(A) ≤ N2
E

2n+1 + qv
2n + q2

2n + qqv
2n + (σP + σC)2

2n+1 + 4(σP + σC)
2n +

(4 + σA + σP + σC)2

2n + 4(q + qv)2

2n + PRPE(AE) . (9)

In the following sections we go through the formal arguments of proving the above
theorem. Sect. 4.11 finally summarizes all the results and computes the above bound.

4.3 Proof Notation
The size of a set S is indicated interchangeably by |S| and #S. Given sets J and X, the
set of all mappings from J to X is denoted XJ . The set of all injective mappings is denoted
∂XI .

4.4 Switching to URFs.
Let (enc[F ], dec[F ]) represent SUNDAE’s encryption and decryption algorithms with the
block cipher calls EK replaced by the function F : B→ B.

Lemma 1. Let O1, O2 be any oracles, and let ρ be a URF over B. For any adversary
A with block length costs of at most σA, σP and σC for associated data, plaintext, and
ciphertext respectively, we have

∆
A

(enc[EK ], dec[EK ] ; O1, O2) ≤ ∆
A

(enc[ρ], dec[ρ] ; O1, O2) + N2
E

2n+1 + PRPE(AE) , (10)

where AE is the standard model reduction described in Section 4.2, and NE from Eq. (7) is
an upper bound on the total number of block cipher calls A makes.
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Proof. Let π denote a permutation chosen uniformly from the set of permutations over B.
Applying the triangle inequality we get

∆
A

(enc[EK ], dec[EK ] ; O1, O2) ≤ ∆
A

(enc[EK ], dec[EK ] ; enc[π], dec[π]) +

∆
A

(enc[π], dec[π] ; enc[ρ], dec[ρ]) + ∆
A

(enc[ρ], dec[ρ] ; O1, O2) (11)

The first term equals ∆AE (EK ; π) and the second term ∆AE (π ; ρ). The first term is
exactly AE’s PRP-advantage against EK , and the second term is bounded above by the
PRP-PRF switching lemma [BR06]. Knowing that AE makes at most NE queries to its
oracles, we have our desired bound.

After applying the PRP-PRF switch, we have that DAE(A) is bounded by

∆
A

(enc[ρ], dec[ρ] ; $,⊥) + N2
E

2n+1 + PRPE(AE) , (12)

where ρ is a URF over B, (enc[ρ], dec[ρ]) is SUNDAE with block cipher calls replaced by
ρ calls, and A may not query dec(A,C) after having queried enc(A,M) with output C.
Hence we focus on A’s advantage in distinguishing (enc[ρ], dec[ρ]) from $.

4.5 Alternative Description of SUNDAE
For shorthand we denote (enc[ρ], dec[ρ]) by (enc, dec). The algorithm enc can be viewed
as operating in three steps:

1. converting messages (A,M) to intermediate functions, followed by
2. applying the URF ρ to the intermediate functions to calculate an output stream,

and finally
3. truncating the output stream and XORing it with M to create the ciphertext C.

Below we describe the above steps in detail, and Fig. 2 illustrates the steps in a diagram.

Step 1 of enc: From Messages to Intermediate Functions. The first step starts by
splitting A and M into blocks, if non-empty, to get

A[1] · · ·A[`A] n←− A and M [1] · · ·M [`M ] n←−M . (13)

Then each block is augmented with a bit to indicate whether it is a final block or not. We
let split denote the operation of mapping (A,M) to the sequence of augmented blocks(

(0, A[1]), . . . , (1, A[`A]), (0,M [1]), . . . , (1,M [`M ])
)
. (14)

The augmented blocks output by split are subsequently used as the first parameter in the
function

f :
(
{0, 1} × {0, 1}≤n

)
× B→ B , (15)

where f is defined as

f((δ,X), Y ) :=


X ⊕ Y if δ = 0
2× (pad(X)⊕ Y ) if δ = 1 and |X| < n

4× (X ⊕ Y ) otherwise
. (16)
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Recall that f((δ,X), Y ) and fδ,X(Y ) are equivalent. We write the operation mapping an
input (A,M) to a sequence of intermediate functions from B to B as I(A,M). If A 6= ε
and M 6= ε, we have that

I(A,M) :=
(

110n−2, f0,A[1], · · · , f0,A[`−1], f1,A[`A],

f0,M [1], · · · , f0,M [`−1], f1,M [`M ]

)
, (17)

where values X ∈ {0, 1}n are interpreted as constant functions mapping any element in B
to X. Similarly, if M is non-empty,

I(ε,M) :=
(

010n−2, f0,M [1], · · · , f0,M [`−1], f1,M [`M ]

)
, (18)

if A is non-empty,

I(A, ε) :=
(

100n−2, f0,A[1], · · · , f0,A[`−1], f1,A[`A]

)
, (19)

and finally I(ε, ε) = (0n). Let

IVA,M :=


0n if A = ε,M = ε

100n−2 if A 6= ε,M = ε

010n−2 if A = ε,M 6= ε

110n−2 otherwise .

(20)

Step 2 of enc: Applying ρ. The algorithm’s second step applies ρ to the sequence of
intermediate functions specified by I(A,M). Given ~x = (x1, x2, . . . , x`) where each xi is
a function from B to B, define the cascade of ρ with ~x to be the function ρ̂ from B to B
defined by applying x1 followed by ρ, followed by x2, and so forth:

ρ̂(x1, x2, . . . , x`) = ρ ◦ x` ◦ ρ ◦ x`−1 ◦ · · · ◦ ρ ◦ x3 ◦ ρ ◦ x2 ◦ ρ ◦ x1 . (21)

Let streami(S1) := S1S2 · · ·Si+1, where Sj = ρ(Sj−1) for 1 < j ≤ i + 1. We let
enc-stream(A,M) := stream`M

(
ρ̂(I(A,M))

)
, representing the first and second steps of

enc, where ρ̂(I(A,M)) is interpreted as an element of B.

Step 3 of enc: chopxor Define chopxorY (X) to be{
bXc|Y |+n ⊕ (0n‖Y ) if X 6= ⊥
⊥ otherwise

. (22)

Then chopxorM (X) represents the final step of enc. Letting enc-stream denote the first
two steps of enc, we have

enc(A,M) = chopxorM
(
enc-stream(A,M)

)
. (23)

Using the above notation, we define

dec-stream(A, TC) =
⌊
enc-stream

(
A, chopxorC

(
stream`C (T )

))⌋
n

= T ?

stream`C (T ) : ⊥ , (24)

where `C is the block length of C. Then dec can be described as

dec(A, TC) = chopxorC
(

dec-stream(A, TC)
)
. (25)
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A[1] A[2] A[3] M [1] M [2] M [3]

A M

(0, A[1]) (0, A[2]) (1, A[3]) (0,M [1]) (0,M [2]) (1,M [3])

f(0,A[1]) f(0,A[2]) f(1,A[3]) f(0,M [1]) f(0,M [2]) f(1,M [3])IVA,M

ρ ρ ρ ρ ρ ρ

split
I(A,M)

ρ

S1 S2 S3 S4

ρ ρ ρ
stream3

Figure 2: Schematic illustration of enc-stream.

4.6 Eliminating chopxor
Let

$s(A,M) := $|A|,|M |,(`M+1)∗n(A,M) , (26)

that is, the enc-stream-equivalent of $, then

∆ ($ ; chopxorM ◦ $s) = 0 . (27)

Define Achopxor to be the adversary interacting with an oracle (O1, O2) — which is either
(enc-stream, dec-stream) or ($s,⊥) — that starts by running A, and for each query O1(A,M)
that A makes, Achopxor returns chopxorM (O1(A,M)) to A, and for each query dec(A, TC)
made by A, Achopxor returns chopxorC(O2(A, TC)).

Then

∆
A

(enc, dec ; $,⊥) = ∆
A

(enc, dec ; chopxorM ◦ $s,⊥) + ∆
A

(chopxorM ◦ $s,⊥ ; $,⊥) (28)

= ∆
A

(chopxorM ◦ enc-stream, chopxorC ◦ dec-stream ; chopxorM ◦ $s,⊥)
(29)

≤ ∆
Achopxor

(enc-stream, dec-stream ; $s,⊥) , (30)

where Achopxor never queries dec-stream(A, T‖chopxorM (S)) after having made the queries
enc-stream(A,M) = TS. This means the bound on the distance between the oracles
(enc-stream, dec-stream) and ($s,⊥) with Achopxor, is a bound on the distance between enc
and $ with A. Hence we focus on bounding ∆Achopxor (enc-stream, dec-stream ; $s,⊥).

4.7 Bounding Forgery Probability With dec-stream∗

Note that dec-stream computes its output based on a query to enc-stream and a query to
stream. If T is a tag previously output by enc-stream, then one can recreate stream(T ) just
by knowing what the previous enc-stream output is. If T is not a tag previously output by
enc-stream, then with high probability stream(T ) will just be a stream of uniform random
output. The idea behind dec-stream∗ is to capture this behaviour: given only access to $s
and $s’s previous outputs, dec-stream∗ will try to mimic dec-stream’s behaviour as closely
as possible.

Each one of $s’s outputs S1, S2, . . . , Sq can be viewed as sequences of complete blocks
Si[1]Si[2] · · ·Si[`i]

n←− Si, hence given a value X ∈ B, determining whether X has been
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output by $s is a question of finding i, j such that X = Si[j]. If j < `i, the block following
X is defined to be Si[j + 1], where i, j are the smallest indices such that X = Si[j].

The oracle dec-stream∗ will have access to all of $s’s past outputs, and uses $s and the
function stream∗` (T ), defined as follows. On input (A, TC) with |C| = `, the algorithm
stream∗` determines if T equals b$s(Ai,Mi)cn for the smallest such index i. If there is such
an i, then stream∗` outputs the first ` ∗n bits of $s(Ai,Mi). If ` is greater than |$s(Ai,Mi)|
then it pads with uniform random bits to reach an output length of ` ∗ n bits. If there is
no such i, then stream∗ outputs ` ∗ n uniform random bits. We add the requirement that
stream∗` (T ) is a prefix of stream∗`′(T ) for all ` ≤ `′. Finally, dec-stream∗(A, TC) is defined
as ⌊

$s
(
A, chopxorC

(
stream∗`C (T )

))⌋
n

= T ? stream∗`C (T ) : ⊥ . (31)

Then we have

∆
Achopxor

(enc-stream, dec-stream ; $s,⊥) ≤ ∆
Achopxor

(enc-stream, dec-stream ; $s, dec-stream∗)

+ ∆
Achopxor

($s, dec-stream∗ ; $s,⊥) . (32)

Bounding
∆

Achopxor
($s, dec-stream∗ ; $s,⊥) , (33)

is the same as bounding the probability that Achopxor forces dec-stream∗ to output non-⊥
output when interacting with ($s, dec-stream∗). Consider adversary A∗ given access to
only $s, that runs Achopxor, and forwards all of Achopxor’s $s queries to its own $s oracle,
and perfectly simulates dec-stream∗ queries using $s.

The probability that two $s queries collide in their first n bits of output (i.e., colliding
tags) is at most q2/2n. Similarly, the probability that the first n bits of output of a
new $s-query collides with the input to some past stream∗-query is at most qqv/2n. By
excluding these bad events, each $s-output is uniquely identified by its first n bits, therefore
if $s(A,M) = TS, and C = chopxorM (S), then stream∗`C (T ) = S.

Say that Achopxor makes some query $s(A,M) = TS, then Achopxor cannot perform the
dec-stream∗ query (A, T‖chopxorM (S)), hence cannot implicitly call $s(A,M) assuming
stream∗`C (T ) = S. Therefore, after excluding the bad events above, if Achopxor succeeds
in finding (A, TC) such that dec-stream∗(A, TC) 6= ⊥, then A∗ has found a value M :=
chopxorC(stream∗`C (T )) such that

1. (A,M) has never been queried to $s, and
2. b$s(A,M)cn = T ,

meaning A∗ has either found a pre-image or a second pre-image for b$scn, which occurs
with probability at most qv/2n, hence

∆
Achopxor

($s, dec-stream∗ ; $s,⊥) ≤ qv
2n + q2

2n + qqv
2n . (34)

4.8 Focusing on Transcripts
We are left with bounding

∆
Achopxor

(enc-stream, dec-stream ; $s, dec-stream∗) . (35)

We apply Patarin’s method, which we briefly review below.
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4.8.1 Patarin’s Method

When an adversary A interacts with an oracle O : X→ Y, it produces a sequence of inputs
and outputs to the oracle

~t = ((x1, y1), . . . , (xq, yq)) ∈ (X × Y)∗ , (36)

We let O
〈
~t
〉
denote the event that O(xi) = yi for i = 1, . . . , q, A

〈
~t
〉
the event that A

produces inputs x1, x2, . . . , xq given oracle outputs y1, y2, . . . , yq, and AO = ~t the event
that the interaction between A and O produces transcript ~t. Note that in the events
defined above, the order of the queries specified by the transcript ~t is important.

Adversarial advantage in distinguishing two oracles can be bounded by looking at
the difference in transcript probabilitites. Initially formalized by Patarin [Pat91,Pat08],
re-introduced by Chen and Steinberger [CS14], and to a certain extent independently
discovered by Bernstein [Ber05], and Chang and Nandi [Nan06,CN08], the following lemma
allows us to mostly focus on computing transcript probabilities to establish our results.

Lemma 2 (Patarin). Let A be an adversary attempting to distinguish oracle O1 from
oracle O2, both with input domain X and output domain Y. Let T ⊂ (X × Y)∗ denote the
set of transcripts ~t such that P

[
A
〈
~t
〉]
> 0, and say that T can be partitioned into a set of

good transcripts Tgood and a set of bad transcripts Tbad. If there exists ε such that for all
~t ∈ Tgood,

P
[
O1
〈
~t
〉]
≥ (1− ε) ·P

[
O2
〈
~t
〉]
, then ∆

A
(O1 ; O2) ≤ ε+ P

[
AO2 ∈ Tbad

]
. (37)

We apply Patarin’s method by describing an event ρ-coll~t such that for all ~t in some
set Tgood,

P
[
(enc-stream, dec-stream)

〈
~t
〉 ∣∣∣ ρ-coll~t

]
= P

[
($s, dec-stream∗)

〈
~t
〉]
, (38)

where ρ-coll~t is the complement of ρ-coll~t, so that

P
[
(enc-stream, dec-stream)

〈
~t
〉]
≥ P

[
($s, dec-stream∗)

〈
~t
〉]
·P
[
ρ-coll~t

]
. (39)

If we can find ε and a set Tgood such that P
[
ρ-coll~t

]
≤ ε for all ~t ∈ Tgood, then the above

equation allows us to apply Lemma 2, which is Patarin’s method. To arrive at this point,
we introduce further terminology to describe the transcripts.

4.8.2 Transcript Description

A transcript ~t of Achopxor’s interaction only contains enc-stream and dec-stream output,
which hides the calls to stream made by dec-stream; similarly, when Achopxor interacts with
($s, dec-stream∗), calls to stream∗ are hidden. We augment Achopxor’s transcripts to include
the hidden output. As done in previous work [CS14,GPT15,MRV15], we release the
hidden output to Achopxor after all queries have been made, but before Achopxor outputs its
decision.

Each transcript consists of q O1 queries (representing either enc-stream or $s), qv
O2-queries (representing either dec-stream or dec-stream∗), and qv H-queries (representing
either hidden stream or stream∗ output), denoted

O1(A+
i ,M

+
i ) = T+

i S
+
i for i = 1, . . . , q (40)

O2(A−i , T
−
i C

−
i ) = Y −i for i = 1, . . . , qv (41)

H`−
i

(T−i ) = S−i for i = 1, . . . , qv , (42)
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where Y −i is either ⊥ or a message, and `−i is the block length of C−i . Note that in both
worlds, O2(A, TC) can be written as⌊

O1

(
A, chopxorC

(
H`C (T )

))⌋
n

= T ? H`C (T ) : ⊥ . (43)

Furthermore, the transcript’s probability is non-zero only if Y −i = chopxorC−
i

(S−i ) for all
successful forgeries, and ⊥ otherwise. We can replace all O2 queries by O1 and H queries,
and maintain the same transcript probability:

O1(A+
i ,M

+
i ) = T+

i S
+
i for i = 1, . . . , q (44)

bO1(A−i ,M
−
i )cn = T−i for i = 1, . . . , qv (45)

H`−
i

(T−i ) = S−i for i = 1, . . . , qv , (46)

where M−i = chopxorC−
i

(S−i ).

4.8.3 Viewing Transcripts as Graphs

Our goal is to have ρ-coll~t describe the event that two ρ-inputs collide in a transcript ~t.
To do so, we extract the graph of queries made to ρ, illustrated for a single query in Fig. 2.
App. B works through an example of the conversion from transcript to graph we describe
in this section.

Definition 3. Given a set of sequences,

Xi = (Xi[1], Xi[2], . . . , Xi[`i]) for i = 1, . . . , q , (47)

we define the graph induced by the Xi as follows. The nodes are all non-empty subsequences
of the Xi, each labelled by their last element. Two nodes, v1 and v2, are connected by a
directed edge v1 → v2 if v1 is a prefix of v2, differing by one element.

Given a transcript ~t, define G~t as the graph induced by the following sequences:

1. (IVA+
i
,M+

i
) ‖ split(A+

i ,M
+
i ) and (IVA−

i
,M−

i
) ‖ split(A−i ,M

−
i ), and

2. the single-element sequences
(
(0, S−i [j])

)
and

(
(0, S+

i [j])
)
for all i, j.

The graph G~t ideally captures the only information that the adversary should learn,
namely that inputs to SUNDAE with the same prefixes will result in the same ρ-calls, but
all outputs are unrelated to each other. Since SUNDAE internally maps each node of G~t
to a ρ input, SUNDAE will maintain the graph’s structure if no two ρ inputs collide.

SUNDAE maps G~t to ρ input via its intermediate functions, denoted f in Sect. 4.5.
We introduce the graph GI~t to describe the adversary’s view after application of f : GI~t is a
graph induced by the following sequences:

1. I(A+
i ,M

+
i ) and I(A−i ,M

−
i ), and

2. the single-element sequences
(
S−i [j]

)
and

(
S+
i [j]

)
, where each element is treated as

a constant function mapping over B.

Note that G~t’s nodes are sequences of blocks B, while GI~t ’s nodes are sequences of functions
defined on B.

There is a natural function induced by I mapping G~t to GI~t as follows. Let v be a
node in G~t. If v is a sequence of length one of the form ((0, X)), then map it to the node
((X)) in GI~t . Otherwise find any (A±i ,M

±
i ) such that v is a subsequence of split(A±i ,M

±
i ),

then map v to the corresponding subsequence of I(A±i ,M
±
i ). This mapping is well-defined
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since if v is a subsequence of (IVA±
i
,M±

i
) ‖ split(A±i ,M

±
i ) and (IVA±

j
,M±

j
) ‖ split(A±j ,M

±
j ),

then the corresponding subsequences in I(A±i ,M
±
i ) and I(A±j ,M

±
j ) will equal each other

as well. Furthermore, edges between nodes are preserved since the mapping preserves
subsequences.

Applying ρ to GI~t means applying the cascade ρ̂ to all paths from root nodes to leaves,
where each path is interpreted as a vector with root node as the first component, and
leaf node as the last component. Given an arbitrary node v, its corresponding ρ-input is
defined as v applied to the cascade of ρ with the sequence of nodes on the path connecting
v to a root node. For example, say there is a path (v0, v1, v2, v) connecting v to the root
node v0, then the ρ-input corresponding to v is defined as v ◦ ρ ◦ v2 ◦ ρ ◦ v1 ◦ ρ ◦ v0, which
we can interpret as an element of B since v0 ∈ B. The ρ-inputs corresponding to nodes in
GI~t are denoted by the label χ : v 7→ χv, a random variable over BV dependent on ρ.

4.8.4 Comparing Transcript Probabilities

Given a transcript ~t, there are four types of collisions that could occur:

1. ~t contains an output block S±i [j] with j < `±i such that S±i [j] ∈ {0n, 100n−2, 010n−2,
110n−2}, allowing the adversary to determine ρ’s output on any of those inputs,

2. ~t contains colliding output blocks, meaning i, i′, j, j′ such that either i 6= i′ or j 6= j′

and S±i [j] = S±i′ [j′],
3. when mapping nodes from G~t to nodes in GI~t two ρ-inputs inevitably collide through

poor design of f , which we call a structural collision, and
4. when applying ρ to GI~t two ρ-inputs collide, in which case we call the collision

accidental.

Define the set Tbad so that it includes all transcripts satisfying conditions 1 and 2. We
naturally have that Tgood is the complement of Tbad. Proposition 2 below analyzes the
probability of a bad transcript occuring when interacting with ($s, dec-stream∗). The last
two events cannot be described purely in terms of ~t and lead to the following definition.

Definition 4 (ρ-coll~t). Event ρ-coll~t occurs if there are two different nodes v and w of G~t
that map to two different nodes v′ and w′ in GI~t , respectively, under I’s induced mapping,
such that χv′ = χw′ .

As long as ~t is not in Tbad, each single-element sequence ((0, S±i [j])) gets placed as
a distinct root node in G~t without children. Then, under the I-induced mapping, those
single-element sequences get mapped to elements ((S±i [j])), which again become distinct
root nodes in GI~t without children. Finally, if ρ-coll~t does not hold, then each ρ-output
seen by the adversary is the result of ρ queried with an input which does collide with any
other ρ-input, thereby establishing the following proposition, and hence also the statement
given in (39).

Proposition 1.

P
[
(enc-stream, dec-stream)

〈
~t
〉 ∣∣∣ ρ-coll~t

]
= P

[
($s, dec-stream∗)

〈
~t
〉]
. (48)

Proposition 2.

P
[
A($s,dec-stream∗)

chopxor ∈ Tbad

]
≤ (σP + σC)2

2n+1 + 4(σP + σC)
2n . (49)

Proof. Since $s’s outputs are all uniform and independently distributed, the chance that
one of its output blocks is in

{
0n, 100n−2, 010n−2, 110n−2} is 4σP /2n, and the probability

that two of its output blocks collide is σ2
P /2n+1. Similarly, dec-stream∗ either repeats $s

output, or generates independent, uniform random output, in which case a bad transcript
occurs with probability at most 4σC/2n + σ2

C/2n+1.
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4.9 Bounding ρ-coll~t Probability
As explained above, ρ-coll~t could occur either due to a structural or an accidental collision.
A structural collision occurs when the I-induced mapping from G~t to GI~t maps two different
subsequences generated by split to the same subsequence generated by I. If two different
message sequences get mapped to the same intermediate function sequence, then a ρ-input
collision is guaranteed to occur if the ρ-input calculations start from the same constant.
However, as long as the mappings (δ,X) 7→ fδ,X are injective, meaning if (δ,X) 6= (δ′, X ′)
then fδ,X 6= fδ′,X′ as functions, the I-induced mapping will be injective as well.

Note that (X, δ) 7→ f(X,δ) is in fact injective, since if X 6= X ′, one can find Y such that

X ⊕ Y 6= X ′ ⊕ Y , (50)
X ⊕ Y 6= 2× (pad(X ′)⊕ Y ) , if |X ′| < n and (51)
X ⊕ Y 6= 4× (X ′ ⊕ Y )if |X ′| = n . (52)

Structural collisions only occur when the intermediate functions are not injective. Since
we have chosen injective functions in our design such collisions never occur in transcripts
produced by SUNDAE.

Nevertheless, there could still be accidental collisions among the ρ-inputs when ρ is
applied to GI~t . In Sec. 4.10 we derive a general bound which can be used to analyze this
case, which we subsequently apply.

For example, consider the transcript consisting of the following elements:

O1(a0||a3, p0||p3) = s0, s1, s2 (53)
O1(a0||a3, p0||p4) = s3, s4, s5 (54)

O1(a1, p1||p5) = s6, s7, s8 (55)
O1(a2||a4, p2) = s9, s10 (56)

For convenience we assume that all the ai’s and pi’s are mutually distinct and full blocks
so that they are queried with the same initial IV.

In Figure 3, we construct the graphs G~t and GI~t for this transcript, and illustrate all
events of interest that can occur. The transcript is in Tbad if one of the 2 bad events occur
in the induced graph GI~t :

1. either one of the si’s is of the form ∗ ∗ 0n−2, or

2. if for stream outputs of different O1 queries we have si = sj .

A structural collision occurs when we have some fδ,x = fδ′,y for (δ, x) 6= (δ′, y). In that
case the structures of G~t and GI~t are no longer isomorphic. For example in Figure 3, if
f0,a0 = f1,a1 , then the nodes corresponding to this function collapse to one single node
which is then connected to f0,p1 by a dotted edge as shown in the figure. However the
functions chosen in SUNDAE ensures that such collisions never occur.

The 4th type of collisions denoted by the event ρ-coll ~t occurs when the labels of two
different nodes χi and χj are accidentally equal due to the randomness induced by the
URF ρ. In the following sub-section, we concentrate on finding the probability that this
event occurs in a given directed graph GI~t when ρ is chosen at random from all functions
from B → B.

4.10 Bounding ρ-Input Collisions
Let G be a graph which is a directed forest, meaning G consists of disjoint directed trees.
Let V be the set of nodes of G and R ⊂ V the set of root nodes. Say that each node in
G is labelled by functions from X to X. We denote the function at a node v ∈ V as v̂.
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Figure 3: Illustrating the collisions that can happen.

Hence application of function at v to x ∈ X is written v̂(x). Furthermore, given a subset
S ⊂ V , we write Ŝ to denote the set of functions underlying the nodes of S. In particular,
|Ŝ| ≤ |S|, with equality if and only if each node in S represents a different function.

A sibling set S of G is the set of children of some other node in G. The only nodes in
G which are not part of a sibling set are the root nodes. In particular, R along with all of
G’s sibling sets forms a partition of V .

As before, ρ : X→ X can be applied to G by applying the cascade to each path in G
starting from a root node. We let χ ∈ XV denote the ρ-inputs associated to the nodes V .

Consider the event that no two ρ-inputs collide, or equivalently, that χ is in ∂XV . Our
goal is to characterize the probability of this event in terms of G as follows.

Proposition 3. Let R denote G’s root nodes, and say that |R̂| = |R|. Let S1,S2, . . . ,Sτ
denote an enumeration of G’s sibling sets, and let Ni = |R|+

∑i−1
j=1 |Sj |. For i > 0 define

Γi := min
Y⊂X

|Y|=|X|−Ni

#
{
x ∈ ∂YSi

∣∣∣∣∣ ⋂
w∈Si

ŵ−1(xw) 6= ∅
}
, (57)

then

P
[
χ ∈ ∂XV

]
≥ 1
|X|τ

τ∏
i=1

Γi . (58)

Proof. We know that
P
[
χ ∈ ∂XV

]
=

∑
x∈∂XV

P
[
χ = x

]
, (59)

therefore lower bounding this probability can be done by focusing on the labels in ∂XV
which occur with non-zero probability. We call such labels valid.

Since G’s root nodes are fixed values, if two root nodes represent the same value,
then no label in ∂XV will be valid. Therefore we must use the fact that |R̂| = |R|, since
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otherwise it is impossible for no two ρ-inputs to collide. Furthermore, a label x ∈ ∂XV is
only valid if xv = χv for all v ∈ R, hence we restrict our attention to such labels.

Since the only randomness present in χ is that provided by ρ, validity of a label x is
determined via equations relating ρ to x, as imposed by G’s edges. If node v is connected
by an edge to node w, then w’s label is calculated from v’s label by applying ρ and then ŵ,
or in other words, χw = ŵ(ρ(χv)), which is equivalent to ρ(χv) ∈ ŵ−1(χw). In particular,
letting Cv denote the set of children of a node v ∈ V ,

P
[
χ = x

]
= P

[
ρ(xv) ∈

⋂
w∈Cv

ŵ−1(xw) for all v ∈ V
]
. (60)

Since xv 6= xw for v 6= w, ρ(xv) is independent of ρ(xw) for all w 6= v, which means

P
[
χ = x

]
= 1
|X|τ

τ∏
i=1

∣∣∣∣∣ ⋂
w∈Si

ŵ−1(xw)

∣∣∣∣∣ , (61)

where the children sets Cv have been replaced by the sibling sets S1, S2, . . . , Sτ . Therefore
the probability of a valid label can be lower bounded by 1/ |X|τ (which reaches equality if
the functions ŵ are bijective), and we get

P
[
χ ∈ ∂XG

]
≥ 1
|X|τ

·#
{
x ∈ ∂XV

∣∣ x is valid
}

(62)

= 1
|X|τ

·#
{
x ∈ ∂XV

∣∣∣∣∣ ⋂
w∈Si

ŵ−1(xw) 6= ∅ for all i
}
. (63)

We lower bound the number of valid labels as follows. Consider the possible labels for
the first sibling set S1. We know that xr must equal r̂ for all root nodes r ∈ R. Since xv
with v ∈ S1 cannot equal xr for r ∈ R, we know that xv ∈ X \ R̂. Hence there are at most∣∣∣∂(X \ R̂)S1

∣∣∣ possible labellings of S1, and at least Γ1 valid ones. After fixing a labelling
of S1, the labels for S2 must be taken from a set of size |X| − |R| − |S1|, and so Γ2 lower
bounds the number of possible valid labellings of S2. Continuing like this for the other
sibling sets, we have that Γi lower bounds the number of possible labellings for Si, and the
total number of valid labels for all of G is bounded below by the product of the Γi.

Definition 5. For w,w′ ∈ V and Y ⊂ X, let coll(w,w′) := {α ∈ X | w(α) = w′(α)}.

Proposition 4. If all functions in Si are bijective for all i, then

P
[
χ 6∈ ∂XV

]
≤ |V |

2

|X| + 1
|X|

τ∑
i=1

∣∣∣∣∣∣∣∣
⋃

v,w∈Si
v 6=w

coll(v, w)

∣∣∣∣∣∣∣∣ . (64)

Proof. Let w ∈ Si and consider some set Y ⊂ X such that |Y| = |X| − Ni. Since w is
bijective, ŵ−1(xw) is a singleton set, therefore for any x ∈ ∂YSi there is at most one
element in the set

⋂
w∈Si ŵ

−1(xw). Call the element αx if it is present. Then the mapping
from x for which αx exists to αx must be injective since ŵ−1 is injective for all w ∈ Si.
Furthermore, the mapping from α ∈ X to ∂XSi defined by α 7→ (w 7→ ŵ(α))w∈Si is injective
as well since if α 6= α′, then ŵ(α) 6= ŵ(α′) for any w ∈ Si. Therefore

Γi = min
Y

#
{
α ∈ X

∣∣ (w 7→ ŵ(α))w∈Si ∈ ∂YSi
}
. (65)

The set
{
α ∈ X

∣∣ (w 7→ ŵ(α))w∈Si ∈ ∂YSi
}
can be rewritten as

Yi \ {α ∈ Yi | ∃v, w ∈ Si, v 6= w s.t. v̂(α) = ŵ(α)} , (66)
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where Yi =
⋂
w∈Si ŵ

−1Y. In particular, Γi ≥ minY |Yi| −#
⋃

v,w∈Si
v 6=w

coll(v, w).

Let Ci := #
⋃

v,w∈Si
v 6=w

coll(v, w). The size of Yi is lower bounded in Lem. 3 in App. A,

giving us |Yi| ≥ |X| − |Si|Ni, hence

Γi ≥ |X| − |Si|Ni − Ci = |X|
(

1− |Si|Ni + Ci
|X|

)
. (67)

Applying the above to the collision probability of χ, we get

P
[
χ 6∈ ∂XV

]
= 1−P

[
χ ∈ ∂XV

]
≤ 1− 1

|X|τ
τ∏
i=1

Γi ≤ 1−
τ∏
i=1

(
1− |Si|Ni + Ci

|X|

)
(68)

≤
τ∑
i=1

|Si|Ni + Ci
|X| ≤

τ∑
i=1

|Si|Ni
|X| +

τ∑
i=1

Ci
|X| ≤ |V |

|X|

τ∑
i=1
|Si|+

τ∑
i=1

Ci
|X| (69)

≤ |V |
2

|X| +
τ∑
i=1

Ci
|X| (70)

Prop. 4 allows us to focus on analyzing collisions among the functions (X, δ) 7→ f(X,δ).
We have for any X and X ′,

∣∣collX(f(X,0), f(X′,1))
∣∣ ≤ 1, and if |X| < n and |X ′| = n,∣∣collX(f(X,1), f(X′,1))

∣∣ ≤ 1, and if X 6= X ′, collX(f(X,0), f(X′,0)) = ∅.
Then we upper bound Ci = #

⋃
v,w∈Si
v 6=w

coll(v, w). First, note that Ci is non-zero only if

its associated sibling set has size greater than one. Sibling sets of size greater than one
can only be created when a query is made, and for each query, either an existing sibling
set becomes larger, or a new sibling set is created. This means there are at most q + qv
sibling sets of size greater than one. The size of the sibling sets is also bounded above by
q + qv, therefore

P
[
ρ-coll~t

]
≤ (4 + σA + σP + σC)2

2n + (q + qv)2

2n . (71)

4.11 Collecting the Results to Compute the Bound of Theorem 1
Sect. 4.4 applies the PRP-PRF switch to get that DAE(A) is bounded above by

∆
A

(enc, dec ; $,⊥) + N2
E

2n+1 + PRPE(AE) , (72)

allowing us to focus on ∆A (enc, dec ; $,⊥).
Sect. 4.6 proceeds to eliminate the chopxor function, concluding that

∆
A

(enc, dec ; $,⊥) ≤ ∆
Achopxor

(enc-stream, dec-stream ; $s,⊥) . (73)

Then the intermediate construction dec-stream∗ is introduced in Sect. 4.7, to establish
that

∆
Achopxor

(enc-stream, dec-stream ; $s,⊥)

≤ ∆
Achopxor

(enc-stream, dec-stream ; $s, dec-stream∗) + qv
2n + q2

2n + qqv
2n (74)
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Using the bounds given in equations (72),(73), and (74), we have that the DAE security
of SUNDAE is upper bounded by

N2
E

2n+1 +PRPE(AE)+ qv
2n + q2

2n + qqv
2n + ∆

Achopxor
(enc-stream, dec-stream ; $s, dec-stream∗) . (75)

To bound the term ∆Achopxor(enc-stream, dec-stream; $s, dec-stream∗) we make use of
Patarin’s method. To this end, we divided the set of transcripts seen by the adversary
into good and bad transcripts. We have established in Sect. 4.8.4 that for all ~t ∈ Tgood,

P
[
(enc-stream, dec-stream)

〈
~t
〉]
≥ P

[
($s, dec-stream∗)

〈
~t
〉]
·P
[
ρ-coll~t

]
. (76)

By using (71), the above becomes

P
[
(enc-stream, dec-stream)

〈
~t
〉]
≥ P

[
($s, dec-stream∗)

〈
~t
〉]
·(

1− (4 + σA + σP + σC)2

2n + 4(q + qv)2

2n

)
. (77)

The probablity of a bad-transcript occuring when Achopxor is interacting with the
intermediate oracles $s and dec-stream∗ is bounded above in Sect. 4.8.4

(σP + σC)2

2n+1 + 4(σP + σC)
2n , (78)

thus we can apply Lem. 2 in a straightforward manner to get

∆
Achopxor

(enc-stream, dec-stream ; $s, dec-stream∗) ≤

(σP + σC)2

2n+1 + 4(σP + σC)
2n + (4 + σA + σP + σC)2

2n + 4(q + qv)2

2n . (79)

Thus adding the above bounds we get that the DAE security of SUNDAE is upper bounded
by

N2
E

2n+1 + PRPE(AE) + qv
2n + q2

2n + qqv
2n + (σP + σC)2

2n+1 + 4(σP + σC)
2n +

(4 + σA + σP + σC)2

2n + 4(q + qv)2

2n . (80)

5 Implementations
5.1 In Software: Embedded and Server-Side
SUNDAE is designed to have little overhead besides its block cipher calls. Besides an n-bit
state, it only requires two XORs block and one or two finite field multiplications with a
constant per message. Regarding performance, we expect serial software implementations
of SUNDAE to run at half the speed of the underlying block cipher.

Setting. Our study considers embedded and high-performance parallel software imple-
mentation possibilities for SUNDAE with the following exemplary choices.

Block Cipher: We use AES [DR02] which is widely standardized and deployed in practice.
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Platforms: As a case study for embedded devices, we use the Cortex-A57 core of a Samsung
Exynos 7420 CPU (ARMv8 platform). For the server side, a Intel Core i7-6700 CPU
(Skylake microarchitecture) was used. On both architectures, the cryptographic
instruction support for AES is used, and key scheduling is precomputed. On each
platform, SUNDAE is implemented serially with minimum overhead and in a parallel
way for maximum performance.

Message Lengths: Performance data is provided for message lengths of ` = 2b bytes,
with 6 ≤ b ≤ 11, covering most typical use cases, and in particular also illustrating
SUNDAE’s performance for relatively short inputs. To evaluate SUNDAE’s effi-
ciency when parallelization possibilities from multiple input streams arise, we also
implemented it using the Comb scheduling strategy [BLT15] when instantiated with
both fixed length messages and a message length mix according to a typical Internet
packet size distribution [BLT15], in which around 40% of all packet lengths are short
(below 100 bytes) and another 40% are moderately long (around 1500 bytes), hence
emphasizing the importance of good performance for shorter messages.

Performance measurements. All measurements were taken on a single core. For the
Intel platform, the CPU was a Core i7-6700 CPU at 3.4 GHz with Turbo Boost disabled.
On ARM, a single Cortex-A57 core of the Samsung Exynos 7420 was used. The reported
performance numbers were obtained as the median of 91 averaged timings of 200 measure-
ments each [KR11]. The performance of AES, both in serial and parallel implementations,
is provided as a baseline. Our implementation results are summarised in Table 1. All
performance numbers are given in cycles per byte (cpb). The last column, denoted “mix”,
gives performance for the Internet message length distribution outlined previously.

Discussion. Table 1 confirms that serial software implementations of SUNDAE achieve
roughly half the throughput of the underlying block cipher with almost no extra overhead
on both Intel and ARM platforms: on Intel, SUNDAE is around 3% slower than two passes
of CBC; on ARM, around 7%. SUNDAE’s performance for short message lengths is only
around 11% worse than for longer messages. Compared to the single-pass nonce-dependent
COFB, SUNDAE has an overhead of 60% for short and 80% for long messages on Intel,
and 35% for short and 80% for long messages on ARM.

Parallel implementations for processing multiple input streams are also possible, making
full use of Intel and ARM’s cryptographic instruction pipelines. Intel’s AES-NI encryption
instruction has a latency of 4 and an inverse throughput of 1 on the Skylake microarchitec-
ture, whereas ARM’s AES instructions come with a combined latency of 3 and an inverse
throughput of 1 on the Cortex-A57. However unlike on Intel, they share the same pipeline
as the logical and byte shuffling instructions (XOR,VEXT), which limits the performance
gain for most block cipher modes, which alternate these with block cipher invocations.

As further reference points, we compare SUNDAE’s performance to the nonce-dependent
CLOC and JAMBU. As reported in [Iwa16], CLOC runs on Skylake at 2.82 cpb for long and
7.81 cpb for 64-byte messages. For short messages, SUNDAE performs better, whereas for
longer messages, CLOC benefits from being a one pass, but two call, scheme, which allows
limited use of the pipeline. Performance data for JAMBU on Skylake has been reported
in [BLT16] as 5.5 cpb for long and 6.8 cpb for 64-byte messages, similar to SUNDAE’s
performance. However, recall that, unlike SUNDAE, CLOC, COFB and JAMBU all
depend on nonce freshness for security.

Even in comparison with GCM-SIV, which is nonce misuse-resistant but targets high-
end platforms, SUNDAE offers similar performance using the Comb technique: GCM-SIV
runs at around 1.2 cpb for 2 KB messages [GL15], with SUNDAE performing at 1.3 cpb.
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Table 1: Software performance of SUNDAE, COFB and CBC instantiated with AES on
the ARMv8 and Intel Skylake platforms. Serial implementations are marked with (S), and
parallel implementations processing multiple messages according to the Comb strategy
with (P). All numbers are given in cycles per byte (cpb).

(a) Intel Skylake platform (server)

message length (bytes)

Algorithm 64 128 256 512 1024 2048 mix

CBC (S) 2.90 2.75 2.68 2.63 2.60 2.59 2.67
CBC (P) 0.64 0.64 0.63 0.63 0.63 0.63 0.64

COFB (S) 3.71 3.32 3.12 3.02 2.97 2.96 3.12
COFB (P) 1.03 0.95 0.90 0.87 0.86 0.85 0.90

SUNDAE (S) 6.00 5.71 5.57 5.46 5.40 5.37 5.52
SUNDAE (P) 1.36 1.31 1.29 1.27 1.26 1.26 1.28

(b) ARMv8 platform (embedded)

message length (bytes)

Algorithm 64 128 256 512 1024 2048 mix

CBC (S) 2.69 2.54 2.39 2.30 2.26 2.25 2.38
CBC (P) 1.42 1.14 1.02 0.95 0.92 0.90 1.00

COFB (S) 3.99 3.34 2.96 2.78 2.72 2.71 2.98
COFB (P) 2.98 1.89 1.49 1.32 1.25 1.22 1.52

SUNDAE (S) 5.42 5.14 5.02 4.92 4.86 4.84 4.97
SUNDAE (P) 3.16 2.95 2.85 2.80 2.78 2.76 2.84
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5.2 ASIC Implementation
Lightweight implementations of CLOC [IMGM14], SILC [IMG+14] and AES-OTR [Min14],
with AES-128 as the underlying block cipher has already been published in [BBM16]. As
with all rate 1/2 modes like CLOC, SILC, and also some rate 1 modes like OTR [BBM16]
there is a need for offline storage of message blocks for reading them twice. Note that this
was also assumed in the lightweight implementation of the above modes in [BBM16]. In
this work, the authors use the 8-bit serial implementation of AES given in [MPL+11]. The
authors implemented the above modes for two typical use cases (a) aggressive and (b)
conservative. The aggressive design implemented a version of the circuit that only catered
to a limited set of sizes of the plaintext and associated data. For example, the aggressive
circuit was only designed to process user inputs in which the associated data was empty
and the length of the plaintext was an integral multiple of the block size of the underlying
block cipher. The intermediate outputs produced by circuit were stored offline, and an
external processor made them available at the input buses as required by the design. This
relaxed many of the storage requirements in the circuit, and so the circuit occupied lower
gate area. The conservative circuit had no such constraints and was designed to handle all
types of user inputs within certain bounds (upto 8 blocks of associated data and 256 blocks
of plaintext). All outputs of intermediate modules were stored in additional registers in
the circuit. As a result of which its gate area was significantly larger.

In our implementation of SUNDAE, we do not distinguish between different use cases:
our implementation is able to handle inputs of all sizes within the aforementioned bounds.
Furthermore, the mode of operation has been designed in a manner that does not require
temporary storage of any intermediate results, as a result no additional storage elements
are required for this purpose. This essentially corresponds to the conservative use case of
[BBM16]. We implement the mode using the block ciphers AES-128 and Present [BKL+07].
For AES, we use the Atomic-AES architectures developed in [BBR16a,BBR16b]. These are
8-bit serial architectures for AES meant for accommodating both encryption/decryption
on the same platform. We use the Atomic AES v2.0 architecture which is smaller in area
than the circuit in [MPL+11] by around 200 gate equivalents (GE)1. Furthermore, we
try to do away with the requirement of an additional register to perform field doublings
and quadruplings by changing the structure of the finite field. In stead of performing
doubling over GF (2128), we perform 8 doublings over GF (216)/ < x16 + x5 + x3 + x+ 1 >
in the following way. If c0, c1, . . . , c15 denote the individual bytes of the state (taken in
a row-major fashion from the 4 × 4 state array), then we consider the string of ith bits
of each of these bytes c0[i], c1[i], . . . , c15[i] as an element of of GF (216) in the polynomial
basis described above, and perform doubling over this field for all the 8 values of i ∈ [0, 7].
Hence, the function f mapping this transition is simply

f(c0, c1, . . . , c15) = c1, c2, . . . , c11 ⊕ c0, c12, c13 ⊕ c0, c14, c15 ⊕ c0, c0

Note that f now becomes a function that can be easily implemented using a bytewise
shift register as shown in Figure 4. The diagram shows a glimpse of the datapath of the
design. The numbered boxes denote byte sized registers, and those colored grey denote
scan registers. We refer to [BBR16b] for a detailed functional description of the circuit.
As can be seen, in addition to the original AES circuit, only three 8-bit xor gates, an 8-bit
two-input multiplexer, and an 8-bit two-input AND gate are required.

When the signal FMODE is low, the output of the AND gate is zero and all the xor
gates are essentially bypassed (logically), and the circuit behaves as it should during the
encryption cycles, with data flowing along the blue path between the registers. However
when FMODE is high, the circuit computes f in the next clock cycle. Since quadrupling is
f ◦ f , it can be computed by setting FMODE to logic high for two consecutive cycles.

11 Gate equivalent (GE) is the area occupied by a 2 input NAND gate
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Figure 4: Datapath of SUNDAE (the figures in red denote the additional components
required in the circuit)

Timing. The Atomic-AES architecture takes 246 clock cycles to encrypt one block of
plaintext. Note that the first 16 cycles are used for loading the plaintext/key on to the
registers. Again, the last 16 cycles are used to produce the ciphertext in a bytewise
manner. Therefore if the mode of operation calls for 2 consecutive encryption operations
(like in lines 8,17,23 of Algorithm 1), then in the last 16 cycles of the 1st encryption, the
intermediate ciphertext can be xored with the associated data/plaintext and loaded on
to the registers to start the next encryption cycle. As a result, a total of n consecutive
encryptions can be done in 246 + (n− 1) · 230 cycles. Let L∗ be the number of blocks in
the associated data and the initial b1||b2||0n−2 block, and L be the number of blocks in
the plaintext. We break up the analysis into subcases:

1. Both |A| = |M | = 0: In this case L∗ = 1 and L = 0. Only one block is encrypted
which takes 246 cycles.

2. |A| = 0 but |M | 6= 0: In this case L∗ = 1 and L ≥ 1. The initial b1||b2||0n−2

block and the first L− 1 plaintext blocks are processed in T2 = 246 + (L− 1) · 230 cycles.
Then F2 = 1 or 2 cycles are used for the doubling/quadrupling. The last plaintext block
and all the plaintext blocks in the second pass require T3 = 246 +L · 230 cycles. The total
time taken to process one user input is T2 + T3 + F2 cycles.

3. |A| 6= 0 but |M | = 0: In this case L∗ ≥ 2 and L = 0. The initial L∗ − 1
blocks can be encrypted in T1 = 246 + (L∗− 2) · 230 cycles. This is interrupted by the field
doubling/quadrupling which takes F1 = 1 or 2 cycles according as the last associated data
block is non-integral or not. Thereafter, last associated data block takes another T2 = 246
cycles. The total time taken is T1 + F1 + T2 cycles.

4. Both |A| 6= 0 and |M | 6= 0: In this case L∗ ≥ 2 and L ≥ 1. The initial L∗ − 1 blocks
can be encrypted in T1 = 246 + (L∗ − 2) · 230 cycles. This is interrupted by the field
doubling/quadrupling which takes F1 = 1 or 2 cycles according as the last associated data
block is non-integral or not. Thereafter, last associated data block and the first L − 1
plaintext blocks are processed in T2 = 246 + (L− 1) · 230 cycles. Then F2 = 1 or 2 cycles
are used for the doubling/quadrupling. The last plaintext block and all the plaintext
blocks in the second pass require T3 = 246 + L · 230 cycles. So the total time taken to
process one user input is T1 + T2 + T3 + F1 + F2 cycles.
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Present. For the implementation with Present as the underlying Block cipher, we use
the 4-bit serial implementation proposed in [RPLP08]. Since this is a nibble based
implementation of the Present block cipher, we define the doubling and quadrupling
operations in a nibble wise fashion. That is to say if d0, d1, . . . , d15 are the 16 nibbles of the
64-bit block, we perform 4 doublings over GF (216)/ < x16 +x5 +x3 +x+1 > for each of the
4 bit-strings d0[i], d1[i], . . . , d15[i] for i ∈ [0, 3]. Also one encryption using the nibble serial
architecture in Present takes 567 cycles, out of which 20 cycles are needed to load the 80-bit
key in a nibble-wise fashion. Hence, n consecutive encryptions take 567+(n−1) ·547 cycles,
and the expressions for T1, T2, T3 change accordingly. It is obvious that the construction
with Present offers much less throughput than AES. However, Present is one of the most
well analyzed lightweight block ciphers and has been adopted as a standard in ISO/IEC
29192-2. As seen in Table 2, the total circuit area for Present-SUNDAE is only around
1450 gates, which makes it ideal for lightweight platforms.

Results. In Table 2 we present the synthesis results for the designs. The following design
flow was used: first the design was implemented in VHDL. Then, a functional verification
was first done using Mentor Graphics Modelsim software. The designs were synthesized
using the standard cell library of the 90nm logic process of STM (CORE90GPHVT v
2.1.a) with the Synopsys Design Compiler, with the compiler being specifically instructed
to optimize the circuit for area. A timing simulation was done on the synthesized netlist.
The switching activity of each gate of the circuit was collected while running post-synthesis
simulation. The average power was obtained using Synopsys Power Compiler, using the
back annotated switching activity.

As can be seen in the table, our implementation of AES-SUNDAE occupies around
2524 GE and is around 600 GE smaller than the aggressively designed CLOC and SILC
circuits, synthesized with the same standard cell library. Since it is only fair to compare
our design with the conservative CLOC/SILC/AES-OTR designs, we see that here too
our implementation outperforms the CLOC, SILC and AES-OTR circuits by around 1800,
1700 and 4220 GE respectively. Also, Present-SUNDAE only occupies around 1452 GE
which makes it ideal for deployment in lightweight platforms.

In Table 3, we present the area-wise breakup of the various components of the circuit.
For AES-SUNDAE we see that around 85% of the area is occupied by the encryption logic
(AES core) alone. This area includes the three additional circuit elements to compute the
field doubling. Around 4% of the area is required for the length counters that encode and
keep track of the number of blocks of associated data and plaintext currently processed.
The remaining area is required for the control logic for routing signals to and out of the
encryption core. For Present-SUNDAE, we have roughly the same area distribution, but
the percentage contributions are different since the Present core is much smaller than AES.

Table 2: Implementation results for CLOC, SILC, AES-OTR, and SUNDAE. (Power
reported at 10 MHz, A: Aggressive, C: Conservative

Block Cipher Mode Area (GE) Power(µW)

AES-128 CLOC (A) 3110 131.1
CLOC (C) 4310 156.6
SILC (A) 3110 131.0
SILC (C) 4220 155.6
OTR (A) 4720 164.3
OTR (C) 6770 205.4
SUNDAE 2524 126.1

Present-80 SUNDAE 1452 50.9
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Table 3: Componentwise breakdown of the circuit areas for SUNDAE.
Block Cipher Core Length Counters Control Logic

AES-128 2145 GE 100 GE 279 GE
85% 4% 11%

Present-80 1082 GE 100 GE 272 GE
74.5% 6.9% 18.6%

5.2.1 Comparison with JAMBU and COFB

These figures also compare favorably with modes like JAMBU. The state size in JAMBU is
one and a half times the block size of underlying block cipher. So when implemented with
AES-128 as the underlying cipher, the mode requires a state of 192 bits. Only 128 bits can
be accommodated in the data register of AES and so an additional 64 bit register is needed,
which requires around 300 GE. So, if we use the Atomic-AES architecture to design the
circuit for JAMBU we can estimate that the area required would be approximately 2100
(AES core) + 100 (Length counter) + 250 (control logic) + 300 (64 bit Register) ≈ 2750
GE, which is still around 250 GE more than the circuit for AES-SUNDAE.

COFB [CIMN17b,CIMN17a] is an AE mode designed by Chakraborti et al. at CHES
2017. It aims at reducing the hardware area over and above the underlying block cipher
by using an n

2 size mask (where n is the block size of the underlying block cipher). Since
most AE modes use an n bit mask this reduces the storage requirement by n

2 flip-flops
over many standard AE schemes. However, this still needs an additional register of n

2
bits to store and update the mask, and so COFB like JAMBU has an effective internal
state of 1.5n bits. Even so, the design is suited for lightweight implementation using the
Atomic-AES architecture. We note the following:

• Mask Logic: To implement COFB, we need a mask register of size n
2 = 64

bits. The register needs to be initialized by an intermediate 64-bit value ∆, and
3 possible updates are specified: (a) Multiplication by the primitive element α of
GF (264)/ < x64 +x4 +x3 +x+1 >, (b) Multiplication by 1+α and (c) Multiplication
by (1+α)2. Multiplication by α will need only 3 xor gates, whereas multiplication by
1 + α requires 64 + 3 = 67 xor gates. Multiplication by (1 + α)2 can be achieved by
doing multiplication by 1 + α over 2 successive cycles. So at different points of time
in the encryption cycle, the register would have to load one of 3 values: the constant
∆, the result of multiplication by α or 1 + α. The most hardware effective way of
implementing it is using a register with scan flip-flops along with an additional 64
bit multiplexer. So in total, we can estimate that the mask logic will require around
350 (scan register) + 128 (multiplexer) + 134 (xor gates) = 612 GE.
• Linear Mixing: COFB uses the linear mixing function G over the 128 bit AES

state. This function is essentially same as the g2 function used in CLOC. As a result,
the AES state register can be tweaked like a columnwise shift register to achieve this
functionality, exactly the same way as it was done in [BBM16, Fig. 1(a)]. The tweak
requires a 32 bit multiplexer and an equal number of xor gates. Thus the modified
AES circuit would require 2060 + 64 (multiplexer)+ 64 (xor gates) =2188 GE.

Therefore we can estimate that COFB will require approximately 2188 (AES core) + 100
(Length counter) + 250 (control logic) + 612 (Mask Register) ≈ 3150 GE.
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5.2.2 Throughput

We can also estimate the throughput of the various modes when using the Atomic AES
architecture, using the fact that n consecutive blocks are encrypted in 246 + 230(n− 1)
cycles. We tabulate the number of cycles-per-byte (CpB) required to operate the modes
as a function of message length in Table 4. Among all rate 1/2 modes, AES-SUNDAE
performs best when dealing with short messages less than 16 plaintext blocks, whereas all
rate 1/2 modes asymptotically reach a constant CpB value for longer messages. Among the
rate 1 modes, the performance of SUNDAE is comparable with OTR for short messages of
1 to 4 blocks, whereas COFB performs best overall.

Table 4: Throughput in (CpB) as a function of message length, using the Atomic AES
architecture

Message length (bytes)

Mode Rate 16 32 64 128 256 512 1024 2048 4096 8192 16384

CLOC (C) 1/2 63.8 46.3 37.5 33.1 30.9 29.8 29.3 29.0 28.9 28.8 28.8
SILC (C) 1/2 95.8 62.3 45.5 37.1 32.9 30.8 29.8 29.3 29.0 28.9 28.8
AES-OTR (C) 1 77.1 45.8 30.3 22.6 18.7 16.8 15.8 15.4 15.1 15.0 14.9
AES-JAMBU 1/2 72.8 50.8 39.8 34.3 31.5 30.1 29.4 29.1 28.9 28.8 28.8
AES-COFB 1 47.3 31.3 23.4 19.4 17.4 16.4 15.9 15.7 15.6 15.5 15.5
AES-SUNDAE 1/2 60.8 44.8 36.8 32.8 30.8 29.8 29.3 29.0 28.9 28.8 28.8
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A Additional Result
Lemma 3. Say that you have m sets of size n, which in turn are all subsets of a set of
size N . Then the minimum size of the intersection of those sets is mn− (m− 1)N .

Proof. We prove it by induction on m. The case m = 1 holds because there are exactly
n elements in the intersection. Assume it holds for m − 1 sets, and we will prove the
equation for m sets. Pick m− 1 sets out of the m, and let α denote the minimum size of
the intersection of those m− 1 sets, i.e. α = (m− 1)n− (m− 2)N . Then there are at most
N − α elements in the big set which are not contained in the intersection of the m − 1
sets. The remaining set must try to fit in those N − α elements, however there are at
least n− (N − α) elements left in the remaining set which must end up in the intersection,
giving us an intersection of size

n− (N − α) = n− (N − (m− 1)n+ (m− 2)N) = mn− (m− 1)N . (81)

B Transcript Graph Example
Say that ~t contains the following queries:

(ε, ε) 7→ C1, (ε, 10n−1) 7→ C2, (10n−1, ε) 7→ C3,

(10n−1, 10n−1) 7→ C4, (ε, 10n−110n−1) 7→ C5,

(10n−110n−1, ε) 7→ C6 . (82)

Then split converts each of the above queries into sequences, which are prepended with
IVA,M :

(ε, ε)→ (0n) (83)

(ε, 10n−110n−1)→
(

(010n−2), (0, 10n−1), (1, 10n−1)
)

(84)

(10n−1, ε)→
(

(100n−2), (1, 10n−1)
)

(85)

(10n−1, 10n−1)→
(

(110n−2), (1, 10n−1), (1, 10n−1)
)

(86)

(ε, 10n−10n)→
(

(010n−2), (0, 10n−1), (1, 0n)
)

(87)

(10n−110n−1, ε)→
(

(100n−2), (0, 10n−1), (1, 10n−1)
)
, (88)

https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
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0n (1, 0n)

010n−2 (0, 10n−1) (1, 10n−1)

100n−2 (1, 10n−1)

(0, 10n−1) (1, 10n−1)

110n−2 (1, 10n−1) (1, 10n−1)

Figure 5: Graph induced by the sequences of Eq. (82) without the single-element sequences
((0, Ci[j]))

The non-empty subsequences of the above sequences along with the single-element sequences
((0, Ci[j])) become the nodes of the induced graph G~t:

(0n), (010n−2), (100n−2), (110n−2) (89)(
(010n−2), (0, 10n−1)

)
,
(

(010n−2), (0, 10n−1), (1, 10n−1)
)

(90)(
(100n−2), (1, 10n−1)

)
(91)(

(110n−2), (1, 10n−1)
)
,
(

(110n−2), (1, 10n−1), (1, 10n−1)
)

(92)(
(010n−2), (0, 10n−1), (1, 0n)

)
(93)(

(100n−2), (0, 10n−1)
)
,
(

(100n−2), (0, 10n−1), (1, 10n−1)
)

(94)

The labels of the nodes are the last elements of their sequence. Fig. 5 displays the resulting
graph, where only the node labels are displayed and the Ci[j] are not included.
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