8,570 research outputs found

    New Developments in Tourism and Hotel Demand Modeling and Forecasting

    Get PDF
    Abstract Purpose The purpose of the study is to review recent studies published from 2007-2015 on tourism and hotel demand modeling and forecasting with a view to identifying the emerging topics and methods studied and to pointing future research directions in the field. Design/Methodology/approach Articles on tourism and hotel demand modeling and forecasting published in both science citation index (SCI) and social science citation index (SSCI) journals were identified and analyzed. Findings This review found that the studies focused on hotel demand are relatively less than those on tourism demand. It is also observed that more and more studies have moved away from the aggregate tourism demand analysis, while disaggregate markets and niche products have attracted increasing attention. Some studies have gone beyond neoclassical economic theory to seek additional explanations of the dynamics of tourism and hotel demand, such as environmental factors, tourist online behavior and consumer confidence indicators, among others. More sophisticated techniques such as nonlinear smooth transition regression, mixed-frequency modeling technique and nonparametric singular spectrum analysis have also been introduced to this research area. Research limitations/implications The main limitation of this review is that the articles included in this study only cover the English literature. Future review of this kind should also include articles published in other languages. The review provides a useful guide for researchers who are interested in future research on tourism and hotel demand modeling and forecasting. Practical implications This review provides important suggestions and recommendations for improving the efficiency of tourism and hospitality management practices. Originality/value The value of this review is that it identifies the current trends in tourism and hotel demand modeling and forecasting research and points out future research directions

    Multi-Stage Fuzzy Logic Controller for Expressway Traffic Control During Incidents

    Get PDF
    In this research study, a multistage fuzzy logic controller (MS-FLC) was developed for traffic control in incident management on expressways. The MS-FLC serves as the traffic operator’s decision-making support tool at the operational level. The MS-FLC gathers real-time traffic and incident data to analyze and predict traffic conditions, as well as to recommend alternative control measures to the traffic operator in the form of linguistic expressions. The MS-FLC is embedded in a traffic simulator controller (TSC) prototype, and was evaluated by comparing its performance with no control scenario and ALINEA\Q, a popular local ramp control algorithm, across several incident scenarios in a simulation environment. In general, MS-FLC outperformed ALINEA\Q with respect to global objectives. In particular, whereas the ALINEA\Q algorithm favors the mainline, the MS-FLC algorithm significantly improves mainline travel conditions while substantially reducing ramp queues. It is concluded that, if properly designed, the MS-FLC can be a robust tool for traffic control on expressways under incident conditions

    Unsupervised marine vessel trajectory prediction using LSTM network and wild bootstrapping techniques

    Get PDF
    Increasing intensity in maritime traffic pushes the requirement in better preventionoriented incident management system. Observed regularities in data could help to predict vessel movement from previous vessels trajectory data and make further movement predictions under specific traffic and weather conditions. However, the task is burden by the fact that the vessels behave differently in different geographical sea regions, sea ports, and their trajectories depends on the vessel type as well. The model must learn spatio-temporal patterns representing vessel trajectories and should capture vessel’s position relation to both space and time. The authors of the paper proposes new unsupervised trajectory prediction with prediction regions at arbitrary probabilities using two methods: LSTM prediction region learning and wild bootstrapping. Results depict that both the autoencoder-based and wild bootstrapping region prediction algorithms can predict vessel trajectory and be applied for abnormal marine traffic detection by evaluating obtained prediction region in an unsupervised manner with desired prediction probability.&nbsp

    Developing a fuzzy-based decision-making procedure for traffic control in expressway congestion management

    Get PDF
    This paper presents part of a multi-stage fuzzy logic controller (MS-FLC) that is developed for traffic control in congestion management on expressways. The decision-making process of traffic control for expressway congestion management using the MS-FLC consists of three tasks: (1) evaluation of current traffic congestion; (2) prediction of traffic congestion tendency; and (3) recommendation of control strategies and control actions to alleviate the congestion. This paper presents the 3rd stage of the MS-FLC that develops a fuzzy-based decision-making procedure (FDMP) for management of recurring and non-recurring congestion. Using fuzzy rules, the FDMP evaluates the current and anticipated traffic data and incident information to recommend control strategies at the strategic level, and control actions at the operational level. Results from this research show that: (i) the FDMP offers a comprehensive procedure in deriving control strategies and actions; (ii) FDMP control actions are derived from a systematic decision-making logic where the design of control rules is consistently oriented toward achieving desirable control objectives; (iii) the FDMP targets a proper balance in congestion management between the mainline and the ramp using compromise rule design; (iv) the FDMP facilitates using various forms of available traffic and incident data on an extended expressway segment to derive at control actions, making the system-wide gains possible; and (v) the FDMP could be applied for management of both recurring and non-recurring congestion.</p

    Risk assessment, study and management on navigational safety in the Yangtze River during dry season

    Get PDF

    Temporospatial Context-Aware Vehicular Crash Risk Prediction

    Get PDF
    With the demand for more vehicles increasing, road safety is becoming a growing concern. Traffic collisions take many lives and cost billions of dollars in losses. This explains the growing interest of governments, academic institutions and companies in road safety. The vastness and availability of road accident data has provided new opportunities for gaining a better understanding of accident risk factors and for developing more effective accident prediction and prevention regimes. Much of the empirical research on road safety and accident analysis utilizes statistical models which capture limited aspects of crashes. On the other hand, data mining has recently gained interest as a reliable approach for investigating road-accident data and for providing predictive insights. While some risk factors contribute more frequently in the occurrence of a road accident, the importance of driver behavior, temporospatial factors, and real-time traffic dynamics have been underestimated. This study proposes a framework for predicting crash risk based on historical accident data. The proposed framework incorporates machine learning and data analytics techniques to identify driving patterns and other risk factors associated with potential vehicle crashes. These techniques include clustering, association rule mining, information fusion, and Bayesian networks. Swarm intelligence based association rule mining is employed to uncover the underlying relationships and dependencies in collision databases. Data segmentation methods are employed to eliminate the effect of dependent variables. Extracted rules can be used along with real-time mobility to predict crashes and their severity in real-time. The national collision database of Canada (NCDB) is used in this research to generate association rules with crash risk oriented subsequents, and to compare the performance of the swarm intelligence based approach with that of other association rule miners. Many industry-demanding datasets, including road-accident datasets, are deficient in descriptive factors. This is a significant barrier for uncovering meaningful risk factor relationships. To resolve this issue, this study proposes a knwoledgebase approximation framework to enhance the crash risk analysis by integrating pieces of evidence discovered from disparate datasets capturing different aspects of mobility. Dempster-Shafer theory is utilized as a key element of this knowledgebase approximation. This method can integrate association rules with acceptable accuracy under certain circumstances that are discussed in this thesis. The proposed framework is tested on the lymphography dataset and the road-accident database of the Great Britain. The derived insights are then used as the basis for constructing a Bayesian network that can estimate crash likelihood and risk levels so as to warn drivers and prevent accidents in real-time. This Bayesian network approach offers a way to implement a naturalistic driving analysis process for predicting traffic collision risk based on the findings from the data-driven model. A traffic incident detection and localization method is also proposed as a component of the risk analysis model. Detecting and localizing traffic incidents enables timely response to accidents and facilitates effective and efficient traffic flow management. The results obtained from the experimental work conducted on this component is indicative of the capability of our Dempster-Shafer data-fusion-based incident detection method in overcoming the challenges arising from erroneous and noisy sensor readings

    A review of travel time estimation and forecasting for advanced traveler information systems

    Get PDF
    Providing on line travel time information to commuters has become an important issue for Advanced Traveler Information Systems and Route Guidance Systems in the past years, due to the increasing traffic volume and congestion in the road networks. Travel time is one of the most useful traffic variables because it is more intuitive than other traffic variables such as flow, occupancy or density, and is useful for travelers in decision making. The aim of this paper is to present a global view of the literature on the modeling of travel time, introducing crucial concepts and giving a thorough classification of the existing tech- niques. Most of the attention will focus on travel time estimation and travel time prediction, which are generally not presented together. The main goals of these models, the study areas and methodologies used to carry out these tasks will be further explored and categorized

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Shape based classification and functional forecast of traffic flow profiles

    Get PDF
    This dissertation proposes a methodology for traffic flow pattern analysis, its validation, and forecasting. The shape of the daily traffic flows are directly related to the commuter’s traffic behavior which merit analysis based on their shape characteristics. As a departure from the traditional approaches, this research proposed a methodology based on shape for traffic flow analysis. Specifically, Granulometric Size Distributions (GSDs) were used to achieve classification of daily traffic flow patterns. A mathematical morphology method was used that allows the clustering of shapes. The proposed methodology leads to discovery of interesting daily traffic phenomena such as five normal daily traffic shapes beside abnormal shapes representing accidents, congestion behavior, peak time fluctuations, and malfunctioning sensors. To ascertain the significance of shape in traffic analysis, the proposed methodology was validated through a comparative classification analysis of the original data and GSD transformed data using the Back Prorogation Neural Network (BPNN). Results demonstrated that through shape based clustering more appropriate grouping can be accomplished that can result in better estimates of model parameters. Lastly, a functional time series approach was proposed to forecast traffic flow for short and medium-term horizons. It is based on functional principal components decomposition to forecast three different traffic scenarios. Real-time forecast scenarios of partially observed traffic profiles through Penalized Least squares (PLS) technique were also demonstrated. Functional methods outperform the conventional ARIMA model in both short and medium-term forecast horizons. In addition, performance of functional methods in forecasting beyond one hour was also found to be robust and consistent. --Abstract, page iii
    corecore