4,741 research outputs found

    Towards Better Interpretability in Deep Q-Networks

    Full text link
    Deep reinforcement learning techniques have demonstrated superior performance in a wide variety of environments. As improvements in training algorithms continue at a brisk pace, theoretical or empirical studies on understanding what these networks seem to learn, are far behind. In this paper we propose an interpretable neural network architecture for Q-learning which provides a global explanation of the model's behavior using key-value memories, attention and reconstructible embeddings. With a directed exploration strategy, our model can reach training rewards comparable to the state-of-the-art deep Q-learning models. However, results suggest that the features extracted by the neural network are extremely shallow and subsequent testing using out-of-sample examples shows that the agent can easily overfit to trajectories seen during training.Comment: Accepted at AAAI-19; (16 pages, 18 figures

    Learn to Interpret Atari Agents

    Full text link
    Deep Reinforcement Learning (DeepRL) agents surpass human-level performances in a multitude of tasks. However, the direct mapping from states to actions makes it hard to interpret the rationale behind the decision making of agents. In contrast to previous a-posteriori methods of visualizing DeepRL policies, we propose an end-to-end trainable framework based on Rainbow, a representative Deep Q-Network (DQN) agent. Our method automatically learns important regions in the input domain, which enables characterizations of the decision making and interpretations for non-intuitive behaviors. Hence we name it Region Sensitive Rainbow (RS-Rainbow). RS-Rainbow utilizes a simple yet effective mechanism to incorporate visualization ability into the learning model, not only improving model interpretability, but leading to improved performance. Extensive experiments on the challenging platform of Atari 2600 demonstrate the superiority of RS-Rainbow. In particular, our agent achieves state of the art at just 25% of the training frames. Demonstrations and code are available at https://github.com/yz93/Learn-to-Interpret-Atari-Agents

    Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

    Get PDF
    Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixel-wise relevance map over the input image. Following, we construct a context-aware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/Hey1Li/Salient-Relevance-Propagation.Comment: 35 pages, 15 figure
    • …
    corecore