2,460 research outputs found

    An integrated placement and routing approach

    Get PDF
    As the feature size continues scaling down, interconnects become the major contributor of signal delay. Since interconnects are mainly determined by placement and routing, these two stages play key roles to achieve high performance. Historically, they are divided into two separate stages to make the problem tractable. Therefore, the routing information is not available during the placement process. Net models such as HPWL, are employed to approximate the routing to simplify the placement problem. However, the good placement in terms of these objectives may not be routable at all in the routing stage because different objectives are optimized in placement and routing stages. This inconsistancy makes the results obtained by the two-step optimization method far from optimal;In order to achieve high-quality placement solution and ensure the following routing, we propose an integrated placement and routing approach. In this approach, we integrate placement and routing into the same framework so that the objective optimized in placement is the same as that in routing. Since both placement and routing are very hard problems (NP-hard), we need to have very efficient algorithms so that integrating them together will not lead to intractable complexity;In this dissertation, we first develop a highly efficient placer - FastPlace 3.0 for large-scale mixed-size placement problem. Then, an efficient and effective detailed placer - FastDP is proposed to improve global placement by moving standard cells in designs. For high-degree nets in designs, we propose a novel performance-driven topology design algorithm to generate good topologies to achieve very strict timing requirement. In the routing phase, we develop two global routers, FastRoute and FastRoute 2.0. Compared to traditional global routers, they can generate better solutions and are two orders of magnitude faster. Finally, based on these efficient and high-quality placement and routing algorithms, we propose a new flow which integrates placement and routing together closely. In this flow, global routing is extensively applied to obtain the interconnect information and direct the placement process. In this way, we can get very good placement solutions with guaranteed routability

    Analog design for manufacturability: lithography-aware analog layout retargeting

    Get PDF
    As transistor sizes shrink over time in the advanced nanometer technologies, lithography effects have become a dominant contributor of integrated circuit (IC) yield degradation. Random manufacturing variations, such as photolithographic defect or spot defect, may cause fatal functional failures, while systematic process variations, such as dose fluctuation and defocus, can result in wafer pattern distortions and in turn ruin circuit performance. This dissertation is focused on yield optimization at the circuit design stage or so-called design for manufacturability (DFM) with respect to analog ICs, which has not yet been sufficiently addressed by traditional DFM solutions. On top of a graph-based analog layout retargeting framework, in this dissertation the photolithographic defects and lithography process variations are alleviated by geometrical layout manipulation operations including wire widening, wire shifting, process variation band (PV-band) shifting, and optical proximity correction (OPC). The ultimate objective of this research is to develop efficient algorithms and methodologies in order to achieve lithography-robust analog IC layout design without circuit performance degradation

    Escherichia coli Chromosomes in the Crowded Cellular Environment

    Get PDF
    \In spite of our detailed knowledge of the enzymology of DNA replication and of the topology of gene expression, we do not understand how, on a larger scale, bacterial DNA is organized within cell or nucleoid. Also, in the process of [bacterial DNA] segregation, we hardly know what force(s) move the newly replicated DNA strands faithfully to the prospective daughter cells. --- Conrad L. Woldringh To provide insights and answers in response to these questions, we have designed pressure actuated micro uidic valves based on a PDMS lab-on-a-chip platform. Using this device, we mechanically perturb the main macromolecular structures in Escherichia coli, and monitor the individual phenotypic responses in real time. Meanwhile, we also utilized the mothermachine design and rened it suiting E. coli cells in particular growth conditions. In the mother-machine devices, we apply osmotic shocks to the cells. We nd mechanical perturbations decrease the cytoplasmic cell volume, which in turn causes the compactness of nucleoid to increase and the chromosome-cytoplasm phase separation to be more abrupt; meanwhile, the chromosome-free regions between adjacent separated nucleoids and at cell poles persist. Furthermore, with an ardent perturbation, nucleoids are rarely bisected; nevertheless, mild perturbations often displace nucleoids after a period of deforming them. I also discuss the possibility to observe the effect of the hypothesized co-transcriptional translation transertion and our results which potentially indicate that

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    A survey of scan-capture power reduction techniques

    Get PDF
    With the advent of sub-nanometer geometries, integrated circuits (ICs) are required to be checked for newer defects. While scan-based architectures help detect these defects using newer fault models, test data inflation happens, increasing test time and test cost. An automatic test pattern generator (ATPG) exercise’s multiple fault sites simultaneously to reduce test data which causes elevated switching activity during the capture cycle. The switching activity results in an IR drop exceeding the devices under test (DUT) specification. An increase in IR-drop leads to failure of the patterns and may cause good DUTs to fail the test. The problem is severe during at-speed scan testing, which uses a functional rated clock with a high frequency for the capture operation. Researchers have proposed several techniques to reduce capture power. They used various methods, including the reduction of switching activity. This paper reviews the recently proposed techniques. The principle, algorithm, and architecture used in them are discussed, along with key advantages and limitations. In addition, it provides a classification of the techniques based on the method used and its application. The goal is to present a survey of the techniques and prepare a platform for future development in capture power reduction during scan testing

    VLSI design methodology

    Get PDF

    Quantifiable Assurance: From IPs to Platforms

    Get PDF
    Hardware vulnerabilities are generally considered more difficult to fix than software ones because they are persistent after fabrication. Thus, it is crucial to assess the security and fix the vulnerabilities at earlier design phases, such as Register Transfer Level (RTL) and gate level. The focus of the existing security assessment techniques is mainly twofold. First, they check the security of Intellectual Property (IP) blocks separately. Second, they aim to assess the security against individual threats considering the threats are orthogonal. We argue that IP-level security assessment is not sufficient. Eventually, the IPs are placed in a platform, such as a system-on-chip (SoC), where each IP is surrounded by other IPs connected through glue logic and shared/private buses. Hence, we must develop a methodology to assess the platform-level security by considering both the IP-level security and the impact of the additional parameters introduced during platform integration. Another important factor to consider is that the threats are not always orthogonal. Improving security against one threat may affect the security against other threats. Hence, to build a secure platform, we must first answer the following questions: What additional parameters are introduced during the platform integration? How do we define and characterize the impact of these parameters on security? How do the mitigation techniques of one threat impact others? This paper aims to answer these important questions and proposes techniques for quantifiable assurance by quantitatively estimating and measuring the security of a platform at the pre-silicon stages. We also touch upon the term security optimization and present the challenges for future research directions
    corecore