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Abstract: In this research study, a multi-stage Fuzzy Logic Controller (MS-FLC) is developed for traffic control for incident 11 

management on expressways. The MS-FLC serves as the traffic operator’s decision-making support tool at the operational level. 12 

The MS-FLC gathers real-time traffic and incident data in order to analyze and predict traffic conditions as well as to suggest 13 

alternative control measures to the traffic operator in the form of linguistic expressions. The MS-FLC is embedded in a traffic 14 

simulator controller (TSC) prototype and is evaluated by comparing its performance with no control scenario and ALINEA\Q, a 15 

popular local ramp control algorithm, across several incident scenarios in a simulation environment. In general, the MS-FLC 16 

outperforms ALINEA\Q with respect to global objectives. In particular, whereas the ALINEA\Q algorithm favors the mainline, 17 

the MS-FLC algorithm significantly improves mainline travel conditions while substantially reduces ramp queues. It is concluded 18 

that, if properly designed the MS-FLC serves as a robust tool for traffic control on expressways under incident conditions. 19 

Keywords: Multi-stage fuzzy logic controller; Incident management; Traffic control; Traffic simulator; Ramp metering. 20 

Introduction 21 

Traffic congestion is a serious and widespread problem in many cities throughout the world. Congestion can be divided into 22 

two types: recurring and non-recurring congestion. Congestion management on expressways, which is characterized by time-23 

critical constraints, should be enhanced by employing effective real-time control measures to improve traffic conditions. For 24 

real-time traffic control, various approaches have been developed, including analytical optimization and automatic control. 25 

The analytical optimization approach forecasts the current state of traffic systems based on certain assumptions about system 26 

dynamics and behavior, and projects the current network conditions into the future state (Ma et al. 2016; Luan et al. 2018). 27 

Mathematical models are usually quite sophisticated and computationally expensive in order to provide systematic solutions 28 

thus they can hardly meet real-time requirements. The automatic control approach, as opposed to the analytical optimization 29 
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approach, has the ability to classify enormous patterns of input data in order to describe the behavior of measurable processes 30 

(Simoni and Claudel 2017; Hashemi and Abdelghany 2018; Wang et al. 2018; Lidbe et al. 2019). The technique, on the other 31 

hand, does not include an explanation tool to assist operators in determining appropriate control actions. To address this issue, 32 

a Decision Support System (DSS) is required to make better use of available data, information, and knowledge to improve 33 

the quality of the control decision-making process.   34 

Traffic control is a multivariable problem. The control decision-making process progresses from a low to high degree of 35 

abstraction, that is, from data to information to knowledge. For complicated situations where there is a need to evaluate the 36 

current traffic situation and to anticipate the future state for determining control actions, the control decision-making process 37 

should ideally be stratified into a number of stages where the decision-making logic is executed sequentially from one stage 38 

to the next.  39 

Traffic control decision-making is decision-making in the face of uncertainty. Imprecise data measurement, approximate 40 

information reasoning, uncertain forecasting of future traffic conditions, and imprecise human perception are all factors that 41 

contribute to the unpredictability of traffic control. Because it entails using many forms of traffic and incident data to arrive 42 

at control judgments under critical-time restrictions, traffic control in incident scenarios is even more uncertain and critical. 43 

Due to the complicated, important, and uncertain nature, an effective traffic control strategy during incidents often relies on 44 

techniques that deal efficiently with problems of uncertainty and imprecision.  45 

Fuzzy logic has an attractive capability to deal with uncertainty problems. With the help of fuzzy sets, the vagueness and 46 

uncertainties of the real world are handled smoothly. The key motivations behind the application of fuzzy logic for traffic 47 

control rest on the following advantages: (i) the linguistic expressions are general and easy to be perceived by the traffic 48 

operator, which is important for a decision support system; (ii) the transition from one fuzzy set to another is gradual, 49 

representing continuity in human perception; and (iii) the capability to combine several input quantities to provide a single 50 

output for the traffic operator to make a control decision (Toan 2008; Toan and Wong 2021). 51 

Support Vector Machine (SVM) is a family of machine learning algorithms. SVM possesses a good generalization 52 

capability, computational efficiency, and is very robust in high dimensions (Toan and Truong 2021). In traffic engineering, 53 

SVM has been successfully applied in many domains, including SVM real-time incident detection (Motamed 2016; Xiao et 54 

al. 2013; Motamed and Machemehl 2014), and traffic flow prediction (Yuanyuan and Weixiang 2018; Cai et al. 2018; Luo 55 

et al. 2019; Toan and Truong 2021). Short-term prediction of traffic flow is crucial for real-time traffic control. 56 

In this study, a multi-stage Fuzzy Logic Controller (MS-FLC) is developed for traffic control for incident management 57 

on expressways. The MS-FLC serves as the traffic operator’s decision-making support tool at the operational level. The MS-58 

FLC gathers real-time traffic and incident data in order to analyze and predict traffic situations, as well as to suggest 59 

alternative control methods to the traffic operator in the form of linguistic expressions. Given these functions, the decision-60 
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making support under these situations typically includes semi-structured decisions (Toan, 2008) that employ both structured 61 

modules for data collection, data analysis, and information processing, and non-structured component to help the operators 62 

when confronted with qualitative type of decisions. Thus, for the MS-FLC to execute in its totality, SVM is employed as a 63 

subset of MS-FLC model for short-term traffic flow prediction for anticipation of incident related traffic condition. Given 64 

the anticipated traffic, the MS-FLC calculates the signal settings at the ramp entrance once the operator selects the control 65 

measure. The MS-FLC is evaluated in the case study in the “Model evaluation” section. Herein, a traffic simulator controller 66 

(TSC) prototype was designed and evaluated across several incident scenarios in a simulation environment. 67 

The remainder of this paper is organized as follows: Section 2 reviews the fundamental concepts and previous works on 68 

applications of fuzzy logic systems for expressway traffic control. Section 3 presents the methodology of the MS-FLC that 69 

includes the rule-base formulation and the structure of the MS-FLC. Section 4 presents the evaluation results of the MS-FLC, 70 

sensitivity analysis, and proposed extension of the MS-FLC for corridor-wide control. Finally, Section 5 summarizes the 71 

findings from this research and draws the conclusions.  72 

Literature Review  73 

The use of control devices such as traffic lights to regulate the number of cars entering the expressway in order to meet 74 

operational objectives such as balancing traffic demand and capacity on the mainline is known as expressway ramp traffic 75 

control. Measurable traffic characteristics such as reduced travel time, higher operational speed, or increased throughput have 76 

typically been used to evaluate the benefits of ramp control (Zhang et al. 2001). Ramp metering is used to regulate the rate 77 

at which traffic can enter an expressway.  78 

Ramp metering control is classified into fixed-time and traffic-responsive strategies (Zhong et al 2014). In fixed-time 79 

strategy the ramp rates are calculated off-line for various times of the day using the available historical data. Given its static 80 

nature, fixed-time strategy may cause either under- or over-utilization of the expressway's mainline. Traffic-responsive ramp 81 

metering, on the other hand, adjusts the ramp control in response to the real-time traffic conditions on the mainline and the 82 

ramp during the metering period. The adjustment is conducted either in the reactive manner or proactive manner (Toan 2008; 83 

Zhong et al 2014). The former adjusts the ramp metering rates using real-time measurements in order to maintain a pre-84 

specified value of the expressway traffic conditions, while the latter attempts to improve the traffic conditions based on traffic 85 

variables anticipated for a certain time horizon. In terms of network topology, ramp metering strategies can be classed as 86 

local or coordinated schemes (Zhang et al. 2001; Zhao et al 2016). Local strategy makes use of local measurements to adjust 87 

ramp metering rates, whereas coordinated strategy considers a coordination of several controllers in an expressway corridor. 88 

The latter utilizes data to simultaneously calculate ramp flows for all controlled ramps within the corridor. Because more 89 

extensive information is used and more robust control action is coordinated, this may give possible system-wide gains above 90 
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local ramp metering. When there is local congestion, local control is appropriate. Coordinated control should be considered 91 

if congestion is widespread in different sections of the expressway corridor. 92 

Previous research has shown that under recurring traffic congestion, local ramp metering performs compatibly as 93 

coordinated approaches, and that local ramp control is the most direct and is an effective strategy to relieve expressway 94 

congestion (Papageorgiou et al. 2003). Nonetheless, in the presence of many bottlenecks on the expressway, non-recurrent 95 

congestions, or limited ramp storage capacity, coordinated ramp metering systems are often more efficient than local ramp 96 

metering strategies (Zhong et al 2014). However, determining whether a ramp metering should be coordinated is not 97 

straightforward and is reliant on network topology, background congestion level, and the queue management policies. Rather 98 

than launching a complete system, a gradual ramp control strategy should be considered, with priority given to the areas with 99 

the largest risk of disrupting traffic flow. However, according to Papageorgiou et al. (1991), the employment of advanced 100 

algorithms does not always result in performance enhancement. A local ramp control algorithm ALINEA was tested against 101 

coordinated control algorithm METALINE on the Boulevard Peripherique in Paris, using a macroscopic traffic model. The 102 

results showed that under normal conditions, both ALINEA and METALINE control systems produced nearly the same 103 

results, and the METALINE was only slightly better than the ALINEA in the event of an unforeseen incident due to more 104 

comprehensive information. 105 

A fuzzy logic system (FLS) is a non-linear mapping of input to the output universe of discourse using fuzzy logic 106 

principles. FLS is an attractive approach in handing uncertainty problems. There has been a great deal of works for various 107 

applications in traffic engineering such as incident management (Lawrence and Huang 2006; Hatri and Boumhidi 2018; 108 

Hawas et al. 2020; Tariq et al. 2020), route choice (Arslan and Khisty 2005; Dhulipala et al. 2017; Bhandari and Cho 2019), 109 

safety analysis (Imprialou et al. 2014; Ali et al. 2017; Chowdhury and O’Sullivan 2018), and so on.  In the aforementioned 110 

applications, FLS in general has delivered promising results. For knowledge representation, many researchers have 111 

investigated the rule-based reasoning system for traffic management and control (Toan and Lam 2005; Memon et al. 2015, 112 

2016; Yan et al. 2018; Tariq et al. 2020). In the rule-based reasoning system, the knowledge is represented in the form of 113 

condition-action pairs: IF conditions (premises) are met, THEN actions (conclusions) are carried out. There are two types of 114 

rules: regular rules that evaluate state and control variables using crisp sets, and fuzzy rules that use fuzzy sets. The primary 115 

distinction between regular and fuzzy rules is that fuzzy rules allow for partial set membership and a progressive transition 116 

from one fuzzy set to the next. The problem-solving capability of fuzzy rules is more competent, thus fuzzy rules are more 117 

suitable for complex situations. 118 

Traffic control is one of the earliest applications of FLSs in traffic engineering (Toan and Wong 2021; Chen et al. 2021). 119 

Attempts have been made in this area to use a fuzzy logic technique to improve control at signalized junctions. Pappis and 120 

Mamdani (1977) were the first to use fuzzy logic theory to control traffic at a single signalized intersection. Nakatsuyama et 121 
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al. (1983), Sasaki and Akiyama (1987, 1988), and others have since made significant contributions to fuzzy logic applications 122 

in traffic engineering. Zhan and Prevedouro (2011) introduced a fuzzy logic-based methodology for determining the level of 123 

service (LOS) at signalized intersections. The LOS thresholds were replaced with fuzzy values, and fuzzy inferences were 124 

used to integrate key factors in order to create a composite LOS measure. The results demonstrated that using fuzzy logic to 125 

assess user perceptions of signalized intersection LOS is a viable alternative. Collotta et al. (2015) introduced a traffic signal 126 

dynamic control system with multiple fuzzy logic controllers, each handling vehicle turning movements, allowing real-time 127 

traffic monitoring. The results showed the system outperformance with considerable reduction of vehicle waiting times. 128 

Using a formal description of traffic control on crossroads, Yusupbekov et al. (2015) proposed adaptive fuzzy-logic traffic 129 

control systems. The results demonstrated that the synthesized adaptive fuzzy control system was robust and capable of 130 

directing road traffic over a wide range of parameters. More references on previous literatures in using fuzzy logic for traffic 131 

control can be seen in Taylor and Meldrum (2000), Zaied and Al Othman (2011), and Collotta et al. (2015), Kalinic and Krisp 132 

(2019), and Tariq et al. (2020). 133 

There have been variety of applications of multi-stage fuzzy logic for traffic control. Ge (2014) presented a two-stage 134 

traffic signal control method. The first stage calculates traffic urgency degree for all red phases, the second stage determines 135 

green delay of the current green phase using fuzzy inference. The comparisons were made with pre-timed controller and 136 

fuzzy logic controller. The results showed that fuzzy control had a better effect on traffic urgency than pre-timed control and 137 

common fuzzy control. Based on the Takagi–Sugeno type FLC algorithm, Xu et al. (2013) proposed an efficient local ramp 138 

metering approach. The resulting parameters are fine-tuned by particle swarm optimization and microscopic traffic 139 

simulations with PARAMICS. Simulation studies show that a balance between traffic on the freeway mainstream and on-140 

ramp link has been achieved; Hawas et al. (2019) proposed formulation of a multistage fuzzy-logic model (FLM) for incident 141 

detection and management of traffic signals in urban traffic networks. Three distinct non-linear regression models were 142 

utilized to find the resilient incident detection and traffic management parameters that are most likely to reduce total network 143 

travel time. Other studies on merits of applications for FLC for traffic control are summarized in Yusupbekov et al. (2015), 144 

Collotta et al. (2015), and Pandey et al. (2017). 145 

Previous research has taken advantage of fuzzy logic's advantages in dealing with multi-variable traffic control problems, 146 

and the results have been promising. Earlier research has shown that in complex situations where it is necessary to analyze 147 

available data and information in order to understand the current problem and predict what might happen before proposing a 148 

control action, the rules must be executed sequentially according to a decision-making logic. Another reason is that the 149 

number of rules increases exponentially as the number of variables increases, thus for a complicated multi-variable control 150 

problem the rule base becomes too cumbersome to handle effectively in a single stage, but a multi-stage structure can handle 151 

much better. To tackle such complex multi-variable control problems, this research represents the decision-making process 152 
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by a three-stage control architecture, known as the MS-FLC: output variables from preceding stage are used as input variables 153 

to the next stage. The decision-making process in MS-FLC during incident (as presented in the Methodology section) serves 154 

to reduce the problem complexity and thereby improves the overall system performance.  155 

In summary, while there has been a lot of work done in the area of fuzzy logic traffic management, the majority of the 156 

control applications have been reactive. Little effort has been devoted to traffic control for incident management following 157 

MS-FLC approach. Essential issues such as the evaluation of the current traffic situation and anticipation of the immediate 158 

incident condition have not been adequately explored, and a systematic procedure in deriving control decisions in the event 159 

of an incident have not been adequately addressed. 160 

This research study develops a MS-FLC for expressway traffic control during incidents. The MS-FLC design targets 161 

application for corridor-wide control for traffic management under both recurrent and non-recurrent congestion. Since the 162 

MS-FLC is a highly non-linear system with complex stability behavior, and using the MS-FLC model for corridor-wide 163 

management necessitates a significant amount of model calibration effort, the authors propose an incremental development 164 

roadmap. Before extending to a corridor-wide control, the MS-FLC is initially built and its performance evaluated using a 165 

local ramp control technique, as well as the model's performance sensitivity analysis. Herein, the main focus is on the 166 

development and assessment of the MS-FLC performance for local ramp control in comparison to competing control 167 

algorithms. In the last section, an overall model architecture for corridor-wide control is described. Due to the rarity of off-168 

ramp control, the phrase "ramp control" in this study refers to on-ramp control.  169 

Methodology 170 

Overall Framework of the MS-FLC 171 

Fig. 1 describes the proposed architecture of the MS-FLC for incident management. The model reflects a complex sequential 172 

structure of the decision-making logic for the multi-variable traffic control problem. The rule base in the MS-FLC consists 173 

of 3 stages: (i) incident traffic evaluation; (ii) predicted incident condition; and (iii) recommendation of control action. The 174 

rules in the first stage need to be executed first to give results to the second stage. The second stage uses the output from the 175 

first stage as its internal input, and external inputs from traffic forecasting. Similarly, the third stage employs both internal 176 

and external inputs to provide output in the form of control actions. 177 

Stage 1: Evaluation of Current States of Traffic during Incidents 178 

The objective of this stage is to evaluate the current state of traffic in the event of an incident. The traffic state is prescribed 179 

by three principal quantities: congestion level (CL), congestion mobility, and congestion status. The congestion level reflects 180 

the severity of traffic, estimated by traffic speed and density. The congestion mobility determines the dynamics of the 181 
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congestion, quantified by traffic speeds. The congestion status refers to the existence and magnitude of queue lengths on 182 

expressways. The congestion mobility and congestion status specifically deal with the heavy congestion category. Each 183 

component (rule block) requires various treatments in the subsequent stages. If the congestion problem is critical, immediate 184 

control measures must be made, and the rules in stage 3 will be executed. By contrast, if the traffic congestion is not yet 185 

critical, the system proceeds with traffic forecasting module and rules in the second stage will be fired. The rules in this stage 186 

can be categorized as fact-state rules since the reasoning logic uses numerical data to estimate the state of traffic. 187 

 188 

Fig. 1. Conceptual model of MS-FLC for incident-related traffic control 189 

Stage 2: Prediction of Incident Traffic Conditions  190 

Predicting short-term traffic conditions is critical to any proactive traffic control scheme's success. The key to 191 

anticipating traffic and incident conditions is to predict short-term traffic variables. The second stage, employing short-term 192 

traffic prediction advanced traffic forecasting technique for traffic variable predictions and fuzzy logic for data processing, 193 

continues to anticipate traffic and incident conditions in the immediate time interval based on the results of the previous stage. 194 

The rules in this stage are typically state-to-state rules, since the reasoning sequence infers the future state from the current 195 

state using external variables from the traffic-forecasting module.  196 

Stage 3: Recommendation of Control Measures  197 

The outputs from stages 1 and 2 will be utilized to assess the strength of the necessary control intervention (no control, 198 
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moderate, strong, and very strong control levels), after which an appropriate control approach will be advised based on the 199 

results. Based on the estimated control intervention and the availability of control facilities, the control strategy rule block 200 

presents a broad view of alternative control solutions. If concrete control actions are translated, the traffic operator may 201 

choose a local or corridor-wide control strategy. Local ramp control, for example, considers ramp traffic and VMS display; 202 

corridor-wide control is divided into coordinated ramp control, which coordinates numerous ramp metering controls, and 203 

integrated control, which incorporates ramp control as well as VMS diversion directives. The FLC system's outputs are 204 

defuzzified to provide crisp values. The rules in stage 3 apply to both the strategic (for intervention level, control strategy) 205 

and operational levels, as based on the reasoning process (for control settings). Control action rules are essentially state-206 

action rules for the given input-output mapping. 207 

Rule Base Architecture  208 

Given the prescribed relationships, the rules in the proposed MS-FLC can be expressed in the general form: 209 

                   𝒀 = 𝑓(𝑿,𝑼) (1) 

where 𝑿 is the vector of input variables, 𝑼 is the vector of intermediate variables, and 𝒀 is the vector of output variables. 210 

     ( ) T
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Eq.s (2) to (6) represent non-linear relationships of a fuzzy multi-variable control model. In MS-FLC, the primary 211 

parameters of input variables are employed in the first stage, while in the second and the third stages both intermediate inputs 212 

from the first stage as well as external variables are utilized. Basically, the rules have multiple-inputs-single-output structure, 213 

where multiple inputs are used to produce a single output. Given these, the formation of rules in the three stages can be 214 

described as follows: 215 
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Stage 3 
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(9) 

where: 216 

( );X , ( );Y  : input and output variables respectively;  n1, n2, n3: number of rules in stages 1, 2, 3 respectively 217 

i

xjA , : fuzzy number in antecedent part; i = 1, 2, 3: the stage; j : rule
thj in each stage 218 

x = 1,2, … ,M: any fuzzy number in antecedent fuzzy sets; M is number of fuzzy sets in each input variable. 219 

y =1,2, …, O: any fuzzy number in conclusion fuzzy sets; O is number of fuzzy sets in each output variable. 220 

N: number of input variables employed by 1st stage; 
i

yjC , : fuzzy number in conclusion part. 221 

E: number of external input variables employed by stages 2 and 3  222 

Note that in Eq.s (7) to (9) the rules are assumed homogeneous using the AND operator for simplicity. As will be seen 223 

in the following sections, in this MS-FLC the AND operator is predominant in the compositional operation, even though the 224 

OR operator is occasionally used.  225 

The Eq.s (7), (8), and (9) are elaborated in section “Formation of Rules” below. 226 

Formation of Rules 227 

Stage 1: Evaluation of Current States of Traffic during Incidents  228 

Stage 1 evaluates three principal quantities: congestion level, congestion mobility, and congestion status. The congestion 229 

mobility and congestion status specifically deal with the heavy congestion category, and the rule formation of these quantities 230 

are simple and straightforward. In the multiple input - single out (MISO) model, rules for the congestion level are 231 

characterized by two predicates (speed and density) in the antecedent, connected with an AND operator, and one predicate 232 

(congestion level) in the consequent. The general expression of rules is of the form: 233 

 If speed is  AND density is  then congestion level is . (10) 

Fig. 2 shows an example of partition of the fuzzy sets for congestion level variable. 234 

 235 
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Fig. 2. Fuzzy partition of the congestion level 236 

The collection of rules for congestion level is summarized in the rule decision matrix (Table 1). Some of combinations 237 

such as “VeryHigh” speed - “VeryHigh” density, “VeryHigh” speed - “High” density, “High” speed - “VeryHigh” density, 238 

… are unlikely to occur, thus they are removed from the Table. 239 

Table 1. Rule decision matrix for congestion level (source: Toan and Wong, 2021) 240 

(FF: Free flow, L: Light congestion, M: Moderate congestion, H: Heavy congestion, VH: Very heavy congestion) 241 

 242 

Stage 2: Prediction of Incident Traffic Conditions   243 

In prediction of incident traffic conditions, it is essential to predict short-term traffic flow in the incoming period. This is an 244 

exogenous component from the MS-FLC (see Fig.1), but the prediction execution can be accomplished by a prediction 245 

software, and the result provided accordingly. As part of this research, Toan and Truong (2021) presented an efficient short-246 

term traffic flow prediction using support vector machine (SVM) and model training using nearest neighbor approach. The 247 

results are promising and proposals are made on extended research for online application.  248 

Apart from the predicted traffic demand, the incident severity (the lane closure) is used to estimate the capacity remaining249 

( )C . Furthermore, the evaluation of the risk factor is necessary to anticipate the incident traffic conditions. The risk factor 250 

caters for external risks that exist exogenously with the prediction, ranging from the incident location, incident type, incident 251 

severity (capacity reduction), the time of day (peak/off-peak). The risk factor is decomposed into low/medium/high risk level. 252 

From the predicted traffic demand, the is calculated, and then adjusted with the risk factor. There are 16 rules for this 253 

adjustment. 254 

 If predicted is Low and risk factor is high then the adjusted is medium (11) 

The evolution of traffic trend depends heavily on the balance between traffic demand and supply, represented by the 255 

ratio of the predicted traffic demand ( )V  upstream and the capacity remaining ( )C  at the incident location. Fig. 3 shows 256 

the membership functions for adjusted  ratio. 257 
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 258 

Fig. 3. Membership functions for adjusted C
V  ratio 259 

Given the congestion level estimated in the first stage and the adjusted  ratio, the MS-FLC evaluates the predicted 260 

congestion level. An example of rule of this type is as follows:  261 

 If adjusted is High and CongestionLevel is Light then predicted-CongetionLevel is Moderate. (12) 

The collection of predicted congestion level consists of 16 rules. Note that in this sub-stage, the variable CongestionLevel 262 

indicates the prevailing current congestion level, which does not include the Heavy congestion level since it is tracked directly 263 

from the 1st stage into the 3rd stage of the MS-FLC. 264 

Stage 3: Recommendation of control action  265 

Stage 3 receives the evaluated and predicted traffic conditions from previous stages, and other traffic and incident information 266 

to provide recommended solutions. The expressway operation management during incidents undertakes important tasks, 267 

including the dissemination of prevailing information to motorists, the regulation of ramp access, the control of route 268 

diversion, and the management of queues. The tasks employ appropriate control measures to target the control goals: the 269 

amelioration of the mainline congestion and prevention of excessive ramp queues. The goals are translated into specific 270 

measurable and tangible objectives such as to maximize mainline utilization, to prevent mainline congestion, to prevent 271 

excessive ramp queue, or to balance between objectives. Subsequently, the objectives are evaluated using specific measures 272 

of effectiveness (MOEs) as described in Section on “Results and Analysis”. Since the two objectives may be conflicting to 273 

each other, rules should be designed to compromise them at a balance point. For incident management, the control objectives 274 

target efficient incident responses for the mainline without incurring excessive ramp queues. 275 

Table 2 summarizes the decision rules for the local ramp control strategy. Each rule is a mapping between two (three) 276 

predicates in the rule conditions and one predicate in the rule conclusion. The rule conditions are joined with AND 277 

connectives. The rule conclusion reflects the control action that infers ramp flow based upon the rule conditions in the 278 

direction of the key control objective that elaborates the control goals: in correspondence to the key control objective, the 279 

conditions of the rules consider the traffic condition (congestion level, CL) upstream of the incident (downstream of the 280 
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ramp), the traffic demand (indicated by the *C
V  ratio) upstream of the ramp, and the ramp queue (see Fig. 5 later). For 281 

scenarios such that the traffic condition upstream of the incident and the *C
V  upstream of the ramp favor high ramp flows, 282 

the rules can be generated regardless of the queue status. Specifically, if the traffic condition upstream of the incident is Free-283 

flow or Light and traffic demand is Low/Medium, the ramp flow is set to High/Very_high level so as to maximize mainline 284 

utilization (rules 1, 2, 7). In contrast, if the traffic demand ( *C
V ratio) upstream is High/Very_high the ramp flow is set to 285 

Low/Very_low levels to prevent mainline congestion (rules 3, 6, 9, 10, 18, 20, 23, 24). In addition, the ramp flow is adjusted 286 

according to the ramp queue status so as to maintain acceptable ramp queue (rule 4), to prevent excessive ramp queue (rules 287 

5, 11, 21, 22), or to maintain a balance between objectives (rules 8, 13, 14, 19). Finally, if the traffic on the mainline is 288 

congested, the restriction of the ramp flow is to target preventing a secondary ramp queue at the ramp merge (rules 12, 15, 289 

16, 17).  The reason for this restriction is that when the mainline is congested, the ramp traffic will hardly find an acceptable 290 

gap to join the mainline, so a secondary queue of the metered vehicles may form spontaneously. If a secondary queue persists, 291 

ramp metering is not beneficial. At the extreme, vehicles in the secondary queue may try to encroach the mainline, breaking 292 

down traffic upstream of the ramp and creating safety risk. Therefore, in the presence of a secondary queue, it is imperative 293 

that the vehicles be stored on the ramp to wait for an opportunity in the next period rather than being metered. The inputs are 294 

combined in such a way that predicates are scaled gradually over the input domains, and the outputs are translated elegantly 295 

from one fuzzy value to another. For example, in rules 7, 8, and 9, given the Light congestion level, when the *C
V changes 296 

from Low to Medium to High, the Ramp_Flow changes from High to Medium to Low, respectively. 297 

Table 2. Decision table for rules with local ramp control 298 

(Note: SQ-HC: short queue-heavy congestion) 299 

Rule 

                           Rule condition                       Rule conclusion 

Key Control objective 
Congestion level 

(CL) upstr. 

of the incident 

*C
V  

upstr. of the 

ramp 

Ramp 

Queue 

Ramp 

Flow 

1 Free-flow Low -------- Very_high Maximize mainline utilization 

2 Free-flow Medium -------- High Maximize mainline utilization 

3 Free-flow High Short Low Prevent mainline congestion 

4 Free-flow High Medium Medium Maintain acceptable ramp queue 
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5 Free-flow High Long High Prevent excessive ramp queue 

6 Free-flow Very_high -------- Low Prevent mainline congestion 

7 Light Low -------- High Maximize mainline utilization 

8 Light Medium -------- Medium Balance between objectives 

9 Light High Short Low Prevent mainline congestion 

10 Light High Medium Medium Prevent mainline congestion 

11 Light High Long Medium Prevent excessive ramp queue  

12 Light Very_high -------- Very_low Prevent secondary queue 

13 Moderate Low -------- Medium Balance between objectives 

14 Moderate Medium -------- Medium Balance between objectives 

15 Moderate High Short Low Prevent secondary queue 

16 Moderate High Medium Low Prevent secondary queue 

17 Moderate High Long Medium Prevent secondary queue 

18 Moderate Very_high -------- Very_low Prevent mainline congestion 

19 SQ-HC Low -------- Medium Balance between objectives 

20 SQ-HC Medium Short Low Prevent mainline congestion 

21 SQ-HC Medium Medium Medium Prevent excessive ramp queue 

22 SQ-HC Medium Long Medium Prevent excessive ramp queue 

23 SQ-HC High -------- Low Prevent mainline congestion 

24 SQ-HC Very_high -------- Very_low Prevent mainline congestion  

Development of the TSC 300 

This section presents the development and validation of a Traffic Simulator and Control (TSC) model and the 301 

implementation and evaluation of the MS-FLC framework presented in previous sections. The TSC model (Fig. 4) is 302 

developed in SIMULINK in MATLAB, following the decision-making logic for incident-related traffic control 303 
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presented in the conceptual model (Fig. 1). The TSC consists of two main components (Fig. 4): the car-following 304 

model (CFM), and the traffic controller (TC).  305 

 306 

Fig. 4. Conceptual model of the TSC 307 

The CFM simulates the car-following behavior and delivers the aggregated traffic parameters to the TC for traffic 308 

control. In this study, the CFM is developed using the modelling concepts provided by Gazis-Herman-Rothery (GHR) 309 

type of models. Although the CFM simulation keeps track of individual vehicles, only aggregated traffic variables 310 

(flow rate, density, total travel time, mean speeds - see the MOEs in Tables 4-7 also) are parameters of interest. In 311 

other words, by using the microscopic simulation, the model explains the macroscopic behavior of systems and obtains 312 

macroscopic traffic metrics. 313 

Although individual vehicles are tracked, the TSC functions more like a macroscopic traffic simulation model since 314 

only aggregated traffic variables, which are the parameters of interest, are generated. By including the CFM 315 

component in the model, the dynamic longitudinal interactions between vehicles, namely car-following behaviors, 316 

are replicated. The TC receives the aggregated outputs for traffic control purposes. The traffic on the multi-lane 317 

expressway where the data was collected is represented as an equivalent single-lane system for model calibration and 318 

validation. 319 

In a multi-lane highway, a standard microscopic traffic simulation package examines both car-following and lane-320 

changing behavior. Unfortunately, SIMULINK lacks the ability to capture lane-changing behaviors. Lane-changing 321 

maneuvers may have a significant impact on the speeds and travel times of vehicles in the traffic stream in free-flow 322 

conditions, but there are few lane-changing opportunities in congested conditions. Furthermore, because the 323 

parameters of interest are the overall macroscopic traffic variables that are averaged across lanes, they may not be 324 
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highly sensitive to cars changing lanes, and traffic control for non-recurring congestion often concentrates on 325 

congested scenarios. As a result, through the calibration of its parameters, the CFM developed in this research 326 

implicitly integrates lane-changing effects. 327 

 328 

 329 

Fig. 5. The MS-FLC in SIMULINK 330 

An iterative process of calibration simultaneously refines the model’s parameters, ensuring that the model 331 

accurately replicates real-world behavior. The calibration of the CFM identifies the most influential parameters: 332 

desired gap, gain factor for acceleration, gain factor for deceleration, maximum acceleration, maximum deceleration, 333 

speed limit, and reaction time. Having calibrated, the CFM validation was performed at the macroscopic levels where 334 

speeds and flow rates for simulated platoons are aggregated in one-minute intervals and are compared with those of 335 

field data on a segment of the Singapore's Pan Island Expressway (PIE) under various traffic conditions (free-flow, 336 

medium congestion and heavy congestion). The result shows that the simulated speed is not significantly different 337 

from the field speed (at the significance level ) for both upstream and downstream segments, and the aggregated flow 338 

rate discrepancies fall within small ranges.  339 

The designed MS-FLC (Fig. 5) was embedded in the TC component for MS-FLC evaluation. Over 340 

different traffic situations and incident scenarios, the MS-FLC performance was compared to that of the No-control 341 

scenario and the ALINEA ramp controller. For the MS-FLC to execute in its totality, the model requires predicted 342 

short-term traffic flow for the incoming period to anticipate incident related traffic condition. The data are provided 343 

by an external SVM short-term traffic flow prediction component. The SVM is linked with a real-time database so 344 

that data can be continually retrieved for the MS-FLC operation using the rolling-horizon approach proposed by Peeta 345 
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and Mahmassani (1995). As stated earlier, although the SVM prediction performance is promising, additional effort 346 

need to be devoted to applying the SVM model for online application. Thus, for the time being, in the model evaluation 347 

section below, the MS-FLC use the data in the current interval to project the future state. In this experiment ALINEA 348 

(ALINEA\Q) control algorithm is used to compare with MS-FLC, thus the control algorithms must have the same 349 

simulation and network setting as described below. 350 

Model Evaluation   351 

General Settings 352 

It would be preferable to use observed data with a real network to explore the model behavior under various conditions for 353 

model evaluation. However, obtaining data from actual sites is technically complex, time consuming, and very costly. 354 

Simulated traffic, on the other hand, may be duplicated from one run to the next, making comparisons between scenarios 355 

simple. The use of a generic network for simulation-based evaluation is a viable option that allows for more flexibility in 356 

examining various traffic conditions and incident scenarios, while the criteria for evaluating the success of control algorithms 357 

can be simply and uniquely obtained. In this regard, the FLC control algorithm evaluated in this part uses a simulated study 358 

segment as shown in Fig. 6. The study segment is modelled after the validated site (section 80007774) that was previously 359 

described. The segment comprises three links: one upstream of the ramp, one downstream of the ramp, and one upstream of 360 

the incident (downstream of the ramp). The majority of measurements for local ramp control are collected in the vicinity of 361 

the incident, notably the upstream and downstream links. The lengths of the links used in this experiment are 𝐿𝑢𝑝𝑠𝑡𝑟=1,000m, 362 

𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟 = 500𝑚. The expressway's capacity is reduced as a result of the lane-blocking incident, and local ramp control is 363 

implemented to regulate traffic demand from the ramp in order to avoid or alleviate mainline congestion. 364 

 365 

Fig. 6. Layout of the study segment 366 

The inputs in evaluation involve two pairs of time-dependent O1D1 demands, speed profile of the first vehicles, and time-367 

varying splits at the diversion route. The time-varying splits are specifically considered in the rules in the FLC algorithm. 368 

The evaluation investigates a wide range of traffic conditions and incident situations. The traffic O1D1 flows are loaded at 369 

Low, Medium, and High demand levels, the values of which are defined based on local conditions. In addition to traffic 370 



 
 17 

conditions on the expressway and on the ramp, the evaluation investigates various incident scenarios, including capacity 371 

reduction and incident location.  372 

In this experiment the ramp is assumed to have a storage capacity of 60 vehicles. Once the ramp queue reaches this level, 373 

the urban traffic will not join the ramp queue but will be diverted to the surface streets and enter the expressway through 374 

downstream ramps. The availability of diversion alternatives encourages the local traffic to utilize the parallel urban streets 375 

in case of critical mainline traffic conditions.  376 

The parameters of interest used for control and evaluation are aggregated variables including traffic flow rate 𝑞(;)(𝑡), 377 

speed 𝑣(;)(𝑡), and density 𝑘(;)(𝑡) for every interval t, where the (;) denotes the locations upstream and downstream of the 378 

incident. Apart from that, the queues on expressway and on the ramp are also collected. The total study time is about 90 379 

minutes, including: the first one third part is normal traffic, the second one third part is incident period, and the last one third 380 

part is normal traffic again. There are several MOEs that can be used as the evaluation criteria, including total travel time on 381 

expressway, total waiting time on the ramp, total time spent in the system, total travel distance, average speed on expressway, 382 

and mean density.  383 

The basic parameters of the simulation: simulation time: 90 minutes, including: 384 

• From the 1st min. to 30th min.: normal traffic 385 

• From the 31st min. to 60th min.: incident period 386 

• From the 61st min. to 90th min.: normal traffic 387 

• Evaluation interval: every 10 seconds  388 

• Evaluation period: from the 16th min. to 90th min. 389 

To achieve a high level of representation and accuracy, the vehicle’s acceleration, speed and position are updated every 390 

0.1 second. 391 

Three control methods can be considered: No control; ALINEA\Q control, and FLC control. ALINEA is the most widely 392 

used technique in the close-loop control (Papageorgiou et al. 1991). ALINEA determines the metering rates such that the 393 

traffic state on the expressway approaches a pre-defined condition. Developed as an enhancement of ALINEA, the ALINEA\Q 394 

(Smaragdis and Papageorgiou 2003) incorporates ramp control with ramp queue management by considering two metering 395 

rates. The first rate is calculated exactly the same as that in the ALINEA algorithm, while the second rate is calculated so as 396 

to maintain the ramp queue within a desirable queue length. The FLC control monitors the ramp flow by considering both 397 

the congestion level of the expressway and the ramp queues, with priority given to the mainline traffic. Results from initial 398 

scenarios will be used to train the FLC before the actual evaluation.  399 

Since ALINEA is considered an efficient local-ramp control algorithm for monitoring the mainline traffic, in this 400 

experiment ALINEA is used to compare with FLC. ALINEA uses the measured occupancy at a loop detector downstream of 401 
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the ramp, and regulates the ramp flow based on the difference between the measured occupancy and the optimal set point 402 

occupancy (Papageorgiou et al. 1991). The Eq. used to calculate the metering rate for time interval t is: 403 

 ( ) ( ) ( ) 11 −−+−= tOOKtqtq downoptRrr  (13) 

where:  404 

𝑞𝑟(𝑡) and 𝑞𝑟(𝑡 − 1): metering rates of the current and previous intervals, respectively. 405 

𝐾𝑅: regulator parameter. Field experiment has shown that ALINEA has not been very sensitive to the choice of 𝐾𝑅, and 406 

the typical value of 𝐾𝑅 is 70 veh/h (Papageorgiou et al. 1991). 407 

𝑂𝑜𝑝𝑡: set point optimal occupancy, which is set to obtain optimal operation (Papageorgiou et al 1991).  408 

𝑂𝑑𝑜𝑤𝑛(𝑡 − 1): occupancy downstream in the previous interval. 409 

Since the standard ALINEA algorithm targets the optimal occupancy at the immediate detector downstream of the ramp, 410 

it uses the point measurement. Therefore, in this experiment the average occupancy for the whole section from the incident 411 

location to the ramp is recommended to capture the spatial effect of the incident. The average occupancy is estimated from 412 

the average density. 413 

 ( ) ( ) ( )tkdLtOdown +=  (14) 

where L is the average vehicle length, d is the length of the detector. The average density ( )tk  in each evaluation interval 414 

is calculated by the ratio between the number of vehicles on the link and the length of the segment.  415 

The average vehicle length is the arithmetic mean of lengths of various vehicle types, which can be derived from the 416 

vehicle composition. Eq. (14) holds true when the vehicles have constant speeds. In congested condition this assumption is 417 

not valid, and Eq. (15) will be used instead:  418 

 ( )
( )

T
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down

/ +

=  (15) 

where
iL  is the length of vehicle type i; 

iv is the vehicle speed; T is the period of measurement. 419 

The critical occupancy 𝑂𝑐𝑟  is the occupancy associating with the maximum flow rate. It was determined from an 420 

empirical volume-occupancy relationship, established from 227 simulated records, and the resulting 𝑂𝑐𝑟 = 26% was 421 

obtained. 𝑂𝑜𝑝𝑡  is taken as 24%, slightly lower than 𝑂𝑐𝑟 . 422 

The traffic controller of the ALINEA algorithm is designed in SIMULINK and is shown in Fig. 7. 423 
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 424 

Fig. 7. ALINEA controller in SIMULINK 425 

In the evaluation, the setting of traffic demand is evaluated approximately based on the 𝑉 𝐶∗⁄  ratio, where V is the traffic 426 

volume, and C* is the remaining capacity. Although technically the traffic under various situations can be investigated, for 427 

purposes of discussion in this paper, only a high-expressway demand scenario, wherein the traffic demand is about 1,000-428 

1,100 veh/h/lane, is presented here. This scenario encompasses several cases in which the high level of mainline traffic 429 

demand is associated with various levels of ramp traffic demand, capacity reduction, and incident location. More specifically, 430 

the following cases are investigated:  431 

• Case 1: Medium ramp demand; and 432 

• Case 2: High ramp demand.  433 

Since the experiment focuses on congested conditions, Case 2 was extended to:  434 

• Case 3 with more severe capacity reduction (less remaining capacity); and  435 

To see the effect of the incident location, Case 3 was extended to: 436 

• Case 4 with the incident location moved upstream, to 500m downstream of the ramp. 437 

The settings in each case are listed in Table 3.  438 

Table 3. Settings in each case 439 

 

Mainline traffic demand 

(veh/h/lane) 

Ramp demand (veh/h) 

Remaining capacity C* 

(%) 

 

Incident location 

(distance at downstream  

of the ramp) 

Case 1 1,000-1,100 300±10% 45-50% 1,000m 

Case 2 1,000-1,100 400±10% 45-50% 1,000m  

Case 3 1,000-1,100 400±10% 30-40% 1,000m  

Case 4 1,000-1,100 400±10% 30-40% 500 m  

Measures of effectiveness (MOEs) 440 

The TSC uses the following measures of effectiveness as the evaluation criteria: 441 
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a) Total travel time on the expressway, TTT (veh.h)  442 

The TTT is the sum of travel times of individual vehicles. In SIMULINK, the TTT is the sum of the number of vehicles in 443 

the expressway ( )tN  over time in successive intervals: 444 

 ( ) t

Tt

tt

tNTTT =
=

= 0

 (16) 

The TTT is a principal evaluation criterion. The calculation of the TTT allows the comparison of the total time spent in the 445 

system. The lower the TTT indicates the positive signal, providing that higher throughput and higher speed are also obtained. 446 

Nevertheless, if the lower TTT is the result of too restrictive a control method that produces a lower throughput, this “saving” 447 

is misinterpreted. Therefore, the TTT should be evaluated in accordance with the other MOEs. 448 

b) Total waiting time on the ramp, TWT (veh.h) 449 

The TWT is the accumulated waiting time of vehicles in the ramp queue due to the control regulation. Like TTT, TWT is the 450 

sum of the number of vehicles in ramp queue rQ  over time in successive intervals: 451 

 ( )
=

=

=
Tt

tt

tr tQTWT
0

 (17) 

Unlike TTT, TWT is a secondary criterion an incident management strategy normally sets a higher priority for the expressway 452 

than the ramp traffic. 453 

c) Total time spent in the system, TTS (veh.h) 454 

The TTS is the total time all vehicles spend in the system during the simulation period, being the sum of the TTT and TWT. 455 

 TWTTTTTTS +=  (18) 

d) Total travel distance, TTD (veh.km) 456 

The TTD is the sum of distances travelled by individual vehicles during the simulation. In SIMULINK, the TTD is calculated 457 

as the sum of the total of travel distances upstream and downstream sections in successive intervals. 458 

 ( ) ( ) ( ) ( )  t

Tt

tt

downdownupup tVtNtVtNTTD +=
=

= 0

 (19) 

where ( )tNup  and ( )tNdown  denote the number of vehicles in upstream and downstream links during interval t; ( )tVup
 459 

and ( )tVdown  are the space mean speeds during the same period. 460 

Like TTT, TTD is a primary MOE since it indicates the level of “productivity” the expressway yields. It encompasses both 461 

the mainline throughput and average speed.  462 

e) Average speed on expressway, MS (km/h) 463 
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The MS on the expressway is among the most important criteria since it represents the dynamics of a vehicle’s motion. The 464 

average speed is calculated as the ratio of TTD and TTT. 465 

 
TTT

TTD
MS =  (20) 

where TTD and TTT are associated with the same number of vehicles (see Block 2, Appendix D). 466 

f) Mean density, MD (veh/km) 467 

Like speed, MD is a primary indicator of congestion level. The mean density is the arithmetic mean of traffic densities ( )tk  468 

in the network in successive intervals. 469 

 

( )

N

tk

MD t


== 0

 
(21) 

where N is the number of simulated intervals. Since the density is determined for upstream and downstream segments 470 

separately, the traffic density ( )tk  in the network in an interval t is calculated as the weighted mean of densities on upstream 471 

and downstream segments: 472 

 ( )
( ) ( )

downstrupstr
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LL

tkLtkL
tk

+

+
=  (22) 

where upstrL and downstrL are the lengths of upstream and downstream segments, respectively. In Section 8.4.3 the two 473 

segments respectively have the lengths of 1,000 m and 500 m, excepting for the Scenario "High demand, Case 4" where the 474 

incident location is assumed to move upstream, the length of the segments change, i.e upstrL = 500 m and downstrL = 1,000 475 

m. 476 

Apart from the described measures, the simulation considers the maximum length of queues on the expressway expQ  and on 477 

the ramp rQ . 478 

The TSC model was developed in SIMULINK in MATLAB. SIMULINK is a graphical programming language that offers 479 

modelling, simulation and analysing of dynamic systems under a Graphical User Interface (GUI) environment. SIMULINK 480 

facilitates easy communication between the simulation with external applications. In SIMULINK the CFM and the TC are 481 

harmonized and integrated in a close-loop control system, with the control effects (TC outputs) fed-back as inputs to the and 482 

CFM for real-time applications. Embedded in SIMULINK the simulation parameters can be easily specified and altered for 483 

various scenarios and sensitivity analysis. 484 
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Results and Analysis 485 

Tables 4 to 7 show the values and percentile changes of the MOEs. For temporal MOEs, including total travel time (TTT), 486 

total waiting time (TWT), total time spent (TTS), a negative sign of percentile change indicates time saving. For spatial 487 

MOEs, including mean density (MD), maximum length of queues on the expressway (max Q_exp), and maximum length of 488 

queues on the ramp (max Q_ramp), a negative sign indicates improvement. For the remaining attributes, including total travel 489 

distance (TTD), and average speed (MS), a positive sign is a positive indication of the related parameter.  490 

Case 1: Medium Ramp Demand 491 

Table 4 lists the results from Case 1. The table shows that in general under both ALINEA and FLC significant benefits were 492 

achieved. ALINEA gained a TTT saving of 13.13%, an increase in MS of 15.12%, and a reduction in MD of 13.12%, compared 493 

to No control. The algorithm also enjoyed a substantial reduction in max Q_exp of 32.28%. Nevertheless, ALINEA suffered 494 

considerable long TWT of 9.54 veh.h, and an excessive ramp queue (max Q_ramp) of approximately 46 vehicles.  495 

Table 4. MOEs for Case 1 496 

MOE Unit 

No Control          ALINEA            FLC ALINEA\Q vs FLC 

value value % change value % change % change 

TTT veh.h 55.62 48.32 -13.13 48.36 -13.06 -0.08 

TWT veh.h 0 9.54 --- 6.56 --- 31.24 

TTS veh.h 55.62 57.86 4.03 54.91 -1.28 5.10 

TTD veh.km 2541.43 2541.43 0 2541.43 0 0.00 

MS km/h 45.69 52.6 15.12 52.56 15.02 0.08 

MD veh/km 29.55 25.67 -13.12 25.69 -13.05 -0.08 

max Q_exp veh 112.47 76.05 -32.28 77.62 -30.99 -2.06 

max Q_ramp veh 0 46.54 -- 20.55 --- 55.84 

 497 

The FLC obtained a compatible level of benefits: the improvements in the TTT, MS, and MD were 13.06%, 15.02%, 498 

and 13.05%, respectively. As compared to ALINEA, the TWT and max Q_ramp under FLC were less severe, which leads to 499 

a saving in TTS of 1.28% compared to a loss of 4.03% under ALINEA. The TTDs were the same since the traffic states were 500 

similar across three control methods at the beginning and at the end of the evaluation period (there was no queue on the 501 

mainline and on the ramp at these time points). 502 
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Case 2: High Ramp Demand 503 

To explore how the control algorithm work under critical conditions, the experiment was carried out with high demands on 504 

both expressway and ramp in Case 2. The results from Case 1 (Table 2) show that the standard ALINEA gained substantial 505 

benefits to the mainline, where the key MOEs such as TTT, MS, MD and max Q_exp were improved considerably. To some 506 

extent, ALINEA even slightly outperformed FLC control with respect to the mainline conditions. Nevertheless, the ALINEA 507 

algorithm shows that the method merely targets benefits for the mainline without considering the status of the ramp traffic. 508 

Under heavy ramp demands, the mechanism used in the standard ALINEA would likely induce intolerable traffic conditions 509 

on the ramp. In practice, the principle of traffic control should be such that smooth expressway travel can be achieved, while 510 

maintaining a reasonable ramp traffic status. In incident management in particular, the control objectives should target 511 

efficient incident responses to the mainline traffic without incurring excessive ramp queue length. Therefore, the ALINEA\Q 512 

is used in Case 2 instead. 513 

Table 5 summarizes the results of the simulation for Case 2. The table shows that both ALINEA\Q and FLC control 514 

methods achieved considerable improvements: ALINEA\Q gained a TTT saving of 13.92%, an increase in the MS of 15.61%, 515 

and a decrease in the MD of 13.50%. In particular, ALINEA\Q handled the ramp queue better than FLC and slightly better 516 

than the standard ALINEA under Case 1 (Table 4). 517 

Table 5. MOEs for Case 2 518 

MOE Unit 

No Control ALINEA\Q FLC ALINEA\Q vs FLC 

value value % change value % change % change 

TTT veh.h 70.31 60.52 -13.92 55.14 -21.58 8.89 

TWT veh.h 12.91 22.62 75.24 24.71 91.4 -9.24 

TTS veh.h 83.22 83.15 -0.09 79.85 -4.05 3.97 

TTD veh.km 2728.41 2715.12 -0.49 2719.53 -0.33 -0.16 

MS km/h 38.8 44.86 15.61 49.32 27.1 -9.94 

MD veh/km 37.42 32.36 -13.5 29.44 -16.7 9.02 

max Q_exp veh 153.87 135.22 -12.12 92.73 -39.73 31.42 

max Q_ramp veh 33.4 45 34.73 50 49.7 -11.11 

The FLC control alternative, with an exception of the ramp-related attributes, gained higher benefits than ALINEA\Q. 519 

The improvements in TTT, MS, and MD were 21.58%, 27.1%, and 16.7%, respectively. In particular, FLC also gained a 520 

reduction in the TTS of 4.05%.  521 
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Case 3: More Severe Capacity Reduction 522 

Results from Case 1 and Case 2 show that there exist excessive long queues on the mainline. In Table 5 in particular, the 523 

expressway queues under No control, ALINEA\Q, and FLC were 153.87, 135.22, and 92.73 vehicles, respectively. This is 524 

partially attributed to the implicit assumption that the ramp closes only when the mainline queue reaches the ramp. If the 525 

incident occurs far from the ramp, this passive type of ramp closure will tolerate a very severe mainline condition. It should 526 

be noted that if a long queue exists on the mainline, additional discharge from the ramp may not benefit the ramp traffic but 527 

aggravate the mainline conditions, thus a longer time will be required for the mainline traffic to dissipate. To minimize 528 

extreme congestion, an active action of ramp closure should be conducted from a control standpoint. Therefore, in Case 3 529 

under ALINEA\Q and FLC the ramp closure is set when the mainline queue reaches 50% of the length of the upstream-530 

incident segment, while this feature of operation is not available under No control.  531 

Table 6 lists the results from Case 3. The incident is assumed to create a more severe capacity reduction (remaining 532 

capacity within 30-40%). The table shows that benefits of ALINEA\Q and FLC obtained for the mainline in this Case were, 533 

in general, higher than the previous Cases. Compared to No control, ALINEA\Q gained a TTT saving of 22.14%, an increase 534 

in the MS of 26.82%, a reduction in the MD of 23.44%, and a cut down in the max Q_exp of 41.86%. The FLC benefits were 535 

even more profound with improvements in TTT, MS, MD, and max Q_exp of 23.13%, 27.98%, 23.11%, and 42.61%, 536 

respectively. The improvements of ALINEA\Q and FLC were certainly due to a strong regulation of the ramp traffic with 537 

active response to the mainline conditions. The results under No control also indicate that without strong control intervention, 538 

the system performances may deteriorate seriously. Despite that, with the early ramp closure subjected to the mainline queue, 539 

it is certain that ALINEA\Q and FLC impose more TWT, and more vehicles have to be diverted from entering the ramp.  540 

Table 6. MOEs for Case 3 541 

MOE Unit 

No Control ALINEA\Q FLC ALINEA\Q vs FLC 

value value % change value % change % change 

TTT veh.h 71 55.28 -22.14 54.57 -23.13 1.28 

TWT veh.h 20.28 25.75 26.99 23.9 17.86 7.18 

TTS veh.h 91.28 81.04 -11.22 78.47 -14.03 3.17 

TTD veh.km 2543.77 2511.95 -1.25 2502.36 -1.63 0.38 

MS km/h 35.83 45.44 26.82 45.85 27.98 -0.90 

MD veh/km 37.89 29.01 -23.44 29.14 -23.11 -0.45 

max Q_exp veh 181.85 105.72 -41.86 104.37 -42.61 1.28 

max Q_ramp veh 60 60 0 60 0 0.00 
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Case 4: Incidence Location Changed 542 

Case 4 is associated with the mainline demand in the range of 1,000-1,100 veh/h/lane, the ramp demand in the range of 400 ±543 

10% veh/h, and the remaining capacity 𝐶∗ between 30-40%. The incident occurred at 500 m downstream of the ramp, which 544 

is closer than those in Cases 1 to 3. Table 7 summarizes the results from the simulation, which shows that the benefits from 545 

both ALINEA\Q and FLC were less profound than the previous Cases: ALINEA\Q gained a TTT saving of 6.49%, an increase 546 

in the MS of 5.6%, a reduction in the MD of 6.72%, and a reduction in the max Q_exp of 13.97%. The improvements in TTT, 547 

MS, MD, and max_q_exp under FLC were 11.34%, 11.88%, 13.13%, and 19.69%, respectively, that are remarkably higher 548 

than ALINEA\Q. Nevertheless, ALINEA\Q and FLC incurred 22.27% and 10.19% more of TWT than No control, respectively. 549 

In particular, the two control algorithms yielded 1.25% and 0.81% of the total mileage TTD less than No control. This is 550 

probably due to the fact that the when the ramp queue reaches the ramp's physical storage capacity, vehicles that arrive at the 551 

ramp will not proceed to join the queue, but be diverted to the parallel street. 552 

Table 7. MOEs for Case 4 553 

MOE Unit 

No Control ALINEA\Q FLC ALINEA\Q vs FLC 

value value % change value % change % change 

TTT veh.h 57.41 53.68 -6.49 50.89 -11.34 5.20 

TWT veh.h 23.05 28.18 22.27 25.4 10.19 9.87 

TTS veh.h 80.45 81.86 1.75 76.29 -5.18 6.80 

TTD veh.km 2509.66 2478.26 -1.25 2489.29 -0.81 -0.45 

MS km/h 43.72 46.16 5.6 48.91 11.88 -5.96 

MD veh/km 30.72 28.65 -6.72 26.68 -13.13 6.88 

max Q_exp veh 127.19 109.42 -13.97 102.14 -19.69 6.65 

max Q_ramp veh 60 60 0 60 0 0.00 

Through the evaluation in comparison with the No-control scenario and ALINEA (ALINEA\Q) ramp control algorithm, 554 

it can be concluded that the proposed MS-FLC with the FLC controller showed substantial benefits. Particularly, under high 555 

traffic demand and severe capacity reduction, the FLC brings higher travel time savings as well as improvements of traffic 556 

conditions on both the mainline and ramp. Not only does the FLC outperform ALINEA\Q in managing ramp traffic, it also 557 

outperforms ALINEA\Q in managing the mainline flow under critical incident congestion. However, it is noted that the 558 

benefits of control interventions (ALINEA and FLC) depend on the magnitude of traffic demand and incident situation. In 559 

general, under high traffic demand and critical incident conditions, more significant gains can be realized than under favorable 560 

conditions. This comparison is likewise based on a simplified segment with a one-lane ramp. The assumption that the lane 561 
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has a storage capacity of 60 vehicles should be modified accordingly, and the benefits (savings in travel times, distances, and 562 

so on) should be adjusted accordingly. 563 

Sensitivity Analysis 564 

The findings of the simulation experiment in varied traffic demand (low, medium, high) and incident scenarios are presented 565 

in the previous section (capacity reduction, incident location). Nonetheless, the scenarios were coupled with predetermined 566 

hypothetical network designs (a 1.5-kilometer network length (upstream section = 1.0 km, downstream section = 0.5 km) and 567 

a 60-vehicle ramp storage capacity), and a 90-minute simulation time. These network and simulation settings have a 568 

substantial impact on model performance, and it is unclear whether the control methods' comparative performance will remain 569 

valid if the input parameters change. 570 

A sensitivity analysis is conducted to explore the effects of changes in these parameters on the comparative performance 571 

of the control approaches and to enhance confidence in the models’ performance in an uncertain environment. Because these 572 

parameters are unrelated, the sensitivity analysis is carried out separately for each one, so that one parameter is altered while 573 

the others remain constant in each run.  574 

The simulation parameters are changed as follow: 575 

a) Network length: The simulated mainline consists of the upstream and downstream sections of the incident. Since 576 

the impacts of the incident can mostly be observed upstream, this analysis investigates how the change with a change 577 

in the length of the upstream section. Four scenarios are extended to the length of the upstream section increased 578 

from 1.0 km to 1.5, 2.0, 2.5, and 3.0 km, respectively. The length of the downstream section in the four scenarios 579 

remains at 0.5 km. 580 

b) Ramp storage capacity: the ramp storage capacity of 60 vehicles in the simulation is now changed to 20, 40, 80 and 581 

100 vehicles, respectively. 582 

c) Simulation time: The previous simulation investigated the model performances for the simulation time of 30 minutes 583 

for each of the pre-incident, incident, and post-incident periods (named hereafter as scenario "30-30-30"). To explore 584 

how the improvement in the mean speed changes with simulation time, the simulation time is extended to two 585 

scenarios 30-60-30 and 30-60-60 minutes, respectively. 586 

Since the use of all MOEs in this analysis would be very confusing, the mean traffic speed could be the best MOE in this 587 

sensitivity analysis given that the mean speed is a key parameter that reflects the operational condition on the mainline. The 588 

relative change in the mean speed of the control methods over “No control” is used and is calculated as: 589 

 ( )%100 i

MS

No

Noi

MS

MSMS −
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where i denotes either ALINEA\Q or FLC method, 
iMS  denotes the mean speed under the control method i, and 

NoMS  590 

denotes the mean speed under “No control”. 591 

The sensitivity analysis is performed for the Case 3 “High expressway and ramp demands, severe capacity reduction 592 

(C*=30-40%). Table 8 show the MS versus the length of upstream section. The Table indicates that both ALINEA\Q and 593 

FLC are highly sensitive to the length of the upstream section, and the superiorities of the control methods over No control 594 

deteriorate as the network length increases. For a relatively short simulated network (the length of the upstream section = 595 

1.0-1.5 km), a small change in the network length may lead to a large change in MS , but for a relatively long simulated 596 

network (the length of the upstream section = 2.5-3.0 km) the change in MS  against a change in the network length is 597 

smaller. A possible reason under this phenomenon could be due to the fact that for a given traffic demand and incident 598 

parameters, when the upstream section is shorter, the traffic condition is more critical. By contrast, when the network length 599 

is large the traffic condition is less severe, and the effectiveness of the control is lower. 600 

Table 8. MS  versus the length of upstream section 601 

Control method 

Length of upstream section (km) 

1.00 1.50 2.00 2.50 3.00 

ALINEA\Q 26.82 14.62 10.84 8.84 7.42 

MS-FLC 27.98 20.84 16.68 14.16 12.45 

Table 9 shows that in both control methods the MS varies slightly in the range 23-29%, and the values of  MS  increase 602 

as the ramp storage capacity increases. A possible reason could be that when the ramp storage capacity increases, the ramp 603 

can accommodate more vehicles, hence fewer vehicles have to divert from the ramp. Consequently, given a long ramp and 604 

regardless of the control method, more vehicles can be metered into the mainline. In both cases, it is obvious that the MS-605 

FLC consistently outperforms the ALINEA\Q control algorithm. 606 

Table 9. MS versus the ramp storage capacity 607 

Control method 

Ramp storage capacity (veh.) 

20 40 60 80 

ALINEA\Q 23.19 24.26 26.82 27.45 

MS-FLC 25.74 26.96 27.98 28.77 
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Table 10 summarizes the MS for the three simulation time scenarios. The figure indicates that in both control methods, the 608 

benefits in the mean speed are highest in the simulation 30-60-30 (31.93% and 37.47% for ALINEA\Q and FLC respectively), 609 

followed by the simulation 30-60-60. The evaluation times for the three scenarios are 75/90, 105/120, and 135/150 minutes 610 

respectively (excluding 15-minute warm-up period), and the ratios of the incident and non-incident period in the evaluation 611 

period are 30/45 (0.67), 60/45 (1.33), and 60/75 (0.80), respectively. This indicates that when the ratio of the incident and 612 

non-incident period is higher, the improvement in the mean speed of the control algorithms over No control increases. This 613 

coincides with the findings in cases a) and b) that the effectiveness of control is higher in the more critical mainline conditions. 614 

Table 10. MS  versus the simulation period 615 

Control method 

Simulation period (min.) 

30-30-30 30-60-30 30-60-60 

ALINEA\Q 24.90 31.93 26.40 

FLC 27.47 37.47 32.14 

Discussions: feasibility and limitations 616 

The study of results from the simulation scenarios shows that the benefits of control intervention (ALINEA and FLC) depend 617 

on the magnitude of traffic demand and incident situation. Broadly speaking, more significant benefits can be achieved under 618 

high traffic demands and critical incident conditions than under favourable conditions. The study of results from the 619 

sensitivity analysis provides further understanding on how the control performances change with changes in the input 620 

parameters, specifically: 621 

• The benefits of control intervention are highly sensitive to the length of the network, in particular to the length of 622 

the upstream section. In general, the superiorities of the control methods over No control deteriorate as the network 623 

length increases.  624 

• The superiorities of the control methods are less sensitive to the ramp storage capacity, in comparison to the 625 

network length. In general, the benefits of the control methods increase as the ramp storage capacity increases. 626 

• The level of out-performance of the control algorithms is subject to the temporal structure of the simulation: when 627 

the ratio of the incident and non-incident period increases, the benefits over “No control” increase. 628 

It should be noted that the aforementioned findings are obtained from the model evaluation that was performed on a 629 

simplified network with an onramp, upstream and downstream incident segments, and a segment upstream of the ramp, under 630 

the local control as stated in the research scope. Although the model properties were further explored through sensitivity 631 

analysis with variations in the network length and simulation parameters, they are not verified for a more complicated network 632 

such as a corridor-wide control. 633 
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It should also be noted that there are no clear cuts between the terms low, medium, and high demands. They are loosely 634 

defined based on traffic demand in association with the reduced capacity. The question "to what range each of the demand 635 

categories covers" has not been verified numerically. An inspection of daily traffic volume profiles in the PIE’s database 636 

revealed that low-medium demand level is usually associated with nighttime, while medium-high and high demands can 637 

mostly be observed in the daytime. Therefore, the MS-FLC has opportunities for practical applications in most of the time 638 

domain (daytime) when control intervention should be in operation. 639 

Notwithstanding the important operational advantages, the MS-FLC has a number of limitations: 640 

• The MS-FLC is complex and operationally expensive. It employs a considerable number of input parameters, thus 641 

extensive observations and measurements from the network are required. 642 

• The essence of the fuzzy MS-FLC is the fuzzy rule base that formulates rules following fuzzy logic concept. In 643 

fuzzy logic, the input parameters are represented by fuzzy terms that are normally ill defined. In some cases, the 644 

partition of fuzzy sets must rely purely on personal judgements or common sense reasoning without having 645 

reference data to justify them based on solid technical grounds.  646 

• The MS-FLC only enhances its performance if the rule base is well formulated with appropriate membership 647 

function design and input-output mapping. Otherwise, the system performance can deteriorate seriously. 648 

• In calibrating parameters of membership functions of the fuzzy rule base, certain level of knowledge and expertise 649 

is required. The process of learning fuzzy rules requires a long time and the derivation of the membership functions 650 

can be tedious.  651 

• In general, in the design of control system, stability analysis is one of the fundamental concerns. As an FLC, the 652 

MS-FLC is a highly non-linear system with complex stability behaviour. However, there exists no systematic 653 

methodology with respect to the stability analysis of the MS-FLC, to the best of the authors’ knowledge. 654 

Conclusion and Future Works 655 

A multi-stage Fuzzy Logic Controller (MS-FLC) has been developed for traffic control under incidents on expressways. It 656 

aims at assisting traffic operators in decision making on non-recurring congestion management in a systematic manner. The 657 

decision-making process for traffic control during incidents on expressways include three tasks: (i) evaluation of incident 658 

traffic conditions, (ii) prediction of congestion tendency during the incident, and (iii) recommendation of local control 659 

strategies and control actions to alleviate the congestion. Following this logic, a multi-stage composite structure is proposed. 660 

The MS-FLC is divided into three stages, each of which corresponds to one of the three tasks listed above, with rules being 661 

executed sequentially from one stage to the next. The MS-FLC performance is evaluated by comparing with no control 662 

scenario and ALINEA\Q, a popular local ramp control algorithm. Principal performance evaluation criteria include travel 663 
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time, waiting time on-ramp, total travel distance, mean speed, mean density, and queue length. The experiment evaluated the 664 

control algorithms under various traffic demand levels and incident scenarios. The experiment results show that in general 665 

MS-FLC outperforms ALINEA\Q with respect to global objectives. In particular, while the ALINEA\Q algorithm gives 666 

control preferences to the mainline, the MS-FLC algorithm gains a better balance between the mainline and the ramp.  667 

In summary, the findings from this research allow the following conclusions to be drawn: 668 

• The MS-FLC provides a systematic procedure in deriving control actions. Through the systematic assessment of 669 

prevailing traffic conditions in advance of control actions, the MS-FLC ensures that salient-influencing factors can 670 

be considered for proper control actions. 671 

• For incident management, many types of data and information need to be gathered and analyzed, which may 672 

overload the traffic control operators. The MS-FLC resolves this challenging problem by its data-handling capability 673 

and knowledge representation to deliver simplified linguistic expression that is easy to understand by the operators. 674 

• Flexibility of the performance: unlike ALINEA (ALINEA\Q) whose control algorithm does not consider incident 675 

situation, MS-FLC is specifically designed for incident management. Issues such as capacity reduction and queue 676 

management are addressed. However, MS-FLC can also be applied for recurring congestion management since the 677 

problem-solving strategy for both types of congestion aims at demand-capacity balance on the mainline and the 678 

ramp. 679 

The findings of this study have the extended potential for future research on application development of an adaptive MS-680 

FLC. First, a MS-FLC with an adaptation component where parameters can be calibrated and rules can be modified on-line 681 

is worth exploring; second, effort should be extended to integrating the SVM short-term traffic prediction component for 682 

MS-FLC online operation; and third, future research should be devoted to development of the rule base and calibration of the 683 

MS-FLC model, as applicable for corridor-wide control. 684 
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