40 research outputs found

    Maternal fluoxetine exposure alters cortical hemodynamic and calcium response of offspring to somatosensory stimuli

    Get PDF
    Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. While resting-state homotopic contralateral functional connectivity was unperturbed, the evoked cortical response to forepaw stimulation was altered in FLX mice. The stimulated cortex showed decreased activity for FLX versus controls, by both hemodynamic responses [oxyhemoglobin (Hb

    The Correlation between Astrocytic Calcium and fMRI Signals is Related to the Thalamic Regulation of Cortical States

    Get PDF
    BOLD fMRI has been wildly used for mapping brain activity, but the cellular contribution of BOLD signals is still controversial. In this study, we investigated the correlation between neuronal/astrocytic calcium and the BOLD signal using simultaneous GCaMP-mediated calcium and BOLD signal recording, in the event-related state and in resting state, in anesthetized and in free-moving rats. To our knowledge, the results provide the first demonstration that evoked and intrinsic astrocytic calcium signals could occur concurrently accompanied by opposite BOLD signals which are associated with vasodilation and vasoconstriction. We show that the intrinsic astrocytic calcium is involved in brain state changes and is related to the activation of central thalamus. First, by simultaneous LFP and fiber optic calcium recording, the results show that the coupling between LFP and calcium indicates that neuronal activity is the basis of the calcium signal in both neurons and astrocytes. Second, we found that evoked neuronal and astrocytic calcium signals are always positively correlated with BOLD responses. However, intrinsic astrocytic calcium signals are accompanied by the activation of the central thalamus followed by a striking negative BOLD signal in cortex, which suggests that central thalamus may be involved in the initiation of the intrinsic astrocytic calcium signal. Third, we confirmed that the intrinsic astrocytic calcium signal is preserved in free moving rats. Moreover, the occurrences of intrinsic astrocytic calcium spikes are coincident with the transition between different sleep stages, which suggests intrinsic astrocytic calcium spikes reflect brain state transitions. These results demonstrate that the correlation between astrocytic calcium and fMRI signals is related to the thalamic regulation of cortical states. On the other hand, by studying the relationship between vessel–specific BOLD signals and spontaneous calcium activity from adjacent neurons, we show that low frequency spontaneous neuronal activity is the cellular mechanism of the BOLD signal during resting state

    Three-dimensional Ca2+ imaging advances understanding of astrocyte biology.

    Get PDF
    Astrocyte communication is typically studied by two-dimensional calcium ion (Ca2+) imaging, but this method has not yielded conclusive data on the role of astrocytes in synaptic and vascular function. We developed a three-dimensional two-photon imaging approach and studied Ca2+ dynamics in entire astrocyte volumes, including during axon-astrocyte interactions. In both awake mice and brain slices, we found that Ca2+ activity in an individual astrocyte is scattered throughout the cell, largely compartmented between regions, preponderantly local within regions, and heterogeneously distributed regionally and locally. Processes and endfeet displayed frequent fast activity, whereas the soma was infrequently active. In awake mice, activity was higher than in brain slices, particularly in endfeet and processes, and displayed occasional multifocal cellwide events. Astrocytes responded locally to minimal axonal firing with time-correlated Ca2+ spots

    Influence of Focal Activity on Macroscale Brain Dynamics in Health and Disease

    Get PDF
    Macroscopic recordings of brain activity (e.g. fMRI, EEG) are a sensitive biomarker of the neural networks supporting neurocognitive function. However, it remains largely unclear what mechanisms mediate changes in macroscale networks after focal brain injuries like stroke, seizure, and TBI. Recently, optical neuroimaging in animal models has emerged as a powerful tool to begin addressing these questions. Using widefield imaging of cortical calcium dynamics in mice, this dissertation investigates the mechanisms by which focal disruptions in activity alter brain-wide functional dynamics. In two chapters, I demonstrate 1) that focal sensory stimulation elicits state-dependent, global slow waves propagating from primary somatosensory cortex (S1). Using a focal ischemic stroke model, I show that bilateral activation of somatosensory cortices is required for initiating global SWs, while spontaneous SWs are generated independent of S1. 2) That regional disruption of cortical excitability induces widespread changes across cortical networks, using chemogenetic manipulation of parvalbumin interneurons to model focal epileptiform activity in S1. We further show that local imbalances in excitability propagate differentially through intra- and interhemispheric connections, and can induce plasticity in large-scale networks. These studies begin to define the mechanisms of macro-scale network disruption after focal injuries, adding to our understanding of how local cortical circuits modulate global brain networks

    Novel contrasts in photoacoustic tomography

    Get PDF
    Photoacoustic tomography (PAT) combines rich optical contrast and high ultrasonic resolution in optically scattering tissue at depths. Taking advantage of its 100% sensitivity to optical absorption, PAT has been widely applied to structural, functional and molecular imaging, with both endogenous and exogenous contrasts, at superior depths than pure optical methods. This dissertation explores novel absorption contrast mechanisms of PAT based on optical/thermal patterns, endogenous cellular chromophores, nanoparticles, small-molecule dyes and genetically-encoded proteins. With these novel contrasts, the proof-of-concept applications of PAT have been extended to include homogenous flow measurements, targeted angiogenesis imaging and therapy, label-free white blood cell imaging, 3D-whole-organ cell nuclei imaging with a subcellular resolution, and in vivo neural activity imaging with voltage/calcium-sensitive indicators. Specifically, Chapter 1 introduces photoacoustic microscopy (PAM) and photoacoustic computed tomography (PACT) systems and discuss the motivation of the dissertation. Chapter 2 describes two photoacoustic (PA) flow measurement methods with optical and thermal patterns, which are applicable to homogenous flowing medium. In the first method, a Doppler frequency shift in PA signals of the flow was detected and used to calculate flow speeds. In the second method, unique features in an externally imposed thermal pattern of the flow, captured by repeated B-scans along the flow direction with a PAM system, revealed different flow speeds. Chapter 3 explores the unique PA contrast of macrophages, an important type of white blood cells. Macrophages were imaged by PAM without any label, and their measured PA spectrum was distinctive from the hemoglobin spectrum, so they can be potentially differentiated from red blood cells in the blood stream. Next, with a microtomy-assisted PAM system, cell nuclei distribution in whole organs, including mouse brain and mouse lung, were imaged with subcellular resolution. Chapter 4 introduces a type of target copper nanoparticles, which are less expensive and more biocompatible than its counterpart gold nanoparticles. The PA signals of neovasculature in the mouse flank were enhanced by the ___3-targeted copper nanoparticles. Moreover, the work shows the first example of a systemically targeted antiangiogenic drug delivery with a photoacoustic contrast nanoparticle in vivo. Chapter 5 demonstrates the voltage imaging capability of PA. A voltage sensitive dye with sufficient signal change was discovered and used as a PA voltage indicator for the first time. The mechanism was characterized through both PA imaging and spectroscopic methods. Its use was explored in a mouse epilepsy model and cortical electrical stimulation model in vivo. Finally, the deep imaging potential of PA was realized by imaging the voltage response of cells under 4.5 mm thick slice of rat brain tissue using a PACT system. Chapter 6 proves the neural calcium imaging capability of PA with a genetically encoded calcium indicator. In a fly model, I ambiguously demonstrated for the first time that PA can be used to imaging neural activities in the fly brain without the interference signals from hemoglobin. In the a live-mouse-brain-slice model, I successfully demonstrated the deep imaging capability of PA for calcium imaging by imaging through a 2-mm-thick scattering medium with a PACT system
    corecore