
THE HARDWARE PERFORMANCE OF AUTHENTICATED ENCRYPTION

MODES

Hristina Mihajloska1

UKIM, Faculty of Computer Science and Engineering

hristina.mihajloska@finki.ukim.mk

Abstract

Authenticated encryption has long been a vital operation
in cryptography by its ability to provide confidentiality,
integrity and authenticity at the same time. Its use has
progressed in parallel with the worldwide use of Inter-
net Protocol (IP), which has led to development of sev-
eral new schemes as well as improved versions of existing
ones. There have already been studies investigating soft-
ware performance of various schemes. However, perfor-
mance of authenticated encryption schemes on hardware
has been left as an open question. We study the compre-
hensive evaluation of hardware performance of the most
commonly used authenticated encryption modes CCM,
GCM, OCB3 and EAX. These modes are block cipher
based with additional authentication data (AAD). In or-
der to make our evaluation fair, we have implemented
each scheme with AES block cipher algorithm. In our
evaluation, we targeted ASIC platforms and used 45 nm
generic NANGATE Open Cell Library for syntheses. In
each design, we have targeted minimizing the time-area
product while maximizing the throughput. In the results,
area, speed, time-area product, throughput, and power
figures are presented for each scheme. Finally, we provide
an unbiased discussion on the impact of the structure and
complexity of each scheme on hardware implementation,
together with recommendations on hardware-friendly au-
thenticated encryption scheme design.

Key words: authenticated encryption, associated data,
block ciphers, hardware perfomrance

I. Introduction

When two parties want to communicate over network
they should be sure that their communication will be
secured. There are two main security goals: privacy and
authentication. This means that one should never use
encryption without also providing authentication on it.

Authentication encryption use has progressed in par-
allel with the worldwide use of Internet Protocol (IP),
which has led to development of several new schemes as
well as improved versions of existing ones [16]. The
simplest solution for authenticated encryption is to use
an encryption scheme for privacy and some hash function
based message authentication code for authenticity. This

1 This work was partially financed by the Faculty of Computer
Science and Engineering at the ”Ss.Cyril and Methodius” Univer-
sity, Skopje, Macedonia.

scheme is known as Encrypt-then-MAC (EtM) composi-
tion of base schemes.

Over the past two decades, several strong ciphers and
hash functions have been proposed [10], [1], [20], [7],
[22], [14], [6], [3], [5] and even standardized. They can be
used together in a EtM. While this provides guaranteed
security, the same can not be said for its efficiency and
performance. Using two completely different algorithms
for encryption and authentication requires implementa-
tion of both algorithms separately. This not only means
additional implementation effort for each algorithm, but
it also means additional code space in a software and
gates cost in a hardware implementation.

In order to overcome this barrier, combined schemes
have also been proposed. Most of these schemes use a
block cipher for encryption with additional invocations
for authentication [24], [17], [2], [19]. There are also ci-
phers designed specifically for authenticated encryption
[8], [11], [23]. More recently, authenticated encryption
schemes are based on using permutation-based sponge
functions [4] and attached a lot attention due to the
SHA-3 competition where the winner was sponge hash
function [21], Keccak [3]. Some of these existing schemes
have been well-analyzed and recommended by NIST [24],
[17]. Some have been standardized or become part of an-
other standard [19]. However, a unified scheme or family
of schemes is yet to be proposed. This open question and
challenge are main goals to the recently-announced au-
thenticated encryption competition CAESAR by NIST
[9].

The rest of the paper is organized as follows. In Sec-
tion II, we provide short descriptions of all investigated
authenticated encryption modes. Hardware implementa-
tion specific details and results of all schemes are given
in the following hardware evaluation section. Finally, we
conclude our paper in Section IV with recommendations
on hardware-efficient authenticated encryption scheme
design.

II. Authenticated Encryption Modes

We decided to investigate the authenticated encryp-
tion (AE) modes based on block ciphers. Out of the
several existing schemes in the literature, we have picked
up the most commonly used ones [24], [17], [2], [19], [13],
some of which are even standardized or recommended
by NIST. This scheme is very advantageous in terms of
both hardware and software implementation. Instead of
using two separate algorithms, only a single block cipher

201

The 10th Conference for Informatics and Information Technology (CIIT 2013)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357336231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is implemented with the accompanying mode wrapper
and extra storage required for intermediate states for en-
cryption and authentication. In this case only a single
key is required just for the block cipher. Also encryption
and authentication are performed during the one run of
cipher function or first for encryption and then authen-
tication. Most of the existing implementations use the
NIST-standard AES [1] as the underlying cipher func-
tion. Some modes are even specified to be used only
with AES. But most of them can also be used with an-
other 128-bit cipher, while some of them are designed for
any bit length ciphers as well. In our study, we have cho-
sen CCM [24], GCM [17], OCB3 [13], and EAX [2] for
investigation due to their widespread use in commercial
applications. In the following subsections, each of these
schemes will be described briefly.

• CCM is the abbreviation for Counter with CBC-
MAC. CCM authenticated encryption with associ-
ated data essentially combines the counter (CTR)
mode of encryption [15] with CBC-MAC authenti-
cation scheme [12]. To process each message block,
a counter is encrypted with the underlying block ci-
pher and the result is XORed to the message for
ciphertext production. The message is also XORed
with an accumulator which is then encrypted. The
value of the accumulator corresponds to the internal
message authentication state, and is kept being accu-
mulated and updated until all the messages are pro-
cessed. Its final state, the authentication tag after
all blocks are processed. At the end of processing of
each message block, the counter is also incremented
for the next message block encryption. As a result of
this operation sequence, each message block requires
two encryption runs, resulting in low throughput. It
can be improved by using two encryption module
instances, which doubles the resource use. This is
a primary trade-off in CCM implementations. On
the positive side, decryption can also be realized us-
ing the same encryption scheme with ciphertext data
instead of plaintext. Therefore, only the encryption
functionality of the underlying cipher module is suf-
ficient for CCM operation.

• GCM is the abbreviation for Galois/Counter Mode.
It is very similar to CCM in operation. The encryp-
tion stage is identical, but authentication is realized
via multiplication in GF (2128) instead of the second
encryption in CCM. The total number of encryp-
tions required per message block is only one which
results in a high throughput. The only penalty is
the additional finite field multiplication, which can
be effectively implemented by distributing the steps
of multiplication to several cycles in parallel with
the encryption operation. GCM mode is being de-
ployed more and more in many applications due to
its obvious advantages over CCM.

• OCB3 is the abbreviation for a modified version of
Offset Codebook. OCB3 also employs GF (2128) as
in the case of GCM, but in a simpler way. It does

not require full multiplication, but only multiplica-
tion by powers of z (the variable used in the poly-
nomial representation of the finite field elements).
To process the message block i, OCB3 performs a
finite field multiplication of a nonce/key-dependent
constant L0 by the polynomial zj , where j is the
number of trailing zeros in the binary representa-
tion of the block index i. The result (also known
as tweak) is XORed to accumulator a1. This accu-
mulator is XORed to the message, encrypted, and
then the result is XORed back with a1 to generate
the ciphertext. The message block is XORed to an-
other accumulator a2, which is used to generate the
tag. A lookup table is used to hold precomputed val-
ues of L0 · z

j . Since the tweaks are computed prior
to OCB3 operation and stored in the memory, the
whole OCB3 operation is executed very effectively.
However, the pre-computation phase must be exe-
cuted with each new session key. OCB is usually
referred to as the highest throughput mode. How-
ever, it also has drawbacks. Unlike CCM and GCM,
it requires both encryption and decryption function-
ality in the underlying cipher. Furthermore, it is not
a license-free scheme and can only be used subject
to royalty fees expect certain applications.

• EAX authenticated encryption mode is a two-pass
scheme: Encryption and authentication are per-
formed separately. This makes EAX mode much
slower than GCM or OCB3 modes, though it is on-
line (which means it can process a stream of data
using constant memory, without knowing the total
data length in advance). EAX uses only the encrypt
functionality of the block cipher, which makes it easy
to fit into constrained implementations.

In this study we have implemented the target modes
of authenticated encryption using AES block cipher.

• AES is the well-known and popular NIST-standard
128-bit block cipher. It is an iterated block cipher
with three possible key lengths of 128, 192, and 256
bits and corresponding number of rounds of 10, 12,
and 14, respectively. 128-bit key version is the most
commonly used and benchmarked version, and we
shall also be using it in our study. The 128-bit
AES states is expressed as a 4×4 matrix of 8-bit (1
byte) words, and all the underlying substitution and
permutation operations are applied on these bytes.
Each of these bytes are considered as elements of the
field GF (28). One AES round consists of SubBytes,
ShiftRows, MixColumns, and AddRoundKey oper-
ations. SubBytes is the substitution layer, where
an 8-bit S-Box is applied to each byte of the state.
ShiftRows is applied on the rows of the matrix state,
and is defined as simultaneous left rotation of row i

of the state by i positions. MixColumns multiplies
each column of the state by a matrix defined over
GF (28) resulting in a new column. AddRoundKey
adds (XORs) the state matrix with the round key.
Each round key is derived from the secret key via the

202

The 10th Conference for Informatics and Information Technology (CIIT 2013)



key schedule process. The key schedule for decryp-
tion is the inverse of the key schedule encryption,
and it requires another secret key. This secret key
is the last round key of the encryption key schedule
process. It can be stored as a second key or derived
from encryption prior to each decryption, depending
on the application requirements.

• CCM-GCM-OCB3-EAX with AES: These con-
structions use AES as the underlying cipher. En-
cryption and authentication of each message block
requires two cipher module calls for CCM and EAX,
and a single call for GCM and OCB3. In case of
OCB3, decryption of the encrypted message block
requires decryption functionality of the AES core.
Therefore it requires execution of key expansion
prior to each decryption session in order to gener-
ate the decryption key. It also requires an AES core
which requires more resources in both software and
hardware implementation.

III. Hardware Implementation Results

In our hardware evaluation process, we have mainly
targeted minimizing the time-area product for each
scheme while trying to keep the throughput high. Be-
fore our evaluation, we have checked several comparison
studies and observed that most of them suffer from mini-
mal number of custom implementations. In other words,
most authors prefer to implement their design(s) in only
a few different configurations and using whatever technol-
ogy library they have, and then they compare their very
specific designs with other similarly specific designs. We
have decided that such an approach would not be fair
at all. Therefore we opted to implement every module
ourselves using the same design approach.
Furthermore, we decided to use a publicly available

standard-cell library to make our provide a common ref-
erence point accessible by everyone. We synthesized all
our designs for 45 nm generic NANGATE [18] Open
Cell Library using both Cadence Encounter RTL Com-
piler v10.1 and Synopsys Design Compiler vE-2010.12-
SP2. The figures from both synthesis tools are close
within a ±7% margin (in favor of either tool with no
specific pattern). Since neither tool has an apparent ad-
vantage over the other, we only report the synthesis fig-
ures from Cadence. In all syntheses, typical operating
conditions were assumed. All schemes are coded in Ver-
ilog and tested with the available test vectors. In the
absence of test vectors, we generated them using Matlab
prior to hardware implementation. The simulations were
run using Modelsim v6.6c.
In this section, we present our results. As we have

stated earlier, for each scheme (and module), our design
target was the minimization of the time-area product,
and the maximization of the throughput by avoiding any
extra cycles. It might be argued that each scheme could
be designed using much lower number of gates, or using
flip-flops without enables, etc. Or it might also be argued
that each design could be run faster by a pipelined and/or

Table1: Hardware evaluation results

Area Speed Time · Area
(kGE) (MHz) (ns · kGE)

CCM-AES 18.9 247.89 76.24
GCM-AES 24.3 127.08 191.22
OCB3-AES 21.8 236.07 92.34
EAX-AES 17.6 127.52 138.02

Table2: Hardware evaluation results

Throughput Power
(Mbps) (mW)

CCM-AES 1586.5 1.64
GCM-AES 1626.62 1.64
OCB3-AES 3021.7 2.68
EAX-AES 816.13 1.86

parallel design. However, we have specifically avoided
design-specific optimizations in order to come up with a
fair comparison. We also did not specifically targeted a
low-power or low-area design. Instead, we provide results
for the lightweight version of each scheme, where possible.
In the computation of throughput, we only considered

the number of cycles spent for each message block. The
initialization and finalization cycles and/or rounds were
kept out of the calculation. They affect the average
throughput with respect to the overall packet size. As
the packet gets larger, these effects diminish.
In total, we have evaluated a total of 4 different

schemes combined with AES block cipher. In the given
tables, we provide the area, speed, time-area product,
throughput and power comparisons for all evaluated
schemes. In our comparisons, we favor none of the
schemes. The selection of the corresponding scheme is
left to designers for the target application. Likewise, any
researcher can use the results while designing a new au-
thenticated encryption scheme either for a specific ap-
plication or to come up with a general scheme for the
running competition.

IV. Conclusion

In this paper, we have provided a comprehensive study
on hardware implementations of authenticated encryp-
tion modes. We have only evaluated most popular block
cipher based AE schemes. In each case, we used AES
as block cipher to offer fair comparison. To the best of
our knowledge, this is the first such comparison of differ-
ent AE schemes. Considering the most commonly used
AE ciphers, it will provide a reference for anyone who is
willing to incorporate an existing AE scheme in a new
design or anyone who is willing to come up with a new
AE scheme targeting a specific application.
From a hardware designer’s perspective, we have ob-

served that the simpler any scheme, the better gate
counts and lower delays it provides, thus resulting in a
higher performance design. It should also be noted that

203

The 10th Conference for Informatics and Information Technology (CIIT 2013)



complex initialization (IV/counter generation) and final-
ization (tag generation) schemes should be avoided for
hardware implementations (like in OCB3 and EAX).

At first it seems fair to conclude that it is very hard
to come with a scheme favorable and suitable for both
hardware and software. But then the AE scheme contra-
dicts with this proposition. With so many existing AES
designs and building blocks, it is a fairly simple task to
come up with a very efficient hardware design for AE. In
a similar way, thanks to the AES specific Intel instruc-
tions, it is also possible to write a very memory and speed
effective code for this scheme.

In our opinion, the proposals to the authenticated en-
cryption competition should cover all these angles, and
incorporate building blocks that are very easily imple-
mentable both on software and hardware.

Acknowledgment

The author wish to thank Ph.D Tolga Yalcin, Post-
doc at Embedded Security Group from Ruhr University
- Bochum, Germany for his valuable help regarding hard-
ware implementation of the AE modes.

References

[1] AES. Advanced Encryption Standard. FIPS PUB 197, Federal
Information Processing Standards Publication, 2001.

[2] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX
Mode of Operation. In Bimal K. Roy and Willi Meier, editors,
FSE, volume 3017 of LNCS, pages 389–407. Springer, 2004.

[3] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. Keccak Specifications, 2009.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. Duplexing the Sponge: Single-pass Authenti-
cated Encryption and Other Applications. In Proceedings of
the 18th international conference on Selected Areas in Cryp-
tography, SAC’11, pages 320–337. Springer-Verlag, 2012.

[5] Martin Boesgaard, Mette Vesterager, and Erik Zenner. The
Rabbit Stream Cipher. eSTREAM Submission, 2008.

[6] Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz
Toz, Kerem Varıcı, and Ingrid Verbauwhede. SPONGENT: A
Lightweight Hash Function. In Proceedings of the 13th Inter-
national Conference on Cryptographic Hardware and Embed-
ded Systems, CHES, pages 312–325. Springer-Verlag, 2011.

[7] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof
Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick
Seurin, and Charlotte Vikkelsø. PRESENT: An Ultra-
Lightweight Block Cipher. In Cryptographic Hardware and
Embedded Systems - CHES 2007, volume 4727 of LNCS, pages
450–466. Springer, 2007.

[8] Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vin-
cent Rijmen, and Elmar Tischhauser. ALE: AES-Based
Lightweight Authenticated Encryption. In Fast Software En-
cryption - FSE 2012, to appear.

[9] CAESAR. Competition for Authenticated En-
cryption: Security, Applicability, and Robustness.
http://competitions.cr.yp.to/caesar.html .

[10] DES. Data Encryption Standard. FIPS PUB 46, Federal In-
formation Processing Standards Publication, 1977.

[11] Daniel Engels, Markku-Juhani O. Saarinen, Peter Schweitzer,
and Eric M. Smith. The Hummingbird-2 Lightweight Au-
thenticated Encryption Algorithm. IACR Cryptology ePrint
Archive, 2011:126, 2011.

[12] ISO/IEC 9797-1:2011. Information technology – Security tech-
niques – Message Authentication Codes (MACs) – Part 1:
Mechanisms Using a Block Cipher.

[13] Ted Krovetz and Phillip Rogaway. The OCB Authenticated-
Encryption Algorithm. Internet Engineering Task Force.

[14] Chae Lim and Tymur Korkishko. mCrypton – A Lightweight
Block Cipher for Security of Low-Cost RFID Tags and Sensors.

In Information Security Applications, volume 3786 of LNCS,
pages 243–258. Springer, 2006.

[15] Helger Lipmaa, David Wagner, and Phillip Rogaway. Com-
ments to NIST Concerning AES Modes of Operation: CTR-
Mode Encryption, 2000.

[16] D. McGrew and K. Paterson. Authenticated Encryption with
AES-CBC and HMAC-SHA. Internet Engineering Task Force.

[17] D. A. McGrew and J. Viega. The Galois/Counter Mode of
Operation (GCM). NIST Modes Operation Symmetric Key
Block Ciphers, 2005.

[18] NANGATE. 45 nm Open Cell Library.
[19] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A

Block-cipher Mode of Operation for Efficient Authenticated
Encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403,
2003.

[20] SHA. Secure Hash Standard. FIPS PUB 180-2, Federal Infor-
mation Processing Standards Publication, 2002.

[21] SHA-3. Cryptographic Hash Algorithm Competition. NIST.
[22] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai,

and Tetsu Iwata. The 128-bit Block Cipher CLEFIA (Ex-
tended Abstract). In Fast Software Encryption - FSE 2007,
volume 4593 of LNCS, pages 181–195. Springer, 2007.

[23] Ruhma Tahir, Muhammad Y. Javed, and Ahmad R. Cheema.
Rabbit-MAC: Lightweight Authenticated Encryption in Wire-
less Sensor Networks. In International Conference on Infor-
mation and Automation, pages 573 –577, 2008.

[24] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-
MAC (CCM). Internet Engineering Task Force, 2003.

204

The 10th Conference for Informatics and Information Technology (CIIT 2013)


