7,735 research outputs found

    Long-term traffic forecasting in optical networks using Machine Learning

    Get PDF
    Knowledge about future traffic in backbone optical networks may greatly improve a range of tasks that Communications Service Providers (CSPs) have to face. This work proposes a procedure for long-term traffic forecasting in optical networks. We formulate a long-term traffic forecasting problem as an ordinal classification task. Due to the optical networks’ (and other network technologies’) characteristics, traffic forecasting has been realized by predicting future traffic levels rather than the exact traffic volume. We examine different machine learning (ML) algorithms and compare them with time series algorithms methods. To evaluate the developed ML models, we use a quality metric, which considers the network resource usage. Datasets used during research are based on real traffic patterns presented by Internet Exchange Point in Seattle. Our study shows that ML algorithms employed for long-term traffic forecasting problem obtain high values of quality metrics. Additionally, the final choice of the ML algorithm for the forecasting task should depend on CSPs expectations

    Dynamic Learning Framework for Smooth-Aided Machine-Learning-Based Backbone Traffic Forecasts

    Get PDF
    Recently, there has been an increasing need for new applications and services such as big data, blockchains, vehicle-to-everything (V2X), the Internet of things, 5G, and beyond. Therefore, to maintain quality of service (QoS), accurate network resource planning and forecasting are essential steps for resource allocation. This study proposes a reliable hybrid dynamic bandwidth slice forecasting framework that combines the long short-term memory (LSTM) neural network and local smoothing methods to improve the network forecasting model. Moreover, the proposed framework can dynamically react to all the changes occurring in the data series. Backbone traffic was used to validate the proposed method. As a result, the forecasting accuracy improved significantly with the proposed framework and with minimal data loss from the smoothing process. The results showed that the hybrid moving average LSTM (MLSTM) achieved the most remarkable improvement in the training and testing forecasts, with 28% and 24% for long-term evolution (LTE) time series and with 35% and 32% for the multiprotocol label switching (MPLS) time series, respectively, while robust locally weighted scatter plot smoothing and LSTM (RLWLSTM) achieved the most significant improvement for upstream traffic with 45%; moreover, the dynamic learning framework achieved improvement percentages that can reach up to 100%

    A Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction

    Full text link
    Network Traffic Matrix (TM) prediction is defined as the problem of estimating future network traffic from the previous and achieved network traffic data. It is widely used in network planning, resource management and network security. Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that is well-suited to learn from experience to classify, process and predict time series with time lags of unknown size. LSTMs have been shown to model temporal sequences and their long-range dependencies more accurately than conventional RNNs. In this paper, we propose a LSTM RNN framework for predicting short and long term Traffic Matrix (TM) in large networks. By validating our framework on real-world data from GEANT network, we show that our LSTM models converge quickly and give state of the art TM prediction performance for relatively small sized models.Comment: Submitted for peer review. arXiv admin note: text overlap with arXiv:1402.1128 by other author

    NeuTM: A Neural Network-based Framework for Traffic Matrix Prediction in SDN

    Full text link
    This paper presents NeuTM, a framework for network Traffic Matrix (TM) prediction based on Long Short-Term Memory Recurrent Neural Networks (LSTM RNNs). TM prediction is defined as the problem of estimating future network traffic matrix from the previous and achieved network traffic data. It is widely used in network planning, resource management and network security. Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that is well-suited to learn from data and classify or predict time series with time lags of unknown size. LSTMs have been shown to model long-range dependencies more accurately than conventional RNNs. NeuTM is a LSTM RNN-based framework for predicting TM in large networks. By validating our framework on real-world data from GEEANT network, we show that our model converges quickly and gives state of the art TM prediction performance.Comment: Submitted to NOMS18. arXiv admin note: substantial text overlap with arXiv:1705.0569

    Tiresias: Online Anomaly Detection for Hierarchical Operational Network Data

    Full text link
    Operational network data, management data such as customer care call logs and equipment system logs, is a very important source of information for network operators to detect problems in their networks. Unfortunately, there is lack of efficient tools to automatically track and detect anomalous events on operational data, causing ISP operators to rely on manual inspection of this data. While anomaly detection has been widely studied in the context of network data, operational data presents several new challenges, including the volatility and sparseness of data, and the need to perform fast detection (complicating application of schemes that require offline processing or large/stable data sets to converge). To address these challenges, we propose Tiresias, an automated approach to locating anomalous events on hierarchical operational data. Tiresias leverages the hierarchical structure of operational data to identify high-impact aggregates (e.g., locations in the network, failure modes) likely to be associated with anomalous events. To accommodate different kinds of operational network data, Tiresias consists of an online detection algorithm with low time and space complexity, while preserving high detection accuracy. We present results from two case studies using operational data collected at a large commercial IP network operated by a Tier-1 ISP: customer care call logs and set-top box crash logs. By comparing with a reference set verified by the ISP's operational group, we validate that Tiresias can achieve >94% accuracy in locating anomalies. Tiresias also discovered several previously unknown anomalies in the ISP's customer care cases, demonstrating its effectiveness
    corecore