3,231 research outputs found

    Longest Common Subsequence on Weighted Sequences

    Get PDF
    We consider the general problem of the Longest Common Subsequence (LCS) on weighted sequences. Weighted sequences are an extension of classical strings, where in each position every letter of the alphabet may occur with some probability. Previous results presented a PTAS and noticed that no FPTAS is possible unless P=NP. In this paper we essentially close the gap between upper and lower bounds by improving both. First of all, we provide an EPTAS for bounded alphabets (which is the most natural case), and prove that there does not exist any EPTAS for unbounded alphabets unless FPT=W[1]. Furthermore, under the Exponential Time Hypothesis, we provide a lower bound which shows that no significantly better PTAS can exist for unbounded alphabets. As a side note, we prove that it is sufficient to work with only one threshold in the general variant of the problem

    Why is it hard to beat O(n2)O(n^2) for Longest Common Weakly Increasing Subsequence?

    Full text link
    The Longest Common Weakly Increasing Subsequence problem (LCWIS) is a variant of the classic Longest Common Subsequence problem (LCS). Both problems can be solved with simple quadratic time algorithms. A recent line of research led to a number of matching conditional lower bounds for LCS and other related problems. However, the status of LCWIS remained open. In this paper we show that LCWIS cannot be solved in strongly subquadratic time unless the Strong Exponential Time Hypothesis (SETH) is false. The ideas which we developed can also be used to obtain a lower bound based on a safer assumption of NC-SETH, i.e. a version of SETH which talks about NC circuits instead of less expressive CNF formulas

    An Efficient Dynamic Programming Algorithm for the Generalized LCS Problem with Multiple Substring Exclusion Constrains

    Full text link
    In this paper, we consider a generalized longest common subsequence problem with multiple substring exclusion constrains. For the two input sequences XX and YY of lengths nn and mm, and a set of dd constrains P={P1,...,Pd}P=\{P_1,...,P_d\} of total length rr, the problem is to find a common subsequence ZZ of XX and YY excluding each of constrain string in PP as a substring and the length of ZZ is maximized. The problem was declared to be NP-hard\cite{1}, but we finally found that this is not true. A new dynamic programming solution for this problem is presented in this paper. The correctness of the new algorithm is proved. The time complexity of our algorithm is O(nmr)O(nmr).Comment: arXiv admin note: substantial text overlap with arXiv:1301.718
    • …
    corecore