1,371 research outputs found

    Navigating Autonomous Underwater Vehicles

    Get PDF

    Toward autonomous exploration in confined underwater environments

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Field Robotics 33 (2016): 994-1012, doi:10.1002/rob.21640.In this field note we detail the operations and discuss the results of an experiment conducted in the unstructured environment of an underwater cave complex, using an autonomous underwater vehicle (AUV). For this experiment the AUV was equipped with two acoustic sonar to simultaneously map the caves’ horizontal and vertical surfaces. Although the caves’ spatial complexity required AUV guidance by a diver, this field deployment successfully demonstrates a scan matching algorithm in a simultaneous localization and mapping (SLAM) framework that significantly reduces and bounds the localization error for fully autonomous navigation. These methods are generalizable for AUV exploration in confined underwater environments where surfacing or pre-deployment of localization equipment are not feasible and may provide a useful step toward AUV utilization as a response tool in confined underwater disaster areas.This research work was partially sponsored by the EU FP7-Projects: Tecniospring- Marie Curie (TECSPR13-1-0052), MORPH (FP7-ICT-2011-7-288704), Eurofleets2 (FP7-INF-2012-312762), and the National Science Foundation (OCE-0955674)

    Scientific challenges and present capabilities in underwater robotic vehicle design and navigation for oceanographic exploration under-ice.

    Get PDF
    This paper reviews the scientific motivation and challenges, development, and use of underwater robotic vehicles designed for use in ice-covered waters, with special attention paid to the navigation systems employed for under-ice deployments. Scientific needs for routine access under fixed and moving ice by underwater robotic vehicles are reviewed in the contexts of geology and geophysics, biology, sea ice and climate, ice shelves, and seafloor mapping. The challenges of under-ice vehicle design and navigation are summarized. The paper reviews all known under-ice robotic vehicles and their associated navigation systems, categorizing them by vehicle type (tethered, untethered, hybrid, and glider) and by the type of ice they were designed for (fixed glacial or sea ice and moving sea ice). © 2020 by the authors

    Underwater robotics in the future of arctic oil and gas operations

    Get PDF
    Master's thesis in Petroleum engineeringArctic regions have lately been in the centre of increasing attention due to high vulnerability to climate change and the retreat in sea ice cover. Commercial actors are exploring the Arctic for new shipping routes and natural resources while scientific activity is being intensified to provide better understanding of the ecosystems. Marine surveys in the Arctic have traditionally been conducted from research vessels, requiring considerable resources and involving high risks where sea ice is present. Thus, development of low-cost methods for collecting data in extreme areas is of interest for both industrial purposes and environmental management. The main objective of this thesis is to investigate the use of underwater vehicles as sensor platforms for oil and gas industry applications with focus on seabed mapping and monitoring. Theoretical background and a review of relevant previous studies are provided prior to presentation of the fieldwork, which took place in January 2017 in Kongsfjorden (Svalbard). The fieldwork was a part of the Underwater Robotics and Polar Night Biology course offered at the University Centre in Svalbard. Applied unmanned platforms included remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs) and an autonomous surface vehicle (ASV). They were equipped with such sensors as side-scan sonar, multi-beam echo sounder, camera and others. The acquired data was processed and used to provide information about the study area. The carried out analysis of the vehicle performance gives an insight into challenges specific to marine surveys in the Arctic regions, especially during the period of polar night. The discussion is focused on the benefits of underwater robotics and integrated platform surveying in remote and harsh environment. Recommendations for further research and suggestions for application of similar vehicles and sensors are also given in the thesis

    Deep Sea Underwater Robotic Exploration in the Ice-Covered Arctic Ocean with AUVs

    Get PDF
    The Arctic seafloor remains one of the last unexplored areas on Earth. Exploration of this unique environment using standard remotely operated oceanographic tools has been obstructed by the dense Arctic ice cover. In the summer of 2007 the Arctic Gakkel Vents Expedition (AGAVE) was conducted with the express intention of understanding aspects of the marine biology, chemistry and geology associated with hydrothermal venting on the section of the mid-ocean ridge known as the Gakkel Ridge. Unlike previous research expeditions to the Arctic the focus was on high resolution imaging and sampling of the deep seafloor. To accomplish our goals we designed two new Autonomous Underwater Vehicles (AUVs) named Jaguar and Puma, which performed a total of nine dives at depths of up to 4062m. These AUVs were used in combination with a towed vehicle and a conventional CTD (conductivity, temperature and depth) program to characterize the seafloor. This paper describes the design decisions and operational changes required to ensure useful service, and facilitate deployment, operation, and recovery in the unique Arctic environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86060/1/ckunz-17.pd

    A Markov Chain state transition approach to establishing critical phases for AUV reliability

    Get PDF
    The deployment of complex autonomous underwater platforms for marine science comprises a series of sequential steps. Each step is critical to the success of the mission. In this paper we present a state transition approach, in the form of a Markov chain, which models the sequence of steps from pre-launch to operation to recovery. The aim is to identify the states and state transitions that present higher risk to the vehicle and hence to the mission, based on evidence and judgment. Developing a Markov chain consists of two separate tasks. The first defines the structure that encodes the sequence of events. The second task assigns probabilities to each possible transition. Our model comprises eleven discrete states, and includes distance-dependent underway survival statistics. The integration of the Markov model with underway survival statistics allows us to quantify the likelihood of success during each state and transition and consequently the likelihood of achieving the desired mission goals. To illustrate this generic process, the fault history of the Autosub3 autonomous underwater vehicle provides the information for different phases of operation. The method proposed here adds more detail to previous analyses; faults are discriminated according to the phase of the mission in which they took place

    Making AUVs Truly Autonomous

    Get PDF

    Recent Advances in Synchronous-Clock One-Way-Travel-Time Acoustic Navigation

    Full text link
    This paper reports recent results in the development and deployment of a synchronous-clock acoustic navigation system suitable for the simultaneous navigation of multiple underwater vehicles. The goal of this work is to enable the task of navigating multiple autonomous underwater vehicles (AUVs) over length scales of 0(100 km), while maintaining error tolerances commensurate with conventional long-baseline transponder-based navigation systems (0(1 m)), but without the requisite need for deploying, calibrating, and recovering seafloor anchored acoustic transponders. Our navigation system is comprised of an acoustic modem-based communication/navigation system that allows for onboard navigational data to be broadcast as a data packet by a source node, and for all passively receiving nodes to be able to decode the data packet to obtain a one-way travel time pseudo-range measurement and ephemeris data. We present field results for a two-node configuration consisting of a surface ship acting as a global navigation aid to a Doppler-aided AUV.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86042/1/reustice-26.pd
    • …
    corecore