18 research outputs found

    Secure Lossy Source Coding with Side Information at the Decoders

    Full text link
    This paper investigates the problem of secure lossy source coding in the presence of an eavesdropper with arbitrary correlated side informations at the legitimate decoder (referred to as Bob) and the eavesdropper (referred to as Eve). This scenario consists of an encoder that wishes to compress a source to satisfy the desired requirements on: (i) the distortion level at Bob and (ii) the equivocation rate at Eve. It is assumed that the decoders have access to correlated sources as side information. For instance, this problem can be seen as a generalization of the well-known Wyner-Ziv problem taking into account the security requirements. A complete characterization of the rate-distortion-equivocation region for the case of arbitrary correlated side informations at the decoders is derived. Several special cases of interest and an application example to secure lossy source coding of binary sources in the presence of binary and ternary side informations are also considered. It is shown that the statistical differences between the side information at the decoders and the presence of non-zero distortion at the legitimate decoder can be useful in terms of secrecy. Applications of these results arise in a variety of distributed sensor network scenarios.Comment: 7 pages, 5 figures, 1 table, to be presented at Allerton 201

    Privacy-Constrained Remote Source Coding

    Full text link
    We consider the problem of revealing/sharing data in an efficient and secure way via a compact representation. The representation should ensure reliable reconstruction of the desired features/attributes while still preserve privacy of the secret parts of the data. The problem is formulated as a remote lossy source coding with a privacy constraint where the remote source consists of public and secret parts. Inner and outer bounds for the optimal tradeoff region of compression rate, distortion, and privacy leakage rate are given and shown to coincide for some special cases. When specializing the distortion measure to a logarithmic loss function, the resulting rate-distortion-leakage tradeoff for the case of identical side information forms an optimization problem which corresponds to the "secure" version of the so-called information bottleneck.Comment: 10 pages, 1 figure, to be presented at ISIT 201

    Lossy Source Coding with Reconstruction Privacy

    Full text link
    We consider the problem of lossy source coding with side information under a privacy constraint that the reconstruction sequence at a decoder should be kept secret to a certain extent from another terminal such as an eavesdropper, a sender, or a helper. We are interested in how the reconstruction privacy constraint at a particular terminal affects the rate-distortion tradeoff. In this work, we allow the decoder to use a random mapping, and give inner and outer bounds to the rate-distortion-equivocation region for different cases where the side information is available non-causally and causally at the decoder. In the special case where each reconstruction symbol depends only on the source description and current side information symbol, the complete rate-distortion-equivocation region is provided. A binary example illustrating a new tradeoff due to the new privacy constraint, and a gain from the use of a stochastic decoder is given.Comment: 22 pages, added proofs, to be presented at ISIT 201

    The CEO Problem with Secrecy Constraints

    Full text link
    We study a lossy source coding problem with secrecy constraints in which a remote information source should be transmitted to a single destination via multiple agents in the presence of a passive eavesdropper. The agents observe noisy versions of the source and independently encode and transmit their observations to the destination via noiseless rate-limited links. The destination should estimate the remote source based on the information received from the agents within a certain mean distortion threshold. The eavesdropper, with access to side information correlated to the source, is able to listen in on one of the links from the agents to the destination in order to obtain as much information as possible about the source. This problem can be viewed as the so-called CEO problem with additional secrecy constraints. We establish inner and outer bounds on the rate-distortion-equivocation region of this problem. We also obtain the region in special cases where the bounds are tight. Furthermore, we study the quadratic Gaussian case and provide the optimal rate-distortion-equivocation region when the eavesdropper has no side information and an achievable region for a more general setup with side information at the eavesdropper.Comment: Accepted for publication in IEEE Transactions on Information Forensics and Security, 17 pages, 4 figure

    Secure Multiterminal Source Coding with Side Information at the Eavesdropper

    Full text link
    The problem of secure multiterminal source coding with side information at the eavesdropper is investigated. This scenario consists of a main encoder (referred to as Alice) that wishes to compress a single source but simultaneously satisfying the desired requirements on the distortion level at a legitimate receiver (referred to as Bob) and the equivocation rate --average uncertainty-- at an eavesdropper (referred to as Eve). It is further assumed the presence of a (public) rate-limited link between Alice and Bob. In this setting, Eve perfectly observes the information bits sent by Alice to Bob and has also access to a correlated source which can be used as side information. A second encoder (referred to as Charlie) helps Bob in estimating Alice's source by sending a compressed version of its own correlated observation via a (private) rate-limited link, which is only observed by Bob. For instance, the problem at hands can be seen as the unification between the Berger-Tung and the secure source coding setups. Inner and outer bounds on the so called rates-distortion-equivocation region are derived. The inner region turns to be tight for two cases: (i) uncoded side information at Bob and (ii) lossless reconstruction of both sources at Bob --secure distributed lossless compression. Application examples to secure lossy source coding of Gaussian and binary sources in the presence of Gaussian and binary/ternary (resp.) side informations are also considered. Optimal coding schemes are characterized for some cases of interest where the statistical differences between the side information at the decoders and the presence of a non-zero distortion at Bob can be fully exploited to guarantee secrecy.Comment: 26 pages, 16 figures, 2 table
    corecore